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Abstract
While adversarial training becomes one of the
most promising defending approaches against ad-
versarial attacks for deep neural networks, the
conventional wisdom through robust optimization
may usually not guarantee good generalization for
robustness. Concerning with robust generaliza-
tion over unseen adversarial data, this paper inves-
tigates adversarial training from a novel perspec-
tive of shift consistency in latent space. We argue
that the poor robust generalization of adversarial
training is owing to the significantly dispersed la-
tent representations generated by training and test
adversarial data, as the adversarial perturbations
push the latent features of natural examples in the
same class towards diverse directions. This is un-
derpinned by the theoretical analysis of the robust
generalization gap, which is upper-bounded by
the standard one over the natural data and a term
of feature inconsistent shift caused by adversarial
perturbation – a measure of latent dispersion. To-
wards better robust generalization, we propose a
new regularization method – shift consistency reg-
ularization (SCR) – to steer the same-class latent
features of both natural and adversarial data into
a common direction during adversarial training.
The effectiveness of SCR in adversarial training
is evaluated through extensive experiments over
different datasets, such as CIFAR-10, CIFAR-100,
and SVHN, against several competitive methods.

1. Introduction
Recent years have witnessed the remarkable success of deep
neural network (DNN) models spanning a wide range of
applications including image classification (LeCun et al.,
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2015; He et al., 2016; Miyato et al., 2017; Zagoruyko &
Komodakis, 2016), image generation (Nowozin et al., 2016;
Salvaris et al., 2018; Arjovsky et al., 2017), object detec-
tion (Zhao et al., 2019) and natural language processing (Ot-
ter et al., 2020). Despite the impressive performance boost-
ing over various learning tasks, DNNs are demonstrated to
be strikingly vulnerable to certain well-crafted adversarial
perturbations (Carlini & Wagner, 2018; Eykholt et al., 2018;
Fischer et al., 2017; Lyu et al., 2015). While such perturba-
tions are imperceptible to human, they can easily mislead
the prediction of DNNs with high confidence. Along with
the increasing deployment of DNN models in safety-critical
scenarios, it becomes extremely crucial to ensure model
robustness against potential adversarial attacks.

There has been a fast-growing body of works in the litera-
ture spurred by the arms race between adversarial attacks
and defenses. The newly emerging attacks (Croce & Hein,
2020; Kurakin et al., 2016; Carlini & Wagner, 2017; Madry
et al., 2017; Moosavi-Dezfooli et al., 2016) have soon been
defended by dedicated defense techniques (Wang & Zhang,
2019; Madry et al., 2017; Kannan et al., 2018; Gu & Rigazio,
2014), which are then broken again by more powerful at-
tacks. Among many defending techniques, adversarial train-
ing appears one of the most effective and promising ap-
proaches, by augmenting the training dataset with adversar-
ial examples to train robust DNNs (Goodfellow et al., 2014;
Lyu et al., 2015), or robustifying DNN model training pro-
cess against the worst-case adversarial perturbation (Madry
et al., 2017). Recent advances in adversarial training in-
clude 1) speeding up adversarial training, e.g., (Shafahi
et al., 2019; Zhang et al., 2019a; Zhu et al., 2019; Wong
et al., 2020); 2) considering the inter-sample relationship
when generating adversarial perturbations, e.g., (Zhang &
Wang, 2019; Miyato et al., 2017); and many others.

Albeit promising from the viewpoint of robustness, these
conventional wisdom may usually not guarantee good gener-
alization for robustness, i.e. the generalization over unseen
adversarial data. In particular, while the above methods
achieve impressive robustness performance, there still exists
a big robust generalization gap between training and test
sets. Moreover, it appears that such robustness generaliza-
tion on more complicated datasets could be even difficult
to be attained (Schmidt et al., 2018; Zhai et al., 2019). No-
tably, Schmidt et al. (2018) have shown that the sample
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(a) FS w/ clean data (b) FS w/ adversarial data (c) FS-SCR w/ clean data (d) FS-SCR w/ adversarial data

Figure 1. Visualization via t-distributed stochastic neighbor embedding (TSNE) of latent feature without and with shift consistency
regularization (SCR) applied during feature scattering (FS) based adversarial training. The latent features of FS generated from (a) clean
data; (b) adversarial data perturbed by PGD20; (c) clean data with SCR applied; and (d) adversarial data perturbed by PGD20 with SCR
applied. The training and test data samples are marked as dots and crosses, respectively. While the latent distributions of clean training
and test data are consistently centralized, those with adversarial perturbation exhibit a clearly inconsistent shift that leads to poor robust
generalization, as shown in (a) and (b). When SCR is applied together with FS-based adversarial training, the feature shift inconsistency
is substantially alleviated, as shown in (c) and (d), and therefore better robust generalization is attained.

complexity of robust learning can be significantly larger
than that of “standard” learning and consequently it is much
harder to achieve the robust generalization than “standard”
generalization. As such, the question then arises as to how
to improve the generalization over unseen adversarial data.

Although progress has been made to investigate the interplay
between robustness and generalization, e.g., (Farnia et al.,
2018; Tsipras et al., 2018; Zhang et al., 2019b; Yin et al.,
2019; Raghunathan et al., 2019; Yang et al., 2020; Wu et al.,
2020; Roth et al., 2020), the fundamental understanding still
has a long way to go. It is unclear which way is most suit-
able to pursue: (1) starting with robustness with adversarial
training, followed by improving generalization performance
by some regularization techniques as how standard training
has succeeded; or (2) starting with standard training with
cutting-edge techniques for generalization, followed by the
enhancement of defending techniques, e.g., robust regular-
ization techniques. Even worse, it is still not understood
why the robust generalization is harder to achieve than the
“standard” one.

In this paper, we make a first step to understand why robust
generalization is more challenging from a novel perspec-
tive of shift consistency of latent features. According to
Figures 1(a) and 1(b), we observe that the distributions of
latent features for the training and test data, with Feature
Scattering (FS) adversarial training and adversarial pertur-
bation by PGD attacks, experience a clearly inconsistent
shift as in 1(b), in sharp contrast to those obtained for clean
training and test data in 1(a). Inspired by such observations,
we argue that the poor robust generalization performance is
probably attributed to such latent feature inconsistent shifts.
To verify such a hypothesis, we investigate the robust gener-
alization gap through the connection between algorithmic
robustness and generalization ability (Xu & Mannor, 2012).
Specifically, we prove that the robust generalization gap is
upper-bounded by both the “standard” generalization gap

and a measure of the inconsistent shifts of latent features
caused by adversarial perturbations. As such, in order to
tighten such robust generalization gap, we can alleviate the
inconsistent shifts of latent features, given that the DNN
training can already achieve a reasonably small “standard”
generalization gap. To this end, we propose a novel regular-
ization method – shift consistency regularization (SCR) – to
boost the robust generalization performance for adversarial
training. Our contributions are summarized as follows:

• We propose to study the robust generalization from the
novel perspective of shift consistency of latent features,
where the latent distributions of adversarial training
and test data exhibit certain dispersion due to adversar-
ial perturbation. This is supported by our theoretical
analysis on the robust generalization bound, which can
be disentangled into the “standard” generalization gap
and a measure of inconsistent shifts of latent features
caused by adversarial perturbations.

• Inspired by the measure of inconsistent shifts, we pro-
pose a simple yet effective shift consistency regular-
ization (SCR) technique to alleviate the dispersion of
latent features. In doing so, the latent distributions
of both adversarial and clean data in the same class
are steered into the consistent directions, as shown in
Figure 1(c)(d) and Figure 3(c)(d), therefore leading to
better robust generalization performance.

• Extensive experiments have been conducted to demon-
strate the effectiveness of our proposed SCR method
over a variety of datasets, e.g., CIFAR-10, CIFAR-100,
and SVHN. It shows our method could be able to im-
prove the robustness over the recent state-of-the-art
methods substantially. Moreover, it is demonstrated
that improved robust generalization is due to the tighter
upper bound of robust generalization gap.
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2. Background and Related Work
Adversarial training is a family of approaches to improve the
model robustness (Goodfellow et al., 2014; Lyu et al., 2015;
Madry et al., 2017). Owing to its impressive performance
on defending against adversarial attacks, it has drawn much
attention in the recent years, e.g., (Zhang et al., 2018; Wang
& Zhang, 2019; Zhang & Wang, 2019; Zhang et al., 2020;
Mao et al., 2019; Shafahi et al., 2019; Zhang et al., 2019a;
Zhu et al., 2019; Wong et al., 2020). The common idea of
these methods is to train DNNs with perturbed examples
instead of clean ones with the correct labels, so that the
trained model could be robust to the adversarial perturbation.
In what follows, we introduce adversarial training via robust
optimization, followed by the robust generalization.

2.1. Conventional Adversarial Training

The main idea of the conventional adversarial training is to
train the DNNs with the adversarial examples induced by
the worst predictions. This can be formulated as a robust
optimization problem as follows.

min
θ

{E(x,y)∼D[ max
x′∈Sx

L(x′, y; θ)]}, (1)

where x ∈ Rd and y ∈ N denote the clean data samples
and the corresponding labels drawn from the dataset D
respectively; L(·) is the loss function of the DNN with the
model parameter θ ∈ Rm; and x′ ∈ Rd is the perturbation
of x within a feasible region Sx , {z : z ∈ B(x, ε) ∩
[−1.0, 1.0]d} with B(z, ε) , {z : ‖x− z‖∞ ≤ ε} being
the `∞-ball at center x with radius ε. By defining fθ(·) as
the mapping function from the input layer to the last latent
layer, with model parameters θ, we can also rewrite the loss
function of the DNN as l(fθ(x), y) where l(·) denotes the
loss function calculated from the last hidden layer of the
DNN, e.g. the cross entropy loss as typically used in DNN.

To solve the above minimax optimization problem, the com-
monly adopted approach (e.g., (Madry et al., 2017)) is to
iteratively update between the outer minimization via SGD
training and the inner maximization via adversarial attacks
(e.g., PGD, FGSM) until the convergence.

The wisdom behind this line of research is that, it is expected
to train a robust model if the potential attacks through the
adversarial perturbation are identified and then eliminated
during the training process. Nevertheless, the robust gener-
alization is not considered.

2.2. Adversarial Training with Feature Scattering

To exploit the structure of data manifold, recent works have
stated to consider the inter-sample relationship during adver-
sarial training, e.g., (Sinha et al., 2017; Miyato et al., 2017;
Zhang & Wang, 2019) to name just a few. Among these
recent advances, Feature Scattering (FS) based adversarial

training (Zhang & Wang, 2019) is one of the most promis-
ing ones, achieving impressive success in defending against
various adversarial attacks. Different from the conventional
adversarial training methods, FS generates the adversarial
examples for training with the inter-sample relationships
considered. Consequently, some other perturbed examples
(not only the worst ones) that are crucial for learning robust
models are also implicitly considered. The main objective
function of FS can be formulated as:

min
θ

1

N

N∑
i=1

L(xadvi , yi; θ)

s.t. ν∗ =

N∑
i=1

viδxadvi
= arg max

ν∈Sµ
Dot(ν, µ)

(2)

where µ =
∑N
i=1 uiδxi and ν =

∑N
i=1 viδxadvi

are two discrete distributions for natural examples
{xi}Ni=0 and perturbed examples {x′i}Ni=0 respectively
and V = {vi}Ni=1 and U = {ui}Ni=1 are correspond-
ing weights. Here, vi = ui = 1/N . Sµ =
{
∑
i viδzi , |zi ∈ B(xi, ε) ∩ [0, 255]d} denotes the feasi-

ble region. Dot = minT∈
∏

(U,V )

∑N
i=1

∑N
j=1 Tijc(xi, x

′
j)

is the optimal transport (OT) distance where
∏

(U, V ) =
{T ∈ RN×N+ |T1N = U, T>1N = V } and 1N denotes all-
one vector. Here, the cost function is defined as c(xi, x′j) =

1− fθ(xi)
>fθ(x

′
j)

‖fθ(xi)‖2‖fθ(x′
j)‖2

to measure the feature similarity.

Intuitively, the adversarial examples are generated to make
their latent representations as distinguishable from that of
clean ones as possible. Since the adversarial perturbations
are crafted in an unsupervised fashion, there is no high corre-
lation between the perturbations and the decision boundary
so that the potential label leaking problem can be prevented
(Zhang & Wang, 2019).

2.3. Robust Generalization

Robust generalization describes how well the robust models
perform on unseen adversarial data. Different from stan-
dard generalization (on clean data), learning a model with
good robust generalization is particularly difficult because
of the requirement of significantly higher data sample com-
plexity (Schmidt et al., 2018; Zhai et al., 2019). There is
an increasing attention being put on the relation between
robustness and generalization. For instance, Zhang et al.
(2019b) proposed to decompose the robust error due to ad-
versarial examples into the natural classification error and
the boundary error, shedding light on the trade-off between
the robustness and the accuracy. Yang et al. (2020) argued
that both accuracy and robustness are achievable if the local
Lipschitzness is maintained.

On the other hand, there is an increasing number of works
resorting to the regularization techniques to promote robust
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generalization for adversarial training, hoping to repeat their
success in the standard training. Remarkably, Yin et al.
(2019) demonstrated that constraining `1 norm on weight
matrices could improve robust generalization; Wu et al.
(2020) attempted to perturb weight in addition to input sam-
ple to encourage generalization together with robustness;
Roth et al. (2020) established a link between adversarial
training and operator norm regularization; and many others.

Although intensive attention has been placed on the inter-
play between robustness and generalization for adversarial
training, the fundamental understanding is still under explo-
ration. A typical question is, why is the robust generalization
of adversarial training is so hard to achieve? In this paper,
we make progress towards the answer to this question by
analyzing the robust generalization gap both theoretically
and empirically. The theoretical analysis reveals that the
challenge in achieving robust generalization is probably due
to the feature inconsistency shifts of the adversarial data.

3. Robust Generalization Analysis
In this section, we will analyze the robust generalization
from both the theoretical and empirical aspects. Specifi-
cally, we first provide the theoretical relationship between
robust generalization and standard one and show that the
shift inconsistency of latent features caused by adversarial
perturbations contributes to the difficulty of robust general-
ization. Then, we validate the theoretical analysis through
experiments. Finally, we visualize the latent features of
clean and adversarial examples to show that the adversar-
ial perturbations enlarge the difference between the latent
features of training and test data.

3.1. Theoretical Analysis

The (standard) generalization is leveraged to measure how
well the models perform on unseen data. The generalization
error (gap) is defined as the difference between the expected
loss over data distribution (x, y) ∼ (S, Y ) and the empirical
loss over the training data (xd, yd) ∈ (Sd, Yd) (Xu & Man-
nor, 2012; Bousquet & Elisseeff, 2002; Neyshabur et al.,
2017), i.e.,

GE , |l(fθ(S), Y )− l̂(fθ(Sd), Yd)| (3)

where l(fθ(S), Y ) , E(x,y)∼(S,Y )[l(fθ(x), y)]

l̂(fθ(Sd), Yd) ,
1

|Sd|
∑

(xd,yd)∈Sd

l(fθ(xd), yd)

with Sd, Yd being the training data and the corresponding
labels, respectively, and S, Y being the underlying data and
label distributions, respectively.

Similar to standard generalization, the robust generalization
can be defined as the difference between the empirical loss

on adversarial examples and the expected loss over their
underlying distributions (Schmidt et al., 2018; Zhai et al.,
2019; Wu et al., 2020) , i.e.,

RGE , |l(fθ(Sadv), Y )− l̂(fθ(Sadvd ), Yd)| (4)

where Sadvd and Sadv are the set of adversarial examples for
the training set and its underlying distribution. By these def-
initions, we can derive the theoretical relationship between
the robust and standard generalization errors as Theorem 3.1
shows.

Theorem 3.1 Given the training set Sd = {xi}ni=1 that
consists of n i.i.d samples drawn from a distribution S
with K classes, and the set of corresponding adversarial
examples Sadvd = {xadvi }ni=1 drawn from the underlying
distribution Sadv, if the loss function l(·) of DNN fθ is k-
Lipschitz, then for any δ > 0, with the probability at least
1− δ, we have

RGE ≤ GE +
k

n

K∑
i=1

∑
j∈Ni

‖dθ(xadvj )− d̂θ(z, Ci)‖22 (5)

+M

√
2K ln 2 + 2 ln 1

δ

n

where dθ(x
adv) = fθ(x

adv)− fθ(x) (6)

d̂θ(z, Ci) = E[fθ(z
adv)− fθ(z)|z ∈ Ci] (7)

with Ni being the set of index of training data for class i,
Ci the set of ith class data of the whole set and z is data
sampled from Ci with corresponding adversarial example
zadv , M the upper bound of loss of the whole data manifold
S.

Proof of Theorem 3.1 can be seen in the supplementary
material. According to Theorem 3.1, the upper bound of the
robust generalization gap (RGE) can be decomposed into
three parts: standard generalization gap (GE), a term of the
features shift inconsistency (SiC), and a constant part.

SiC ,
k

n

K∑
i=1

∑
j∈Ni

SiC(xadvj , z, Ci), where (8)

SiC(xadvj , z, Ci) , ‖dθ(xadvj )− d̂θ(z, Ci)‖22.

The shift inconsistency part is to measure the average dif-
ference between the training data feature shifts and the dis-
tributional data feature shifts over all classes. Theorem 3.1
indicates that feature shift inconsistency caused by adversar-
ial perturbation enlarges the robust generalization gap and
makes it harder to achieve.
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(b) PGD

Figure 2. The generalization gap difference (accuracy gap differ-
ence) and shift inconsistency at different training epochs. The gap
difference and shift inconsistency are computed over (a) CW20 at-
tack and (b) PGD20 attack. The changes of the shift inconsistency
and gap difference are consistent.

3.2. Empirical Analysis

In this subsection, we will first demonstrate Theorem 3.1 by
showing how the difference between the robust and standard
generalization gaps is varying with the level of feature shift
inconsistency. Then we will visualize the TSNE embedding
of the output features to show that the adversarial perturba-
tions shift test data features away from training data features
of the same class. Note that in this subsection all models
are trained with FS on CIFAR-10.

Relationship between the generalization gap difference
and feature shift inconsistency. For convenience, in-
stead of computing the difference between the robust and
standard generalization gaps, i.e., RGE − GE, we com-
pute the accuracy gap difference between training and test
datasets, given the fact that they are consistent to some
degree (Xu & Mannor, 2012). In particular, we com-
pute the accuracy gap difference using |Acc(Sadvt , Yt) −
Acc(Sadvd , Yd)|− |Acc(St, Yt)−Acc(Sd, Yd)|, where St is
the test set, Yt denotes the set of the corresponding labels of
test samples in St, Sadvt is the set of adversarial examples
of the test set St, and Acc(Sadvt , Yt) is the accuracy of test
adversarial data set Sadvt with labels Yt.

Further, we can substitute SiC(xadvj , z, Ci) with its empir-
ical version SiC(xadvj , x, St) , ‖dθ(xadvj ) − d̂θ(x, St)‖22
where d̂θ(x, St) = E[fθ(x

adv)−fθ(x)|x ∈ St]. Intuitively,
we approximate the shift inconsistency with the shift differ-
ence between training and test sets. To validate the correct-
ness of Theorem 3.1 and show whether the gap difference
is caused by feature shift inconsistency, we plot the gap
difference and shift consistency from epoch 60 to 190 in
Figure 2.

As noted in Figure 2, for both the CW and PGD attacks,
the changes of shift inconsistency and gap difference are
consistent. Therefore, there exists a Lipschitz constant k

and constant part M
√

2K ln 2+2 ln 1
δ

n that makes the upper
bound tight in Theorem 3.1. Additionally, it indicates that

(a) FS training shifts (b) FS test shifts

(c) FS-SCR training shifts (d) FS-SCR test shifts

Figure 3. The feature shifts of the training and test data (PGD) .

the feature shift inconsistency can reflect the difference
between the robust and standard generalization. Feature
shift inconsistency might enlarge the robust generalization
gap compared with standard one. To further inspect the
reason why the robust generalization is harder to achieve,
we visualize the output feature of DNNs in next subsection.

Visualization. We visualize the TSNE embedding of
clean data and adversarial data features for both the training
and test sets in Figure 1(a) 1(b) and Figure 6(a) 6(b).

Figure 1(a) and 6(a) are the TSNE embedding of clean data
and it can be noted that for each class, the training data
feature distribution is close to the test one. Therefore, the
classifier learned with training set can still perform well
on test set. Differently, as seen in Figure 1(d) and 6(d),
some test adversarial data features are shifted away from
the training adversarial data features of the same class. In
other words, for the same class, the test adversarial data fea-
ture distribution becomes more different from the training
one. Consequently, the classifier learned with the training
adversarial data can not be guaranteed to perform well on
adversarial examples of test set. This suggests why the
robust generalization is harder to achieve.

Moreover, we plot the feature shifts caused by adversarial
perturbations for both the training data and test data in
Figure 3 where the feature shift for a data sample x is defined
as fθ(xadv)−fθ(x). Comparing Figure 3(a) and 3(b), it can
be noted that the test data feature shifts are different from
training ones and the shifts are obviously dispersed which
result in the different feature distributions for training and
test adversarial examples. The total shifts difference can be
evaluated with shift inconsistency SiC in Equation (8).
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4. Adversarial Training with SCR
In this section, we will introduce our proposed regulariza-
tion method named shift consistency regularization (SCR).
According to previous sections, the feature shift inconsis-
tency – the difference of latent features between training
and test data – enlarges the robust generalization gap and
consequently makes robust generalization harder to achieve.
To tackle such problem, it is natural to penalize the shift
inconsistency term SiC during the training as a regularizer.

However, it is impractical to compute expected feature shift
over the unknown input distribution for d̂θ(z, Ci), with only
the training dataset available. An alternative way is to ap-
proximate it with average feature shift over training data.
Thus, for a data sample xj and its adversarial example xadvj ,
we define an estimate of shift inconsistency term as

ŜiC(xadvj , xl, Ni) , ‖dθ(xadvj )− d̄θ(xl, Ni)‖22, (9)

where d̄θ(xl, Ni) is the average feature shifts over training
data of class i, i.e.,

d̄θ(xl, Ni) =
1

|Ni|
∑
l∈Ni

(fθ(x
adv
l )− fθ(xl)). (10)

As such, we propose an adversarial training method with a
novel shift consistency regularization (SCR) to improve the
robust generalization, formulated as:

min
θ

{ n∑
i=1

[L(xadvi , yi; θ)]

+
λ

n

K∑
i=1

∑
j∈Ni

ŜiC(xadvj , xl, Ni)
}
,

s.t. xadvi = arg max
x′
i∈Sxi

L(x′i, yi; θ).

(11)

where λ is the trade-off parameter. Nevertheless, the above
formulation only penalizes the shift inconsistency caused by
one specific adversarial attack. To enhance the adversarial
robustness, we consider different adversarial attacks and
propose to penalize the most inconsistent shift by replacing
ŜiC(xadvj , xl, Ni) with

max
x′
j∈Sxi

ŜiC(x′j , xl, Ni). (12)

The intuition behind the above formulation of adversarial
training is as follows. In addition to training over adver-
sarial examples for classification as done in the traditional
approach, the SCR takes into account the most disperse
feature shifts due to adversarial perturbation. By enforcing
the inconsistent shifts to concentrate on the average of each
class, robust generalization is attainable.

4.1. Iterative Implementation

Since adversarial training is computationally expensive, it is
not practical to optimize (11) and (12) with the whole dataset
once at a time. Instead, we solve the optimization prob-
lems (11) and (12) with batches. For the problem (12), we
set the mean value of training data shifts as the trainable pa-
rameter µi instead of computing it directly. Then, the prob-
lem (12) can be reformulated as maxx′

j∈Sxi ŜiC(x′j , µi)

where ŜiC(x′j , µi) , ‖dθ(x′j) − µi‖22. As such, we im-
plement the proposed adversarial training with shift consis-
tency regularization in an iterative way to reduce the compu-
tational complexity as detailed in Algorithm 1. Specifically,
we first compute the adversarial examples for the loss func-
tion and shift inconsistency. Then, we optimize the model
parameter θ to minimize the objective function. Finally, we
update the mean parameter of feature shifts with updated
adversarial examples.

5. Experiment
In this part, we perform extensive experiments to evaluate
our proposed SCR in defending against various adversarial
attacks. To save space, many results are provided in the
supplementary file including the comparison against black-
box attacks, sensitivity analysis, and more visualizations.

5.1. Robustness to Adversarial Attacks

We now evaluate the robustness performance of state-of-the-
art adversarial training methods on CIFAR-10, CIFAR-100,
and SVHN against white/black box adversarial attacks. We
highlight the setting of three benchmark methods, i.e. FS,
AT, and TRADES, all of which adopt WideResNet-28-10
as the baseline, by following (Zhang & Wang, 2019; Madry
et al., 2017). Specifically, for FS, we follow (Zhang & Wang,
2019) on CIFAR-10 and CIFAR-100. We train 200 epochs
using SGD with momentum 0.9, weight decay 5 × 10−4,
and initial learning rate 0.1. The learning rate decays at
epoch 60 and 90 with the rate 0.1; for SVHN, the initial
learning rate is 0.01 while the other settings remain the
same as those on CIFAR-10 and CIFAR-100. For AT and
TRADES, the total training epoch is 100 with the initial
learning rate 0.1 for CIFAR-10 and CIFAR-100 and 0.01
for SVHN. The learning rate decays at 60 epoch with decay
rate 0.1. The trade-off parameter is 0.01 on CIFAR-10 and
SVHN and 0.0001 on CIFAR-100 for our proposed model.
The iteration number is empirically set as 3 to compute the
regularization and update step is 4/255. All other hyper-
parameters are the same as the baseline methods.

We attack different models with FGSM, PGD, and CW. (all
attacks are computed with l∞ norm) We adopt FS as the
main baseline on which we apply the proposed SCR. We
set the training attack iteration to 1, and both the attack step
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Algorithm 1 Adversarial Training with SCR
1: for training iteration l = 1, . . . , T do
2: Sample a batch of labeled data {xj , yj}nj=1 from

training set with K classes. xtj is the perturbed ex-
ample of xj at tth iteration and x1j is initialized by
adding the random perturbation. Ni is the set of in-
dices of examples of class i in this batch. µi denotes
the mean value of feature shifts over the ith class
data of the whole training data. We initialize µi with
random values. α and β are the updating rate for
perturbed examples and the mean µi respectively. m
is the total number of classes. c1 and c2 are attack
iterations for loss function and shift inconsistency.

3: Compute adversarial example xadvj for classification:
4: for j = 1, . . . , n do
5: for t = 1, . . . , c1 do
6: xt+1

j = ΠSxj
(xtj + α1 · sgn(∇xL(xtj , yj ; θ)))

7: end for
8: xadvj = xc1j
9: end for

10: Compute adversarial example xstk to maximize shift
inconsistency:

11: for i = 1, . . . ,m do
12: for k ∈ Ni do
13: for t = 1, . . . , c2 do
14: xt+1

k = ΠSxj
(xtk + α1 · sgn(∇xtk‖fθ(x

t
k)−

fθ(xk)− µi‖22))
15: end for
16: xstk = xc2k
17: end for
18: end for
19: where

∏
is projection operator. Update the parame-

ters of neural network θ with

−∇θ
{ n∑
i=1

[L(xadvi , yi; θ)] +
λ

n

K∑
i=1

∑
j∈Ni

ŜiC(xstj , µi)
}

20: Update the feature shift mean value:
21: for i = 1, . . . ,m do
22: µi = βµi+(1−β) 1

|Ni|
∑
j∈Ni(fθ(x

st
j )−fθ(xj))

23: end for
24: end for=0

size and amplitude to 8/255.

We compare the proposed FS-SCR with the current state-of-
the-art adversarial training methods such as 1) AT (Madry
et al., 2017), 2) TLA (Mao et al., 2019), 3) LAT (Sinha et al.,
2019) 4) Bilateral (Wang & Zhang, 2019), 5) FS (Zhang
& Wang, 2019). In addition, we evaluate FS-SCR against
other recent methods which also aim to promote the robust
generalization including 6) RST/AT-AWP (Wu et al., 2020),
7) RLFATT/P (Song et al., 2019). We list the performance

of different methods in Table 1 and Table 2 respectively
on CIFAR-10, CIFAR-100 and SVHN. For CIFAR-10, it
can be noted that our proposed FS-SCR attains the overall
best performance for all the attacks except that it is slightly
worse than FS on PGD100. Particularly, our method shows
obvious superiority over recent robust generalization meth-
ods RST/AT-AWP, RLFATT/P . For CIFAR-100 and SVHN,
our proposed method performs even better, demonstrating
consistently higher accuracy than all the other models.

Table 1. Accuracy under white-box attacks on CIFAR-10

MODELS CLEAN
ACCURACY UNDER WHITE-BOX ATTACK (ε = 8)

FGSM PGD20 PGD40 PGD100 CW20 CW40 CW100

STANDARD 95.60 36.90 0.00 0.00 0.00 0.00 0.00 0.00
AT 85.70 54.90 44.90 44.80 44.80 45.70 45.60 45.40
TLA 86.21 58.88 51.59 - - - - -
LAT 87.80 - 53.84 - 53.04 - - -
BILATERAL 91.20 70.70 57.50 – 55.20 56.20 – 53.80
FS 90.00 78.40 70.50 70.30 68.60 62.40 62.10 60.60
RST-AWP 88.25 67.94 63.73 - 63.58 61.62 - -
RLFATT 82.72 - 58.75 - - 51.94 - -
RLFATP 84.77 - 53.97 - - 52.40 - -
FS-SCR 92.70 89.87 76.45 71.60 67.79 75.42 72.69 69.79

5.2. Effect on Different Baselines & Attack Budget

We further examine the effects of SCR on different basesline
models and under different attack budget where Auto Attack
(AA), a recent stronger attack (Croce & Hein, 2020) was
also compared (both our method and baselines are trained
with l∞ norm). Due to limited space, we take CIFAR-10
as one typical example to illustrate such results. First, we
examine if SCR could consistently improve the robustness
of various models, particularly AT, TRADES, and FS. We
report such comparisons in Figure 4(a)-4(c). As clearly
observed, SCR apparently boosts the robustness of all the
three baseline methods. Second, we also evaluate how SCR
would affect the baseline model FS under different attack
budgets. Specifically, we attack FS-SCR and its baseline
FS with PGD and CW of different attack budgets and re-
port such results in Figure 4(d)-4(e). Once again, SCR can
consistently improve FS substantially when different attack
budgets are applied. All these results validate the efficacy
of SCR on improving the robust generalization.

5.3. Further Analysis

We now offer more analysis and visualizations to interpret
how and why SCR could promote the robust generalization.

Generalization Analysis To examine the robust general-
ization of SCR, we plot in Figure 5 the generalization gap
difference (i.e. the difference of accuracy gap on training
and test set of CIFAR-10 cf. Section 3.2 for detailed defini-
tion) for both FS and FS-SCR at different training epochs,
under the attacks of CW20 and PGD20. We also draw the
feature shift inconsistency for FS and FS-SCR on CIFAR-
10. It can be noted that feature shift inconsistency manifests
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Table 2. Accuracy under different white-box attack on CIFAR-100 and SVHN

MODELS
CIFAR-100(ε = 8) SVHN(ε = 8)

CLEAN FGSM PGD20 PGD100 CW20 CW100 CLEAN FGSM PGD20 PGD100 CW20 CW100

STANDARD 79.00 10.00 0.00 0.00 0.00 0.00 97.20 53.00 0.30 0.10 0.30 0.10
AT 59.90 28.50 22.60 22.30 23.20 23.00 93.90 68.40 47.90 46.00 48.70 47.30
LAT 60.94 - 27.03 26.41 - - 60.94 - 60.23 59.97 - -
BILATERAL 68.20 60.80 26.70 25.30 - 22.10 94.10 69.80 53.90 50.30 - 48.90
FS 73.90 61.00 47.20 46.20 34.60 30.60 96.20 83.50 62.90 52.00 61.30 50.80
AT-AWP - - 30.71 - - - - - 59.12 - - -
RLFATT 58.96 - 31.63 - 27.54 - - - - - - -
RLFATP 56.70 - 31.99 - 29.04 - - - - - - -
FS-SCR 74.20 72.19 48.87 47.34 38.90 33.60 96.60 92.52 70.24 60.72 64.62 54.90

(a) AT (b) TRADES (c) FS (d) PGD Attack Budget (e) CW Attack Budget

Figure 4. Effect of SCR on different baselines (attacking with FGSM, PGD, CW, and AA) & attack budget (CIFAR-10).

an overall similar trend to the generalization gap. In addi-
tion, our proposed FS-SCR obtains smaller generalization
gap difference and smaller shift inconsistency than FS. It
indicates that SCR diminishes the performance difference
between clean and adversarial data and improves the robust
generalization through penalizing the shift inconsistency.
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Figure 5. The generalization gaps (accuracy gap difference) and
shift inconsistency at different training epochs on CIFAR-10.

Feature Analysis We have visualized the output features
of clean and adversarial data under PGD attacks for both FS-
SCR and FS earlier in Figure 1. We now visualize further
in Figure 6 these features under CW attacks. Again cross
and dot denote the test and training data feature. Obviously,
after SCR is applied, FS-SCR leads to very similar distribu-
tions between the latent adversarial features of the training
and test data (though there exist certain test feature points
shifted away from their distributions). Contrastively, in FS,
more test feature points shift away from their distribution.
Even worse, the structures of feature distributions of some
classes are undermined in FS. Namely, the feature distri-
bution of FS becomes more complicated when adversarial
perturbations are added which deteriorates the robust gener-
alization. Similar observations can also be earlier inspected

in Figure 3 where the features of training data turn to share
more consistent shifts with those of test data. Further, the
latent dispersion of test set can be made smaller after SCR
is applied and more consistent training and test distributions
are obtained, thus attaining better robust generalization.

Training Data

Test  Data

(a) FS clean data

Training Data

Test  Data

(b) FS adversarial data

Training Data

Test  Data

(c) FS-SCR clean data

Training Data

Test  Data

(d) FS-SCR adversarial data

Figure 6. Visualization via TSNE of latent features without and
with SCR applied during FS adversarial training (attacked by CW).

Effectiveness on adaptive attack. To demonstrate that
our proposed method can still work for the test-time attacks
with more adaptive ones, we conducted additional experi-
ments applying our proposed SCR method to three different
adversarial training models (i.e., FS, AT and TRADES) to
defend against adaptive attacks (adaptive attacks are based
on FGSM, PGD20 and CW20) on different datasets with
different loss weights. The results are shown in Table ??,
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Table 3. Robustness accuracy under different adaptive attacks
Method (FS+SCR)

Datasets 0*CE+1*SIC 1*CE+0.1*SIC 1*CE+0.5*SIC 1*CE+1*SIC
FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20

CIFAR-10 92.64 80.69 80.81 89.75 76.40 75.56 91.42 77.99 75.55 91.93 79.19 76.68
CIFAR-100 72.66 52.63 48.96 72.46 48.16 34.65 69.58 48.49 36.68 72.58 48.96 37.82
SVHN 94.67 69.15 66.89 94.66 69.09 65.42 94.70 69.07 66.76 94.32 69.63 65.96

Method (AT+SCR)
Datasets 0*CE+1*SIC 1*CE+0.1*SIC 1*CE+0.5*SIC 1*CE+1*SIC

FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20
CIFAR-10 68.96 60.23 59.67 68.75 57.42 55.10 68.62 56.53 54.87 68.12 58.21 55.78

Method (TRADES+SCR)
Datasets 0*CE+1*SIC 1*CE+0.1*SIC 1*CE+0.5*SIC 1*CE+1*SIC

FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20 FGSM PGD20 CW20
CIFAR-10 69.16 61.21 58.76 68.42 58.96 56.67 68.06 58.21 56.96 69.02 59.08 56.26

where CE indicates the cross entropy loss and SIC means
the shift consistency regularization term. The attack con-
sists of two parts that come respectively from CE and SIC.
Compared with the results in Table 1-2 and Figure 4, it can
be noted that SCR regularized methods achieve comparable
or even higher accuracy on such adaptive attacks than the
conventional attacks. It is because the attack component
generated according to the regularization term is weaker due
to its irrelevance to the decision boundaries.

6. Conclusion
In this paper, we have shown – both theoretically and empir-
ically – the poor robust generalization of adversarial training
is attributed to the latent feature inconsistent shift of adver-
sarial training and test data. Inspired by this, we proposed a
novel shift consistency regularization technique to achieve
better robust generalization for adversarial training. It is ex-
pected to stimulate the further investigation of the interplay
between robustness and generalization.
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