
World Model as a Graph:
Learning Latent Landmarks for Planning

Supplementary Materials

Lunjun Zhang 1 2 Ge Yang 3 Bradly Stadie 4

1. Greedy Latent Sparsification

The Greedy Latent Sparsification (GLS) algorithm sub-
samples a large batch by sparsification. GLS first randomly
selects a latent embedding from the batch, and then greed-
ily chooses the next embedding that is furthest away from
already selected embeddings. After collecting some warm-
up trajectories before planning starts (see Table 1 below)
during training, we first use GLS to initialize the latent cen-
troids, and then continue to use it to sample the batches
used to train the latent clusters. GLS is strongly inspired by
(Arthur & Vassilvitskii, 2007), and this type of approach is
known to improve clustering.

2. Graph Search with Soft Relaxations
In this paper, we employ a soft version of Floyd algorithm,
which we find to empirically work well. Rather than simply
using the min operation to do relaxation, the soft value
iteration procedure uses a softmin operation when doing
an update (note that, since we negated the distances to be
negative in the weight matrix of the graph, the operations
we use are actually max and softmax). The reason is that
neural distances can be inconsistent and inaccurate at times,
and using a soft operation makes the whole procedure more

1University of Toronto 2Vector Institute 3MIT 4Toyota Tech-
nological Institute at Chicago. Correspondence to: Lunjun Zhang
<lunjun@cs.toronto.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

robust. More concretely, we repeat the following update on
the weight matrix for S steps with temperature β:

wi,j ←
N+1∑
k=1

exp
1

β
(wi,k + wk,j)∑N+1

k′=1 exp
1

β
(wi,k′ + wk′,j)

(
wi,k + wk,j

)
(1)

Following the practice in (Eysenbach et al., 2019; Huang
et al., 2019), we do the following initialization to the dis-
tance matrix: for entries smaller than the negative of d max,
we penalize the entry by adding −∞ to it (in this paper, we
use −106 as the −∞ value). The essential idea is that we
only trust a neural estimate when it is local, and we rely on
graph search to solve for global, longer-horizon distances.
The −∞ penalty effectively masks out those entries with
large negative values in the softmax operation above. If we
replace softmax with a hard max, we recover the original
update in Floyd algorithm; we can interpolate between a
hard Floyd and a soft Floyd by tuning the temperature β.

3. Overall Training Procedure
Here we provide an overall training procedure for L3P in
Algorithm 3. Given an environment env and a training
goal distribution p(g), we initialize a replay buffer B and
the following trainble modules: policy π, distance function
D, value function V , encoder fE and decoder fD, latent
centroids {c1 · · · cN}.

Every Kenv episodes of sampling, we take gradient steps
for the above modules. The ratio between the number of
environment steps and the number of gradient steps is a
hyper-parameter.

4. Implementation Details
• We find that having a centralized replay for all paral-

lel workers is significantly more sample efficient than
having separate replays for each worker and simply
averaging the gradients across workers.

• For Ant-Maze environment, we do grad norm clipping



World Model as a Graph: Learning Latent Landmarks for Planning

by a value of 15.0 for all networks. For Fetch tasks, we
normalize the inputs by running means and standard
deviations per input dimensions.

• Since L3P is able to decompose a long-horizon goal
into many short-horizon goals, we shorten the range
of future steps where we do hindsight relabelling; as
a result, the agent can focus its optimization effort on
more immediate goals. This corresponds to the hyper-
parameter: hindsight relabelling range.

• During training, we collect 50% of the data without the
planning module, and the other 50% of the data with
planning. This corresponds to the hyper-parameter:
probability of using search during train.

• At train time, to encourage exploration during planning,
we temporarily add a small number of random land-
marks from GLS (Algorithm 2) to the existing latent
landmarks. A new set of random landmarks is selected
for each episode before graph search starts (Algorithm
1). This corresponds to the hyper-parameter: random
landmarks added during train.

• We find that collecting a certain number of warm-up
trajectories for every worker before the planning pro-
cedure starts (during training) and before GLS (Al-
gorithm 2) is used for initialization to help improve
the planning results. This corresponds to the hyper-
parameter: number of warm-up trajectories.

5. Hyper-parameters
The first table below lists the common hyper-parameters
across all environments. The second table below lists the
hyper-parameters that differ across the environments.

References
Arthur, D. and Vassilvitskii, S. k-means++: The advantages

of careful seeding. Proceedings of the eighteenth annual
ACM-SIAM symposium on Discrete algorithms, 2007.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems, pp. 15246–15257, 2019.

Huang, Z., Liu, F., and Su, H. Mapping state space using
landmarks for universal goal reaching. In Advances in
Neural Information Processing Systems, pp. 1942–1952,
2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.


