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Abstract
We develop theory and algorithms for average-
reward on-policy Reinforcement Learning (RL).
We first consider bounding the difference of the
long-term average reward for two policies. We
show that previous work based on the discounted
return (Schulman et al., 2015; Achiam et al., 2017)
results in a non-meaningful bound in the average-
reward setting. By addressing the average-reward
criterion directly, we then derive a novel bound
which depends on the average divergence between
the two policies and Kemeny’s constant. Based
on this bound, we develop an iterative procedure
which produces a sequence of monotonically im-
proved policies for the average reward criterion.
This iterative procedure can then be combined
with classic DRL (Deep Reinforcement Learn-
ing) methods, resulting in practical DRL algo-
rithms that target the long-run average reward cri-
terion. In particular, we demonstrate that Average-
Reward TRPO (ATRPO), which adapts the on-
policy TRPO algorithm to the average-reward
criterion, significantly outperforms TRPO in the
most challenging MuJuCo environments.

1. Introduction
The goal of Reinforcement Learning (RL) is to build agents
that can learn high-performing behaviors through trial-and-
error interactions with the environment. Broadly speak-
ing, modern RL tackles two kinds of problems: episodic
tasks and continuing tasks. In episodic tasks, the agent-
environment interaction can be broken into separate distinct
episodes, and the performance of the agent is simply the
sum of the rewards accrued within an episode. Examples
of episodic tasks include training an agent to learn to play
Go (Silver et al., 2016; 2018), where the episode terminates
when the game ends. In continuing tasks, such as robotic
locomotion (Peters & Schaal, 2008; Schulman et al., 2015;
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Haarnoja et al., 2018) or in a queuing scenario (Tadepalli
& Ok, 1994; Sutton & Barto, 2018), there is no natural sep-
aration of episodes and the agent-environment interaction
continues indefinitely. The performance of an agent in a
continuing task is more difficult to quantify since the total
sum of rewards is typically infinite.

One way of making the long-term reward objective mean-
ingful for continuing tasks is to apply discounting so that
the infinite-horizon return is guaranteed to be finite for any
bounded reward function. However the discounted objec-
tive biases the optimal policy to choose actions that lead to
high near-term performance rather than to high long-term
performance. Such an objective is not appropriate when the
goal is to optimize long-term behavior, i.e., when the natural
objective underlying the task at hand is non-discounted. In
particular, we note that for the vast majority of benchmarks
for reinforcement learning such as Atari games (Mnih et al.,
2013) and MuJoCo (Todorov et al., 2012), a non-discounted
performance measure is used to evaluate the trained policies.

Although in many circumstances, non-discounted criteria
are more natural, most of the successful DRL algorithms
today have been designed to optimize a discounted crite-
rion during training. One possible work-around for this
mismatch is to simply train with a discount factor that is
very close to one. Indeed, from the Blackwell optimality
theory of MDPs (Blackwell, 1962), we know that if the dis-
count factor is very close to one, then an optimal policy for
the infinite-horizon discounted criterion is also optimal for
the long-run average-reward criterion. However, although
Blackwell’s result suggests we can simply use a large dis-
count factor to optimize non-discounted criteria, problems
with large discount factors are in general more difficult to
solve (Petrik & Scherrer, 2008; Jiang et al., 2015; 2016;
Lehnert et al., 2018). Researchers have also observed that
state-of-the-art DRL algorithms typically break down when
the discount factor gets too close to one (Schulman et al.,
2016; Andrychowicz et al., 2020).

In this paper we seek to develop algorithms for finding
high-performing policies for average-reward DRL problems.
Instead of trying to simply use standard discounted DRL
algorithms with large discount factors, we instead attack the
problem head-on, seeking to directly optimize the average-
reward criterion. While the average reward setting has been
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extensively studied in the classical Markov Decision Pro-
cess literature (Howard, 1960; Blackwell, 1962; Veinott,
1966; Bertsekas et al., 1995), and has to some extent been
studied for tabular RL (Schwartz, 1993; Mahadevan, 1996;
Abounadi et al., 2001; Wan et al., 2020), it has received
relatively little attention in the DRL community. In this
paper, our focus is on developing average-reward on-policy
DRL algorithms.

One major source of difficulty with modern on-policy DRL
algorithms lies in controlling the step-size for policy updates.
In order to have better control over step-sizes, Schulman
et al. (2015) constructed a lower bound on the difference
between the expected discounted return for two arbitrary
policies π and π1 by building upon the work of Kakade
& Langford (2002). The bound is a function of the diver-
gence between these two policies and the discount factor.
Schulman et al. (2015) showed that iteratively maximizing
this lower bound generates a sequence of monotonically
improved policies for their discounted return.

In this paper, we first show that the policy improvement theo-
rem from Schulman et al. (2015) results in a non-meaningful
bound in the average reward case. We then derive a novel
result which lower bounds the difference of the average long-
run rewards. The bound depends on the average divergence
between the policies and on the so-called Kemeny con-
stant, which measures to what degree the irreducible Markov
chains associated with the policies are “well-mixed”. We
show that iteratively maximizing this lower bound guaran-
tees monotonic average reward policy improvement.

Similar to the discounted case, the problem of maximizing
the lower bound can be approximated with DRL algorithms
which can be optimized using samples collected in the en-
vironment. In particular, we describe in detail the Average
Reward TRPO (ATRPO) algorithm, which is the average re-
ward variant of the TRPO algorithm (Schulman et al., 2015).
Using the MuJoCo simulated robotic benchmark, we carry
out extensive experiments demonstrating the effectiveness
of of ATRPO compared to its discounted counterpart, in
particular on the most challenging MuJoCo tasks. Notably,
we show that ATRPO can significantly out-perform TRPO
on a set of high-dimensional continuing control tasks.

Our main contributions can be summarized as follows:

• We extend the policy improvement bound from Schul-
man et al. (2015) and Achiam et al. (2017) to the av-
erage reward setting. We demonstrate that our new
bound depends on the average divergence between the
two policies and on the mixing time of the underlying
Markov chain.

• We use the aforementioned policy improvement bound
to derive novel on-policy deep reinforcement learning
algorithms for optimizing the average reward.

• Most modern DRL algorithms introduce a discount
factor during training even when the natural objective
of interest is undiscounted. This leads to a discrep-
ancy between the evaluation and training objective.
We demonstrate that optimizing the average reward
directly can effectively address this mismatch and lead
to much stronger performance.

2. Preliminaries
Consider a Markov Decision Process (MDP) (Sutton &
Barto, 2018) pS,A, P, r, µq where the state space S and
action space A are assumed to be finite. The transition
probability is denoted by P : S ˆ A ˆ S Ñ r0, 1s, the
bounded reward function r : S ˆ A Ñ rrmin, rmaxs, and
µ : S Ñ r0, 1s is the initial state distribution. Let π : S Ñ
∆pAq be a stationary policy where ∆pAq is the probabilty
simplex over A, and Π is the set of all stationary policies.
We consider two classes of MDPs:

Assumption 1 (Ergodic). For every stationary policy, the
induced Markov chain is irreducible and aperiodic.

Assumption 2 (Aperiodic Unichain). For every stationary
policy, the induced Markov chain contains a single aperi-
odic recurrent class and a finite but possibly empty set of
transient states.

By definition, any MDP which satisfies Assumption 1 is
also unichain. We note that most MDPs of practical interest
belong in these two classes. We will mostly focus on MDPs
which satisfy Assumption 1 in the main text. In the supple-
mentary material, we will address the aperiodic unichain
case. Here we present the two objective formulations for
continuing control tasks: the average reward approach and
discounted reward criterion.

Average Reward Criterion
The average reward objective is defined as:

ρpπq :“ lim
NÑ8

1

N
E
τ„π

«

N´1
ÿ

t“0

rpst, atq

ff

“ E
s„dπ
a„π

rrps, aqs.

(1)
Here dπpsq :“ limNÑ8

1
N

řN´1
t“0 Pτ„πpst “ sq is the

stationary state distribution under policy π, and τ “

ps0, a0, . . . , q is a sample trajectory. The limits in ρpπq
and dπpsq are guaranteed to exist under our assumptions.
Since the MDP is aperiodic, it can also be shown that
dπpsq “ limtÑ8 Pτ„πpst “ sq. In the unichain case, the
average reward ρpπq does not depend on the initial state
for any policy π (Bertsekas et al., 1995). We express the
average-reward bias function as

sV πpsq :“ E
τ„π

«

8
ÿ

t“0

prpst, atq ´ ρpπqq

ˇ

ˇ

ˇ

ˇ

s0 “ s

ff
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and average-reward action-bias function as

sQπps, aq :“ E
τ„π

«

8
ÿ

t“0

prpst, atq ´ ρpπqq

ˇ

ˇ

ˇ

ˇ

s0 “ s, a0 “ a

ff

.

We define the average-reward advantage function as

sAπps, aq :“ sQπps, aq ´ sV πpsq.

Discounted Reward Criterion
For some discount factor γ P p0, 1q, the discounted reward
objective is defined as

ργpπq :“ E
τ„π

«

8
ÿ

t“0

γtrpst, atq

ff

“
1

1´ γ
E

s„dπ,γ
a„π

rrps, aqs

(2)
where dπ,γpsq :“ p1´ γq

ř8

t“0 γ
tPτ„πpst “ sq is known

as the future discounted state visitation distribution under
policy π. Note that unlike the average reward objective,
the discounted objective depends on the initial state distri-
bution µ. It can be easily shown that dπ,γpsq Ñ dπpsq
for all s as γ Ñ 1. The discounted value function

is defined as V πγ psq :“ Eτ„π
„

ř8

t“0 γ
trpst, atq

ˇ

ˇ

ˇ

ˇ

s0 “ s



and discounted action-value function Qπγ ps, aq :“

Eτ„π
„

ř8

t“0 γ
trpst, atq

ˇ

ˇ

ˇ

ˇ

s0 “ s, a0 “ a



. Finally, the dis-

counted advantage function is defined as Aπγ ps, aq :“
Qπγ ps, aq ´ V

π
γ psq.

It is well-known that limγÑ1p1 ´ γqργpπq “ ρpπq, im-
plying that the discounted and average reward objectives
are equivalent in the limit as γ approaches 1 (Blackwell,
1962). We further discuss the relationship between the dis-
counted and average reward criteria in Appendix A and
prove that limγÑ1A

π
γ ps, aq “

sAπps, aq (see Corollary A.1).
The proofs of all results in the subsequent sections, if not
given, can be found in the supplementary material.

3. Montonically Improvement Guarantees for
Discounted RL

In much of the on-policy DRL literature (Schulman et al.,
2015; 2017; Wu et al., 2017; Vuong et al., 2019; Song et al.,
2020), algorithms iteratively update policies by maximiz-
ing them within a local region, i.e., at iteration k we find
a policy πk`1 by maximizing ργpπq within some region
Dpπ, πkq ď δ for some divergence measure D. By using
different choices of D and δ, this approach allows us to
control the step-size of each update, which can lead to bet-
ter sample efficiency (Peters & Schaal, 2008). Schulman
et al. (2015) derived a policy improvement bound based on

a specific choice of D:

ργpπk`1q ´ ργpπkq ě
1

1´ γ
E

s„dπk,γ
a„πk`1

rAπkγ ps, aqs

´ C ¨max
s
rDTVpπk`1 ‖ πkqrsss

(3)

where DTVpπ
1 ‖ πqrss :“ 1

2

ř

a |π
1pa|sq ´ πpa|sq| is the

total variation divergence, and C “ 4γε{p1 ´ γq2 where
ε is some constant. Schulman et al. (2015) showed that
by choosing πk`1 which maximizes the right hand side of
(3), we are guaranteed to have ργpπk`1q ě ργpπkq. This
provided the theoretical foundation for an entire class of
on-policy DRL algorithms (Schulman et al., 2015; 2017;
Wu et al., 2017; Vuong et al., 2019; Song et al., 2020).

A natural question arises here is whether the iterative pro-
cedure described by Schulman et al. (2015) also guarantees
improvement for the average reward. Since the discounted
and average reward objectives become equivalent as γ Ñ 1,
one may conjecture that we can also lower bound the pol-
icy performance difference of the average reward objec-
tive by simply letting γ Ñ 1 for the bounds in Schulman
et al. (2015). Unfortunately this results in a non-meaningful
bound (see supplementary material for proof.)

Proposition 1. Consider the bounds in Theorem 1 of Schul-
man et al. (2015) and Corollary 1 of Achiam et al. (2017).
The right hand side of both bounds times 1 ´ γ goes to
negative infinity as γ Ñ 1.

Since limγÑ1p1 ´ γqpργpπ
1q ´ ργpπqq “ ρpπ1q ´ ρpπq,

Proposition 1 says that the policy improvement guarantee
from Schulman et al. (2015) and Achiam et al. (2017) be-
comes trivial when γ Ñ 1 and thus does not generalize
to the average reward setting. In the next section, we will
derive a novel policy improvement bound for the average
reward objective, which in turn can be used to generate
monotonically improved policies w.r.t. the average reward.

4. Main Results
4.1. Average Reward Policy Improvement Theorem

Let dπ P R|S| be the probability column vector whose com-
ponents are dπpsq. Let Pπ P R|S|ˆ|S| be the transition ma-
trix under policy π whose ps, s1q component is Pπps1|sq “
ř

a P ps
1|s, aqπpa|sq, and P ‹π :“ limNÑ8

1
N

řN
t“0 P

t
π be

the limiting distribution of the transition matrix. For aperi-
odic unichain MDPs, P ‹π “ limtÑ8 P

t
π “ 1dTπ .

Suppose we have a new policy π1 obtained via some update
rule from the current policy π. Similar to the discounted
case, we would like to measure their performance difference
ρpπ1q ´ ρpπq using an expression which depends on π and
some divergence metric between the two policies. The
following identity shows that ρpπ1q´ρpπq can be expressed
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using the average reward advantange function of π.
Lemma 1. Under Assumption 2:

ρpπ1q ´ ρpπq “ E
s„dπ1
a„π1

“

sAπps, aq
‰

(4)

for any two stochastic policies π and π1.

Lemma 1 is an extension of the well-known policy differ-
ence lemma from Kakade & Langford (2002) to the average
reward case. A similar result was proven by Even-Dar et al.
(2009) and Neu et al. (2010). For completeness, we provide
a simple proof in the supplementary material. Note that this
expression depends on samples drawn from π1. However
we can show through the following lemma that when dπ and
dπ1 are “close” w.r.t. the TV divergence, we can evaluate
ρpπ1q using samples from dπ (see supplementary material
for proof).
Lemma 2. Under Assumption 2, the following bound holds
for any two stochastic policies π and π1:
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ρpπ1q ´ ρpπq ´ E
s„dπ
a„π1

“

sAπps, aq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2εDTVpdπ1 ‖ dπq

(5)
where ε “ maxs

ˇ

ˇEa„π1pa|sqr sAπps, aqs
ˇ

ˇ.

Lemma 2 implies that

ρpπ1q « ρpπq ` E
s„dπ
a„π1

“

sAπps, aq
‰

(6)

when dπ and dπ1 are “close”. However in order to study how
policy improvement is connected to changes in the actual
policies themselves, we need to analyze the relationship
between changes in the policies and changes in stationary
distributions. It turns out that the sensitivity of the station-
ary distributions in relation to the policies is related to the
structure of the underlying Markov chain.

Let Mπ P R|S|ˆ|S| be the mean first passage time matrix
whose elements Mπps, s1q is the expected number of steps
it takes to reach state s1 from s under policy π. Under
Assumption 1, the matrix Mπ can be calculated via (see
Theorem 4.4.7 of Kemeny & Snell (1960))

Mπ “ pI ´ Zπ ` EZπdgqD
π (7)

where Zπ “ pI´Pπ`P ‹π q
´1 is known as the fundamental

matrix of the Markov chain (Kemeny & Snell, 1960), E is
a square matrix consisting of all ones. The subscript ‘dg’
on some square matrix refers to taking the diagonal of said
matrix and placing zeros everywhere else. Dπ P R|S|ˆ|S| is
a diagonal matrix whose elements are 1{dπpsq.

One important property of mean first passage time is that
for any MDP which satisfies Assumption 1, the quantity

κπ “
ÿ

s1

dπps
1qMπps, s1q “ tracepZπq (8)

is a constant independent of the starting state for any pol-
icy π (Theorem 4.4.10 of Kemeny & Snell (1960).) The
constant κπ is sometimes referred to as Kemeny’s constant
(Grinstead & Snell, 2012). This constant can be interpreted
as the mean number of steps it takes to get to any goal state
weighted by the steady-distribution of the goal states. This
weighted mean does not depend on the starting state, as
mentioned just above.

It can be shown that the value of Kemeny’s constant is also
related to the mixing time of the Markov Chain, i.e., how
fast the chain converges to the stationary distribution (see
Appendix C for additional details).

The following result connects the sensitivity of the stationary
distribution to changes to the policy.

Lemma 3. Under Assumption 1, the divergence between the
stationary distributions dπ and dπ1 can be upper bounded
by the average divergence between policies π and π1:

DTVpdπ1 ‖ dπq ď pκ‹ ´ 1q E
s„dπ

rDTVpπ
1 ‖ πqrsss (9)

where κ‹ “ maxπ κ
π

For Markov chains with a small mixing time, where an agent
can quickly get to any state, Kemeny’s constant is relatively
small and Lemma 3 shows that the stationary distributions
are not highly sensitive to small changes in the policy. On
the other hand, for Markov chains that that have high mixing
times, the factor can become very large. In this case Lemma
3 shows that small changes in the policy can have a large
impact on the resulting stationary distributions.

Combining the bounds in Lemma 2 and Lemma 3 gives us
the following result:

Theorem 1. Under Assumption 1 the following bounds hold
for any two stochastic policies π and π1, :

D´π pπ
1q ď ρpπ1q ´ ρpπq ď D`π pπ

1q (10)

where

D˘π pπ
1q “ E

s„dπ
a„π1

“

sAπps, aq
‰

˘ 2ξ E
s„dπ

rDTVpπ
1 ‖ πqrsss

and ξ “ pκ‹ ´ 1qmaxs Ea„π1 | sAπps, aq|.

The bounds in Theorem 1 are guaranteed to be finite. Anal-
ogous to the discounted case, the multiplicative factor ξ
provides guidance on the step-sizes for policy updates. Note
that Theorem 1 holds for MDPs satisfying Assumption 1; in
Appendix D we discuss how a similar result can be derived
for the more general aperiodic unichain case.

The bound in Theorem 1 is given in terms of the TV diver-
gence; however the KL divergence is more commonly used
in practice. The relationship between the TV divergence and
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Algorithm 1 Approximate Average Reward Policy Iteration

1: Input: π0

2: for k “ 0, 1, 2, . . . do
3: Policy Evaluation: Evaluate sAπkps, aq for all s, a
4: Policy Improvement:

πk`1 “ argmax
π

D´πkpπq (12)

where

D´πkpπq “ E
s„dπk
a„π

“

sAπkps, aq
‰

´ ξ
c

2 E
s„dπk

rDKL pπ}πkq rsss

and ξ “ pκ‹ ´ 1qmaxs Ea„π | sAπkps, aq|
5: end for

KL divergence is given by Pinsker’s inequality (Tsybakov,
2008), which says that for any two distributions p and q:
DTVpp ‖ qq ď

a

DKL pp}qq {2. We can then show that

E
s„dπ

rDTVpπ
1 ‖ πqrsss ď E

s„dπ
r
a

DKL pπ1}πq rss{2s

ď
b

E
s„dπ

rDKL pπ1}πqsrsss{2

(11)
where the second inequality comes from Jensen’s inequality.
The inequality in (11) shows that the bounds in Theorem 1
still hold when Es„dπ rDTVpπ

1 ‖ πqrsss is substituted with
a

Es„dπ rDKL pπ1}πqsrss{2.

4.2. Approximate Policy Iteration

One direct consequence of Theorem 1 is that iteratively max-
imizing the D´π pπ

1q term in the bound generates a mono-
tonically improving sequence of policies w.r.t. the average
reward objective. Algorithm 1 gives an approximate policy
iteration algorithm that produces such a sequence of policies.

Proposition 2. Given an initial policy π0, Algorithm 1 is
guaranteed to generate a sequence of policies π1, π2, . . .
such that ρpπ0q ď ρpπ1q ď ρpπ2q ď ¨ ¨ ¨ .

Proof. At iteration k, Es„dπk ,a„πr
sAπkps, aqs “ 0,

Es„dπk rDKL pπ}πkq rsss “ 0 for π “ πk. By Theorem
1 and (12), ρpπk`1q ´ ρpπkq ě 0.

However, Algorithm 1 is difficult to implement in prac-
tice since it requires exact knowledge of sAπkps, aq and the
transition matrix. Furthermore, calculating the term ξ is
impractical for high-dimensional problems. In the next sec-
tion, we will introduce a sample-based algorithm which
approximates the update rule in Algorithm 1.

5. Practical Algorithm
As noted in the previous section, Algorithm 1 is not practical
for problems with large state and action spaces. In this
section, we will discuss how Algorithm 1 and Theorem
1 can be used in practice to create algorithms which can
effectively solve high dimensional DRL problems with the
use of trust region methods.

In Appendix F, we will also discuss how Theorem 1 can
be used to solve DRL problems with average cost safety
constraints. RL with safety constraints are an important
class of problems with practical implications (Amodei et al.,
2016). Trust region methods have been successfully applied
to this class of problems as it provides worst-case constraint
violation guarantees for evaluating the cost constraint values
for policy updates (Achiam et al., 2017; Yang et al., 2020;
Zhang et al., 2020). However the aforementioned theoreti-
cal guarantees were only shown to apply to discounted cost
constraints. Tessler et al. (2019) pointed out that trust-region
based methods such as the Constrained Policy Optimiza-
tion (CPO) algorithm (Achiam et al., 2017) cannot be used
for average costs constraints. Contrary to this belief, in
Appendix F, we demonstrate that Theorem 1 provides a
worst-case constraint violation guarantee for average costs
and trust-region-based constrained RL methods can easily
be modified to accommodate for average cost constraints.

5.1. Average Reward Trust Region Methods

For DRL problems, it is common to consider some param-
eterized policy class ΠΘ “ tπθ : θ P Θu. Our goal is
to devise a computationally tractable version of Algorithm
1 for policies in ΠΘ. We can rewrite the unconstrained
optimization problem in (12) as a constrained problem:

maximize
πθPΠΘ

E
s„dπθk
a„πθ

r sAπθk ps, aqs

subject to D̄KLpπθ ‖ πθkq ď δ

(13)

where D̄KLpπθ ‖ πθkq :“ Es„dπθk rDKL pπθ}πθkq rsss. Im-

portantly, the advantage function sAπθk ps, aq appearing in
(13) is the average-reward advantage function, defined as
the bias minus the action-bias, and not the discounted ad-
vantage function. The constraint set tπθ P ΠΘ : D̄KLpπθ ‖
πθkq ď δu is called the trust region set. The problem (13)
can be regarded as an average reward variant of the trust
region problem from Schulman et al. (2015). The step-size
δ is treated as a hyperparamter in practice and should ideally
be tuned for each specific task. However we note that in
the average reward, the choice of step-size is related to the
mixing time of the underlying Markov chain (since it is re-
lated to the multiplicative factor ξ in Theorem 1). When the
mixing time is small, a larger step-size can be chosen and
vice versa. While it is impractical to calculate the optimal
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step-size, in certain applications domain knowledge on the
mixing time can be used to serve as a guide for tuning δ.

When we set πθk`1
to be the optimal solution to (13), similar

to the discounted case, the policy improvement guarantee
no longer holds. However we can show that πθk`1

has the
following worst-case performance degradation guarantee:

Proposition 3. Let πθk`1
be the optimal solution to (13) for

some πθk P ΠΘ. The policy performance difference between
πθk`1

and πθk can be lower bounded by

ρpπθk`1
q ´ ρpπθkq ě ´ξ

πθk`1

?
2δ (14)

where ξπθk`1 “ pκπθk`1 ´ 1qmaxs Ea„πθk`1
| sAπθk ps, aq|.

Proof. Since D̄KLpπθk ‖ πθkq “ 0, πθk is feasible. The
objective value is 0 for πθ “ πθk . The bound follows from
(10) and (11) where the average KL is bounded by δ.

Several algorithms have been proposed for efficiently solv-
ing the discounted version of (13): Schulman et al. (2015)
and Wu et al. (2017) converts (13) into a convex problem
via Taylor approximations; another approach is to first solve
(13) in the non-parametric policy space and then project the
result back into the parameter space (Vuong et al., 2019;
Song et al., 2020). These algorithms can also be adapted for
the average reward case and are theoretically justified via
Theorem 1 and Proposition 3. In the next section, we will
provide as a specific example how this can be done for one
such algorithm.

5.2. Average Reward TRPO (ATRPO)

In this section, we introduce ATRPO, which is an average-
reward modification of the TRPO algorithm (Schulman
et al., 2015). Similar to TRPO, we apply Taylor approxi-
mations to (13). This gives us a new optimization problem
which can be solved exactly using Lagrange duality (Boyd
et al., 2004). The solution to this approximate problem
gives an explicit update rule for the policy parameters which
then allows us to perform policy updates using an actor-
critic framework. More details can be found in Appendix E.
Algorithm 2 provides a basic outline of ATRPO.

The major differences between ATRPO and TRPO are as
follows:

i The critic network in Algorithm 2 approximates the
average-reward bias rather than the discounted value
function.

ii ATRPO must estimate the average return ρ of the current
policy.

iii The targets for the bias and the advantage are calculated
without discount factors and the average return ρ is

Algorithm 2 Average Reward TRPO (ATRPO)

1: Input: Policy parameters θ0, critic net parameters φ0,
learning rate α, trajectory truncation parameter N .

2: for k “ 0, 1, 2, ¨ ¨ ¨ do
3: Collect a truncated trajectory tst, at, st`1, rtu, t “

1, . . . , N from the environment using πθk .
4: Calculate sample average reward of πθk via

ρ “ 1
N

řN
t“1 rt.

5: for t “ 1, 2, . . . , N do
6: Get target sV target

t “ rt ´ ρ` sVφkpst`1q

7: Get advantage estimate:
Âpst, atq “ rt ´ ρ` sVφkpst`1q ´ sVφkpstq

8: end for
9: Update critic by

φk`1 Ð φk ´ α∇φLpφkq

where

Lpφkq “
1

N

N
ÿ

t“1

›

›V̄φkpstq ´
sV target
t

›

›

2

10: Use Âpst, atq to update θk using TRPO policy update
(Schulman et al., 2015).

11: end for

subtracted from the reward. Simply setting the discount
factor to 1 in TRPO does not lead to Algorithm 2.

iv ATRPO also assumes that the underlying task is a con-
tinuing infinite-horizon task. But since in practice we
cannot run infinitely long trajectories, all trajectories
are truncated at some large truncation value N . Unlike
TRPO, during training we do not allow for episodic
tasks where episodes terminate early (before N ). For
the MuJoCo environments, we will address this by hav-
ing the agent not only resume locomotion after falling
but also incur a penalty for falling (see Section 6.)

In Algorithm 2, for illustrative purposes, we use the average
reward one-step bootstrapped estimate for the target of the
critic and the advantage function. In practice, we instead de-
velop and use an average-reward version of the Generalized
Advantage Estimator (GAE) from Schulman et al. (2016).
In Appendix G we provide more details on how GAE can
be generalized to the average-reward case.

6. Experiments
We conducted experiments comparing the performance of
ATRPO and TRPO on continuing control tasks. We con-
sider three tasks (Ant, HalfCheetah, and Humanoid) from
the MuJoCo physical simulator (Todorov et al., 2012) imple-
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Figure 1. Comparing performance of ATRPO and TRPO with different discount factors. The x-axis is the number of agent-environment
interactions and the y-axis is the total return averaged over 10 seeds. The solid line represents the agents’ performance on evaluation
trajectories of maximum length 1,000 (top row) and 10,000 (bottom row). The shaded region represents one standard deviation.

mented using OpenAI gym (Brockman et al., 2016), where
the natural goal is to train the agents to run as fast as possible
without falling.

6.1. Evaluation Protocol

Even though the MuJoCo benchmark is commonly trained
using the discounted objective (see e.g. Schulman et al.
(2015), Wu et al. (2017), Lillicrap et al. (2016), Schulman
et al. (2017), Haarnoja et al. (2018), Vuong et al. (2019)), it
is always evaluated without discounting. Similarly, we also
evaluate performance using the undiscounted total-reward
objective for both TRPO and ATRPO.

Specifically for each environment, we train a policy for 10
million environment steps. During training, every 100,000
steps, we run 10 separate evaluation trajectories with the
current policy without exploration (i.e., the policy is kept
fixed and deterministic). For each evaluation trajectory we
calculate the undiscounted return of the trajectory until the
agent falls or until 1,000 steps, whichever comes first. We
then report the average undiscounted return over the 10
trajectories. Note that this is the standard evaluation metric
for the MuJoCo environments. In order to understand the
performance of the agent for long time horizons, we also
report the performance of the agent evaluated on trajectories
of maximum length 10,000.

6.2. Comparing ATRPO and TRPO

To simulate an infinite-horizon setting during training, we
do the following: when the agent falls, the trajectory does
not terminate; instead the agent incurs a large reset cost for
falling, and then continues the trajectory from a random
start state. The reset cost is set to 100. However, we show in
the supplementary material (Appendix I.2) that the results
are largely insensitive to the choice of reset cost. We note
that this modification does not change the underlying goal
of the task. We also point out that the reset cost is only ap-
plied during training and is not used in the evaluation phase
described in the previous section. Hyperparameter settings
and other additional details can be found in Appendix H.

We plot the performance for ATRPO and TRPO trained with
different discount factors in Figure 1. We see that TRPO
with its best discount factor can perform as well as ATRPO
for the simplest environment HalfCheetah. But ATRPO
provides dramatic improvements in Ant and Humanoid. In
particular for the most challenging environment Humanoid,
ATRPO performs on average 50.1% better than TRPO with
its best discount factor when evaluated on trajectories of
maximum length 1000. The improvement is even greater
when the agents are evaluated on trajectories of maximum
length 10,000 where the performance boost jumps to 913%.
In Appendix I.1, we provide an additional set of experiments
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Figure 2. Speed-time plot of a single trajectory (maximum length 10,000) for ATRPO and Discounted TRPO in the Humanoid-v3
environment. The solid line represents the speed of the agent at the corresponding timesteps.

demonstrating that ATRPO also significantly outperforms
TRPO when TRPO is trained without the reset scheme de-
scribed at the beginning of this section (i.e. the standard
MuJoCo setting.)

We make two observations regarding discounting. First, we
note that increasing the discount factor does not necessar-
ily lead to better performance for TRPO. A larger discount
factor in principle enables the algorithm to seek a policy
that performs well for the average-reward criterion (Black-
well, 1962). Unfortunately, a larger discount factor can
also increase the variance of the gradient estimator (Zhao
et al., 2011; Schulman et al., 2016), increase the complex-
ity of the policy space (Jiang et al., 2015), lead to slower
convergence (Bertsekas et al., 1995; Agarwal et al., 2020),
and degrade generalization in limited data settings (Amit
et al., 2020). Moreover, algorithms with discounting are
known to become unstable as γ Ñ 1 (Naik et al., 2019).
Secondly, for TRPO the best discount factor is different for
each environment (0.99 for HalfCheetah and Ant, 0.95 for
Humanoid). The discount factor therefore serves as a hy-
perparameter which can be tuned to improve performance,
choosing a suboptimal discount factor can have significant
consequences. Both of these observation are consistent with
what was seen in the literature (Andrychowicz et al., 2020).
We have shown here that using the average reward crite-
rion directly not only delivers superior performance but also
obviates the need to tune the discount factor.

6.3. Understanding Long Run Performance

Next, we demonstrate that agents trained using the aver-
age reward criterion are better at optimizing for long-term
returns. Here, we first train Humanoid with 10 million sam-
ples with ATRPO and with TRPO with a discount factor of
0.95 (shown to be the best discount factor in the previous ex-
periments). Then for evaluation, we run the trained ATRPO
and TRPO policies for a trajectory of 10,000 timesteps (or
until the agent falls). We use the same random seeds for
the two algorithms. Figure 2 is a plot of the speed of the
agent at each time step of the trajectory, using the seed that

gives the best performance for discounted TRPO. We see
in Figure 2 that the discounted algorithm gives a higher
initial speed at the beginning of the trajectory. However its
overall speed is much more erratic throughout the trajectory,
resulting in the agent falling over after approximately 5000
steps. This coincides with the notion of discounting where
more emphasis is placed at the beginning of the trajectory
and ignores longer-term behavior. On the other hand, the
average-reward policy — while having a slightly lower ve-
locity overall throughout its trajectory — is able to sustain
the trajectory much longer, thus giving it a higher total re-
turn. In fact, we observed that for all 10 random seeds we
tested, the average reward agent is able to finish the entire
10,000 time step trajectory without falling. In Table 1 we
present the summary statistics of trajectory length for all
trajectories using discounted TRPO we note that the median
trajectory length for the TRPO discounted agent is 452.5,
meaning that on average TRPO performs significantly worse
than what is reported in Figure. 2.

Table 1. Summary statistics for all 10 trajectories using a
Humanoid-v3 agent trained with TRPO

Min Max Average Median Std

108 4806 883.1 452.5 1329.902

7. Related Work
Dynamic programming algorithms for finding the optimal
average reward policies have been well-studied (Howard,
1960; Blackwell, 1962; Veinott, 1966). Several tabular Q-
learning-like algorithms for problems with unknown dy-
namics have been proposed, such as R-Learning (Schwartz,
1993), RVI Q-Learning (Abounadi et al., 2001), CSV-
Learning (Yang et al., 2016), and Differential Q-Learning
(Wan et al., 2020). Mahadevan (1996) conducted a thor-
ough empirical analysis of the R-Learning algorithm. We
note that much of the previous work on average reward RL
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focuses on the tabular setting without function approxima-
tions, and the theoretical properties of many of these Q-
learning-based algorithm are not well understood (in partic-
ular R-learning). More recently, POLITEX updates policies
using a Boltzmann distribution over the sum of action-value
function estimates of the previous policies (Abbasi-Yadkori
et al., 2019) and Wei et al. (2020) introduced a model-free
algorithm for optimizing the average reward of weakly-
communicating MDPs.

For policy gradient methods, Baxter & Bartlett (2001)
showed that if 1{p1 ´ γq is large compared to the mix-
ing time of the Markov chain induced by the MDP, then
the gradient of ργpπq can accurately approximate the gra-
dient of ρpπq. Kakade (2001a) extended upon this result
and provided an error bound on using an optimal discounted
policy to maximize the average reward. In contrast, our
work directly deals with the average reward objective and
provides theoretical guidance on the optimal step size for
each policy update.

Policy improvement bounds have been extensively explored
in the discounted case. The results from Schulman et al.
(2015) are extensions of Kakade & Langford (2002). Pirotta
et al. (2013) also proposed an alternative generalization to
Kakade & Langford (2002). Achiam et al. (2017) improved
upon Schulman et al. (2015) by replacing the maximum
divergence with the average divergence.

8. Conclusion
In this paper, we introduce a novel policy improvement
bound for the average reward criterion. The bound is based
on the average divergence between two policies and Ke-
meny’s constant or mixing time of the Markov chain. We
show that previous existing policy improvement bounds for
the discounted case results in a non-meaningful bound for
the average reward objective. Our work provides the theo-
retical justification and the means to generalize the popular
trust-region based algorithms to the average reward setting.
Based on this theory, we propose ATRPO, a modification
of the TRPO algorithm for on-policy DRL. We demonstrate
through a series of experiments that ATRPO is highly effec-
tive on high-dimensional continuing control tasks.
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