
Deep Coherent Exploration for Continuous Control

SUPPLEMENTARY MATERIAL

A CALCULATING MARGINAL ACTION PROBABILITY GIVEN THE HISTORY
FOR ON-POLICY COHERENT EXPLORATION

As discussed, forward message α(wt) is used to compute the marginal action probability given the
history at step t for the final learning objective. Suppose we have the Gaussian policy represented
as:

πwt,θ(at|st) = N (Wtxt + bt,Λ
−1
a), (1)

where at ∈ Rp, xt = fθ(st) ∈ Rq , Wt ∈ Rp×q is the coefficient matrix, bt ∈ Rp is the bias vector,
and Λa is a constant precision matrix. It’s helpful to introduce wt ∈ Rpq+p by flattening Wt and
combining bt:

wt =



w11

...
w1q

...
wp1

...
wpq

b1
...
bp



, (2)

and correspondingly stack xt into Xt ∈ Rp×(pq+p):

Xt =


xT
t 0T

q,1 . . . 0T
q,1 0T

q,1 1 0 . . . 0 0
0T
q,1 xT

t . . . 0T
q,1 0T

q,1 0 1 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0T
q,1 0T

q,1 . . . xT
t 0T

q,1 0 0 . . . 1 0
0T
q,1 0T

q,1 . . . 0T
q,1 xT

t 0 0 . . . 0 1

 , (3)

where 0q,1 is a q-dimension zero column vector. After this transformation, the Gaussian policy is
represented equivalently as:

πwt,θ(at|st) = N (Xtwt,Λ
−1
a). (4)

A.1 BASE CASE

For the base case t = 0, forward message α(w0) and the initial transition probability of w0 is
identical by definition:

α(w0) = p0(w0;µ,Λ) = N
(
µ,Λ−1

)
. (5)

Additionally, the action probability is given by:

πw0,θ(a0|s0) = N (X0w0,Λ
−1
a). (6)

The marginal action probability given the history at t = 0 is given by:

p(a0|s0,µ,Λ,θ) =
∫
πw0,θ(a0|s0)α(w0)dw0 (7)

= N (X0µ,Λ
−1
a + X0Λ

−1XT
0). (8)

1

Deep Coherent Exploration for Continuous Control

A.2 GENERAL CASE

For the general case of step t > 0, we need the state st−1, action at−1 as well as mean and covariance
of forward message α(wt−1) stored from previous step. Suppose we have α(wt−1) as:

α(wt−1) = N (vt−1,L
−1
t−1), (9)

and the action probability from the previous step is given by:

πwt−1,θ(at−1|st−1) = N
(
Xt−1wt−1,Λ

−1
a

)
. (10)

We have directly:

p(wt−1|s[0:t−1],a[0:t−1],µ,Λ,θ) = N (ut−1,Σt−1) , (11)

with

ut−1 = Σt−1
(
XT

t−1Λaat−1 + Lt−1vt−1
)

(12)

Σt−1 =
(
Lt−1 + XT

t−1ΛaXt−1
)−1

. (13)

Combining the transition probability of wt:

p(wt|wt−1;µ,Λ) = N
(
(1− β)wt−1 + βµ, (2β − β2)Λ−1

)
, (14)

we obtain the forward message α(wt):

α (wt) = N
(
vt,L

−1
t

)
, (15)

where

vt = (1− β)ut−1 + βµ (16)

L−1t = (2β − β2)Λ−1 + (1− β)2Σt−1. (17)

Here, vt and L−1t should be stored and used for exact inference of α(wt+1) at the next step. Finally,
the marginal action probability given the history at step t > 0 is given by:

p(at|s[0:t],a[0:t−1],µ,Λ,θ) =

∫
πwt,θ(at|st)α(wt)dwt (18)

= N (Xtvt,Λ
−1
a + XtL

−1
t XT

t). (19)

B DEEP COHERENT REINFORCEMENT LEARNING

In this section we provide more detailed recipes of applying deep coherent exploration for A2C,
PPO, and SAC. Respectively, we call them Coherent-A2C, Coherent-PPO, and Coherent-SAC.

B.1 COHERENT ADVANTAGE ACTOR-CRITIC (COHERENT-A2C)

Coherent-A2C is straightforward to implement. To do that, one could just replace the regular
p(at|st;θ) term in A2C objective with the p(at|s[0:t],a[0:t−1],µ,Λ,θ) term. The pseudo-code of
single-worker Coherent-A2C is shown in Algorithm 1.

B.2 COHERENT PROXIMAL POLICY OPTIMIZATION (COHERENT-PPO)

Coherent-PPO can be implemented in a similar way as Coherent-A2C. As in Coherent-A2C, we
substitute the regular p(at|st;θ) term with the p(at|s[0:t],a[0:t−1],µ,Λ,θ) term. Here, after each
step of policy update, marginal action probability given the history p(at|s[0:t],a[0:t−1],µ,Λ,θ) from
the newly updated policy should be evaluated on the most recent trajectory τk for next policy update

2

Deep Coherent Exploration for Continuous Control

Algorithm 1: Coherent-A2C
Input: Initial policy parameters µ0,Λ0,θ0 and initial value function parameters φ0.

1 for each iteration k do
2 for each environmental step t do
3 if t=0 then
4 w0 ∼ p0(w0;µk,Λk)
5 else
6 wt ∼ p(wt|wt−1;µk,Λk)

7 Compute p(at|s[0:t],a[0:t−1],µk,Λk,θk)

8 Compute the Coherent-A2C objective and update the policy by performing a gradient step:

µk+1 ← µk + αµ∇̂µJ(µ,Λ,θ)

Λk+1 ← Λk + αΛ∇̂ΛJ(µ,Λ,θ)

θk+1 ← θk + αθ∇̂θJ(µ,Λ,θ)

9 Learn value function by performing one or multiple gradient steps:

φk+1 ← φk + αφ∇̂φL(φ)

and approximated Kullback–Leibler (KL) constraint. The pseudo-code of single-worker Coherent-
PPO is shown in Algorithm 2.

Algorithm 2: Coherent-PPO
Input: Initial policy parameters µ0,Λ0,θ0 and initial value function parameters φ0.

1 for each iteration k do
2 for each environmental step t do
3 if t=0 then
4 w0 ∼ p0(w0;µk,Λk)
5 else
6 wt ∼ p(wt|wt−1;µk,Λk)

7 Compute p(at|s[0:t],a[0:t−1],µk,Λk,θk)

8 Compute the Coherent-PPO objective and update the policy by performing multiple
gradient steps until the approximated KL constraint is met:

µk+1 ← µk + αµ∇̂µJ(µ,Λ,θ)

Λk+1 ← Λk + αΛ∇̂ΛJ(µ,Λ,θ)

θk+1 ← θk + αθ∇̂θJ(µ,Λ,θ)

9 Learn value function by performing one or multiple gradient steps:

φk+1 ← φk + αφ∇̂φL(φ)

B.3 COHERENT SOFT ACTOR-CRITIC (COHERENT-SAC)

For Coherent-SAC, the behavior policy is the same as on-policy coherent exploration, where the last
layer parameters of the policy network is sampled per step for exploration. Then, for policy updates,

3

Deep Coherent Exploration for Continuous Control

the target policy is the marginal policy p (at|st,µ,Λ,θ) instead of the policy conditioned on the
sampled parameters w. The pseudo-code of single-worker Coherent-SAC is shown in Algorithm 3.

Algorithm 3: Coherent-SAC
Input: Initial policy parameters µ,Λ,θ and initial Q-function parameters φ1,φ2, empty replay

buffer D.
1 Set target parameters equal to main parameters φtarg,1 ← φ1,φtarg,2 ← φ2.
2 for each environmental step do
3 if just updated then
4 w ∼ p0(w;µ,Λ)
5 else
6 w ∼ p(w|wprev;µ,Λ)

7 if it’s time to update then
8 for j in range(number of updates) do
9 Randomly sample a batch of transitions B = {(s,a, r, s′, d)}

10 Compute targets for Q-functions:

y (r, s′, d) = r + γ(1− d)
(
min
i=1,2

Qφtarg,i
(s′, ã′)− α log p (ã′|s′,µ,Λ,θ)

)
,

where ã′ ∼ p (ã′|s′,µ,Λ,θ)
11 Update Q-functions by one step of gradient descent using:

∇φi

1

|B|
∑

(s,a,r,s′,d)∈B

(Qφi(s,a)− y (r, s′, d))
2
, for i = 1, 2

12 Update policy by one step of gradient ascent using:

∇µ,Λ,θ
1

|B|
∑
s∈B

[
min
i=1,2

Qφi (s, ã)− α log p (ã|s,µ,Λ,θ)
]
,

where ã is a sample from p (ã|s,µ,Λ,θ) which is differentiable w.r.t. µ,Λ,θ via
the reparameterization trick

13 Update target networks with:

φtarg,i ← ρφtarg,i + (1− ρ)φi for i = 1, 2

14 else
15 Continue

4

Deep Coherent Exploration for Continuous Control

C ADDITIONAL RESULTS

In this section, we provide additional results of comparative evaluation for A2C and PPO on Hopper-
v2, Reacher-v2, and InvertedDoublePendulum-v2. The results for A2C are shown in Figure 1 and
the results for PPO are shown in Figure 2.

Figure 1: Learning curves for A2C with different exploration strategies on OpenAI MuJoCo contin-
uous control tasks. The solid curves correspond to the mean, and the shaped region represents two
times the standard error of the average return over 10 random seeds.

Figure 2: Learning curves for PPO with different exploration strategies on OpenAI MuJoCo contin-
uous control tasks. The solid curves correspond to the mean, and the shaped region represents two
times the standard error of the average return over 10 random seeds.

5

	Calculating Marginal Action Probability Given the History for On-Policy Coherent Exploration
	Base Case
	General Case

	Deep Coherent Reinforcement Learning
	Coherent Advantage Actor-Critic (Coherent-A2C)
	Coherent Proximal Policy Optimization (Coherent-PPO)
	Coherent Soft Actor-Critic (Coherent-SAC)

	Additional Results

