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A. Proofs for Section 3.1
Proof.
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Eq. (3) holds as ct = (st, at, rt, st+1) and st is contained in c:t.

B. Additional Implementation Details
Encoder structure: the context encoder should be able to effectively extract task information from experience sequences.
In practice, we design a context encoder using temporal convolution and soft attention, similar to SNAIL (Mishra et al.,
2018).

Other details: MetaCURE is implemented with PyTorch (Paszke et al., 2019). Generally it takes about 12-40h to converge
on the MuJoCo task sets, and can be further accelerated with parallel sampling. Hyper-parameters are selected by a simple
grid search.

C. Environment and Hyper-parameter Settings
In this subsection, we provide detailed settings of reward functions and hyper-parameters, which are shown in Table 1 and
2. All tasks obtain sparse reward functions, providing zero rewards if the agent is outside the range of goals. The agent is
additionally penalized with control costs.
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Cheetah-Vel-Sparse, MetaCURE
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Cheetah-Vel-Sparse, PEARL

Figure 1. Visualization of MetaCURE and PEARL on Cheetah-Vel-Sparse. While MetaCURE efficiently explores possible goal velocities
in the first episode and exploits in the second episode, PEARL fails to effectively explore.

In the Meta-World tasks, the agent gets non-zero rewards only if it “successes” in the task, which is given as a binary signal
by the environment.

D. Visualizations
We show additional visualization results on Cheetah-Vel-Sparse, as shown in Figure 1.

E. Ablation Studies
E.1. Ablation Study: Hyper-parameters

We test MetaCURE with different hyper-parameters on Cheetah-Vel-Sparse. As shown in Table 3, MetaCURE is generally
robust to the choice of hyper-parameters.

(a) (b)

Figure 2. (a) A VariBAD variant that uses our intrinsic reward does not improve in performance. VariBAD does not separate exploration
and exploitation, and fails to achieve satisfactory performance with our intrinsic reward. (b) Ablation study on MetaCURE’s knowledge
and data sharing. Sharing the task inference component and the replay buffer greatly improves MetaCURE’s learning efficiency.

E.2. Ablation Study: Baseline with Intrinsic Reward

We test a variant of VariBAD (Zintgraf et al., 2019) that uses rexploration for training its policy. As shown in Figure 2(a),
directly combining our intrinsic reward with VariBAD does not lead to satisfactory performance, and still underperforms
MetaCURE. This is because that VariBAD does not separate exploration and exploitation policies, and does not support
learning intrinsically motivated exploration behaviors and unbiased exploitation behaviors together.
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Table 1. Adaptation length and goal settings for environments used for evaluation. Goals are uniformly distributed in Goal range and
non-zero informative reward is provided only when the distance between the agent’s position/speed and the goal is smaller than Goal
radius. As for Meta-World Reach and Meta-World Reach-Wall, the goal range and goal radius follow the settings in the original paper (Yu
et al., 2020).

Environment # of adaptation episodes Max steps
per episode Goal type Goal range Goal radius

Cheetah-Vel-Sparse 2 64 Velocity [0,3] 0.5
Walker-Vel-Sparse 2 64 Velocity [0,2] 0.5

Reacher-Goal-Sparse 2 64 Position Semicircle with
radius 0.25 0.09

Point-Robot-Sparse 4 32 Position Semicircle with
radius 1 0.3

Walker-Rand-Params 4 64 Velocity 1.5 0.5
Hopper-Rand-Params 4 64 Velocity 1.5 0.5

Meta-World Reach 4 150 Position / /
Meta-World Reach-Wall 4 150 Position / /

Table 2. Hyperparameter settings for MetaCURE in different environments.
Environment Latent size β λ Batch size Learning rate

Cheetah-Vel-Sparse 5 0.1 5 64 3e-4
Walker-Vel-Sparse 5 0.1 5 64 3e-4

Reacher-Goal-Sparse 5 1 1 64 3e-4
Point-Robot-Sparse 5 1 0.3 96 3e-4

Walker-Rand-Params 5 1 5 256 3e-4
Hopper-Rand-Params 5 1 5 256 3e-4

Meta-World Reach 5 1 0.3 512 1e-4
Meta-World Reach-Wall 5 1 0.3 512 1e-4

Table 3. MetaCURE’s hyper-parameter ablation studies on the Cheetah-Vel-Sparse task set.
Learning rate β λ Performance

3e-4 1e-1 5 112.1±3.4
3e-4 3e-1 5 109.1±5.7
3e-4 1e-1 2 110.9±6.4
3e-4 3e-1 2 108.2±4.2
1e-4 1e-1 5 111.5±4.4

E.3. Ablation Study: Knowledge and Data Sharing

To show the effect of sharing task encoder and buffer, we test two variants of MetaCURE on Point-Robot-Sparse: one uses
separate encoders for the exploration and exploitation policy, and the other one uses separate buffers for training the policies,
as shown in Figure 2(b). Both variants suffer from a great decrease in learning efficiency, as data and knowledge are not
utilized effectively.
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