Deep Coherent Exploration for Continuous Control

SUPPLEMENTARY MATERIAL

A CALCULATING MARGINAL ACTION PROBABILITY GIVEN THE HISTORY
FOR ON-PoLICY COHERENT EXPLORATION

As discussed, forward message «(wy) is used to compute the marginal action probability given the
history at step ¢ for the final learning objective. Suppose we have the Gaussian policy represented
as:

Twe.0(ailsy) = N(Wyx; + by, A1), (D

where a; € RP, x; = fg(s;) € RY, W; € RP*4 is the coefficient matrix, b; € RP is the bias vector,
and A, is a constant precision matrix. It’s helpful to introduce w; € RP9*P by flattening W, and
combining by:
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and correspondingly stack x; into X, € RP*(Pa+p);

x7 0?,;1 0;1 0;1 10 0 0
07, x{ 0/, 0/, 01 ... 00
X: : Do A A 3)
0;1 0;1 x! 03;1 00 ... 10
0,, 0/, ofy x{ 00 ... 01

where 0,1 is a g-dimension zero column vector. After this transformation, the Gaussian policy is
represented equivalently as:

7th79(af,|Sf,) = ./V'(XtWt,Agl). (4)
A.1 BASE CASE

For the base case ¢t = 0, forward message «(wy) and the initial transition probability of wy is
identical by definition:

a(wo) = po(wo; p, A) = N (p, A7) &)
Additionally, the action probability is given by:
Two,0(a0[S0) = N (Xowo, A; ). (6)
The marginal action probability given the history at £ = 0 is given by:
p(aolso, p, A, 0) = /Wwo,e(ao|50)a(wo)dwo (7
= N(Xop, A1+ XoAIXT). (8)
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A.2 GENERAL CASE

For the general case of step ¢ > 0, we need the state s;_1, action a;_; as well as mean and covariance
of forward message a(w;_1) stored from previous step. Suppose we have a(w;_1) as:

a(wi1) = N(vi1, LiY), )

and the action probability from the previous step is given by:

Tw,_1.0(@—1]si1) = N (Xem1weo1, A1) . (10)
We have directly:
P(Wi—1]S[0:—1]> A[ot—1), 5 A, 0) = N (g1, 24 1), (1D
with
w1 =% (X{jAgar 1+ Ly1ve ) (12)
Sio1 = (Leos + XD AX ) (13)

Combining the transition probability of w:
pWelwi1i g, A) = N (1= B)wi1 + Bp, (26 — BATY) (14)

we obtain the forward message o(wy):

a(wy) =N (vt,L{l) , (15)

where
vi=(1-p3)u_1+Bp (16)
L7l =(28-)A 1+ (1-8)%%, .. (a7

Here, vy and L, ! should be stored and used for exact inference of a(wy 1) at the next step. Finally,
the marginal action probability given the history at step ¢ > 0 is given by:

p(atlsp:e, ap:e—1], 4, A, ) = /th,e(at|st)a(wt)dwt (18)

= NXvi, A+ XL X, (19)

B DEEP COHERENT REINFORCEMENT LEARNING

In this section we provide more detailed recipes of applying deep coherent exploration for A2C,
PPO, and SAC. Respectively, we call them Coherent-A2C, Coherent-PPO, and Coherent-SAC.

B.1 COHERENT ADVANTAGE ACTOR-CRITIC (COHERENT-A2C)

Coherent-A2C is straightforward to implement. To do that, one could just replace the regular
p(ag|s; @) term in A2C objective with the p(ay|sjo., ajo:¢—1], 4, A, @) term. The pseudo-code of
single-worker Coherent-A2C is shown in Algorithm

B.2 COHERENT PROXIMAL POLICY OPTIMIZATION (COHERENT-PPO)

Coherent-PPO can be implemented in a similar way as Coherent-A2C. As in Coherent-A2C, we
substitute the regular p(a;|s;; @) term with the p(as|sjo.4), aj0:¢—1], 4, A, @) term. Here, after each
step of policy update, marginal action probability given the history p(a;[so.¢], ajo:t—1], i, A, @) from
the newly updated policy should be evaluated on the most recent trajectory 7 for next policy update
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Algorithm 1: Coherent-A2C

Input: Initial policy parameters po, Ag, @ and initial value function parameters ¢y.
for each iteration k do
for each environmental step t do
if =0 then
‘ wo ~ po(Wo; pr, Ax)
else
| Wi~ (Wi wio1; g, Ag)
ComPUte p(at|s[0:t] » A[0:t—1]5 Kk Ak7 ek)
Compute the Coherent-A2C objective and update the policy by performing a gradient step:

Hi+1 < Pk + au,@yﬁ](uv A7 9)
Ajy1 — Ap +apaVaJ(u, A, 0)
011« O + agVeJ(u, A, 0)

Learn value function by performing one or multiple gradient steps:

b1 — b1+ gV L(d)

and approximated Kullback—Leibler (KL) constraint. The pseudo-code of single-worker Coherent-
PPO is shown in Algorithm 2]

Algorithm 2: Coherent-PPO
Input: Initial policy parameters po, Ag, @ and initial value function parameters ¢y.
for each iteration k do
for each environmental step t do
if 7=0 then
‘ wo ~ po(Wo; pr, Ax)
else
L Wi~ p(WeWi1; g, A)
ComPUte p(at |S[O:t] » Q[0:t—1]5 Kk Ak7 ek)
Compute the Coherent-PPO objective and update the policy by performing multiple
gradient steps until the approximated KL constraint is met:

Hi+1 < Pk + Oép,ﬁ;u](ﬂw A7 0)
Ajy1 — Ap +aaVaJ(u, A, 6)
011« O + agVeJ(u, A, 0)

Learn value function by performing one or multiple gradient steps:

b1 — b1+ agVeL()

B.3 COHERENT SOFT ACTOR-CRITIC (COHERENT-SAC)

For Coherent-SAC, the behavior policy is the same as on-policy coherent exploration, where the last
layer parameters of the policy network is sampled per step for exploration. Then, for policy updates,
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the target policy is the marginal policy p (ass:, p, A, 0) instead of the policy conditioned on the
sampled parameters w. The pseudo-code of single-worker Coherent-SAC is shown in Algorithm 3]

Algorithm 3: Coherent-SAC

Input: Initial policy parameters p, A, 6 and initial Q-function parameters ¢1,¢2, empty replay
buffer D.

1 Set target parameters equal to main parameters @garg,1 < P1, Prarg,2 < P2.

2 for each environmental step do

else

else

if just updated then
| W~ po(wip, A)

L W~ p(w|wpreV§ My A)
if it’s time to update then
for j in range(number of updates) do

Randomly sample a batch of transitions B = {(s,a,r,s’,d)}
Compute targets for Q)-functions:

y (s’ d)=r+~(1—d) (g{l}nz Qrnrs,: (8,8") —alogp (&'|s', p, A, 0)) :
where &' ~ p (&'|s', u, A, 0)
Update Q-functions by one step of gradient descent using:
1
Vo O (Qalsa)—y(nsid), fori=12
‘ (s,a,r,s’,d)eB

Update policy by one step of gradient ascent using:

1
Vg 2 i1, Qo (5.8) — alogp (al. . A,6)]

where a is a sample from p (als, u, A, @) which is differentiable w.r.t. g1, A, 6 via
the reparameterization trick
Update target networks with:

d)targ,i — pd)targ,i + (1 - P)¢z for¢ = 17 2

L Continue
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C ADDITIONAL RESULTS

In this section, we provide additional results of comparative evaluation for A2C and PPO on Hopper-
v2, Reacher-v2, and InvertedDoublePendulum-v2. The results for A2C are shown in Figure |I| and
the results for PPO are shown in Figure 2]
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Figure 1: Learning curves for A2C with different exploration strategies on OpenAl MuJoCo contin-
uous control tasks. The solid curves correspond to the mean, and the shaped region represents two
times the standard error of the average return over 10 random seeds.
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Figure 2: Learning curves for PPO with different exploration strategies on OpenAl MuJoCo contin-
uous control tasks. The solid curves correspond to the mean, and the shaped region represents two
times the standard error of the average return over 10 random seeds.
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