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Abstract

Planning, the ability to analyze the structure of a
problem in the large and decompose it into inter-
related subproblems, is a hallmark of human intel-
ligence. While deep reinforcement learning (RL)
has shown great promise for solving relatively
straightforward control tasks, it remains an open
problem how to best incorporate planning into ex-
isting deep RL paradigms to handle increasingly
complex environments. One prominent frame-
work, Model-Based RL, learns a world model
and plans using step-by-step virtual rollouts. This
type of world model quickly diverges from reality
when the planning horizon increases, thus strug-
gling at long-horizon planning. How can we learn
world models that endow agents with the ability to
do temporally extended reasoning? In this work,
we propose to learn graph-structured world mod-
els composed of sparse, multi-step transitions. We
devise a novel algorithm to learn latent landmarks
that are scattered (in terms of reachability) across
the goal space as the nodes on the graph. In this
same graph, the edges are the reachability esti-
mates distilled from Q-functions. On a variety of
high-dimensional continuous control tasks rang-
ing from robotic manipulation to navigation, we
demonstrate that our method, named L3 P, signif-
icantly outperforms prior work, and is oftentimes
the only method capable of leveraging both the
robustness of model-free RL and generalization
of graph-search algorithms. We believe our work
is an important step towards scalable planning in
reinforcement learning.
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1. Introduction

An intelligent agent should be able to solve difficult prob-
lems by breaking them down into sequences of simpler
problems. Classically, planning algorithms have been the
tool of choice for endowing Al agents with the ability to rea-
son over complex long-horizon problems (Doran & Michie,
1966; Hart et al., 1968). Recent years have seen an uptick
in monographs examining the intersection of classical plan-
ning techniques — which excel at temporal abstraction — with
deep reinforcement learning (RL) algorithms — which excel
at state abstraction. Perhaps the ripest fruit born of this
relationship is the AlphaGo algorithm, wherein a model free
policy is combined with a MCTS (Coulom, 2006) planning
algorithm to achieve superhuman performance on the game
of Go (Silver et al., 2016a).

In the field of robotics, progress on combining planning
and reinforcement learning has been somewhat less rapid,
although still resolute. Indeed, the laws of physics in the
real world are vastly more complex than the simple rules
of Go. Unlike board games such as chess and Go, which
have deterministic and known dynamics and discrete action
space, robots have to deal with a probabilistic and unpre-
dictable world. Moreover, the action space for robotics is
often continuous. As a result of these difficulties, planning
in robotics presents a much harder problem. One general
class of methods (Sutton, 1991) seeks to combine model-
based planning and deep RL. These methods can be thought
of as an extension of model-predictive control (MPC) algo-
rithms, with the key difference being that the agent is trained
over hypothetical experience in addition to the actually col-
lected experience. The primary shortcoming of this class of
methods is that, like MCTS in AlphaGo, they resort to plan-
ning with action sequences — forcing the robot to plan for
each action at every hundred milliseconds. Planning on the
level of action sequences is fundamentally bottlenecked by
the accuracy of the learned dynamics model and the horizon
of a task, as the learned world model quickly diverges over
a long horizon. This limitation shows that world models in
the traditional Model-based RL (MBRL) setting often fail
to deliver the promise of planning.

Another general class of methods, Hierarchical RL (HRL),
introduces a higher-level learner to address the problem of
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Figure 1. MBRL versus L® P (World Model as a Graph). MBRL
does step-by-step virtual rollouts with the world model and quickly
diverges from reality when the planning horizon increases. L? P
models the world as a graph of sparse multi-step transitions, where
the nodes are learned latent landmarks and the edges are reach-
ability estimates. L3P succeeds at temporally extended reason-
ing. Code for L3P is available at: https://github.com/
LunjunZhang/world-model—-as—a—-graph.

planning (Dayan & Hinton, 1993; Vezhnevets et al., 2017;
Nachum et al., 2018). In this case, a goal-based RL agent
serves as the worker, and a manager learns what sequences
of goals it must set for the worker to achieve a complex task.
While this is apparently a sound solution to the problem
of planning, hierarchical learners neither explicitly learn a
higher-level model of the world nor take advantage of the
graph structure inherent to the problem of search.

To better combine classical planning and reinforcement
learning, we propose to learn graph-structured world models
composed of sparse multi-step transitions. To model the
world as a graph, we borrow a concept from the naviga-
tion literature — the idea of landmarks (Wang et al., 2008).
Landmarks are essentially states that an agent can navigate
between in order to complete tasks. However, rather than
simply using previously seen states as landmarks, as is tra-
ditionally done, we will instead develop a novel algorithm
to learn the landmarks used for planning. Our key insight
is that by mapping previously achieved goals into a latent
space that captures the temporal distance between goals, we
can perform clustering in the latent space to group together
goals that are easily reachable from one another. Subse-
quently, we can then decode the latent centroids to obtain
a set of goals scattered (in terms of reachability) across the
goal space. Since our learned landmarks are obtained from
latent clustering, we call them latent landmarks. The chief
algorithmic contribution of this paper is a new method for
planning over learned latent landmarks for high-dimensional
continuous control domains, which we name Learning La-
tent Landmarks for Planning (L3 P).

The idea of reducing planning in RL to a graph search
problem has enjoyed some attention recently (Savinov et al.,
2018a; Eysenbach et al., 2019; Huang et al., 2019; Liu
et al., 2019; Yang et al., 2020; Emmons et al., 2020). A
key difference between those works and L?P is that our

use of learned latent landmarks allows us to substantially
reduce the size of the search space. What’s more, we make
improvements to the graph search module and the online
planning algorithm to improve the robustness and sample
efficiency of our method. As a result of those decisions,
our algorithm is able to achieve superior performance on
a variety of robotics domains involving both navigation
and manipulation. In addition to the results presented in
Section 5, videos of our algorithm’s performance and a more
detailed analysis of the sub-tasks discovered by the latent
landmarks can be found at: https://sites.google.
com/view/latent-landmarks/.

2. Related Works

The problem of learning landmarks to aid in robotics prob-
lems has a long and rich history (Gillner & Mallot, 1998;
Wang & Spelke, 2002; Wang et al., 2008). Prior art has been
deeply rooted in the classical planning literature. For exam-
ple, traditional methods would utilize (Dijkstra et al., 1959)
to plan over generated waypoints, SLAM (Durrant-Whyte
& Bailey, 2006) to simultaneously integrate mapping, or the
RRT algorithm (LaValle, 1998) for explicit path planning.
The A* algorithm (Hart et al., 1968) further improved the
computational efficiency of Dijkstra. Those types of meth-
ods often heavily rely on a hand-crafted configuration space
that provides prior knowledge.

Planning is intimately related to model-based RL (MBRL),
as the core ideas underlying learned models and planners can
enjoy considerable overlap. Perhaps the most clear instance
of this overlap is Model Predictive Control (MPC), and the
related Dyna algorithm (Sutton, 1991). When combined
with modern techniques (Kurutach et al., 2018; Luo et al.,
2018; Nagabandi et al., 2018; Ha & Schmidhuber, 2018;
Hafner et al., 2019; Wang & Ba, 2019; Janner et al., 2019),
MBRL is able to achieve some level of success. (Corneil
et al., 2018) and (Hafner et al., 2020) also learn a discrete
latent representation of the environment in the MBRL frame-
work. As discussed in the introduction, planning on action
sequences will fundamentally struggle to scale in robotics.

Our method makes extensive use of a parametric goal-based
RL agent to accomplish low-level navigation between states.
This area has seen rapid progress recently, largely stemming
from the success of Hindsight Experience Replay (HER)
(Andrychowicz et al., 2017). Several improvements to HER
augment the goal relabeling and sampling strategies to boost
performance (Nair et al., 2018; Pong et al., 2018; 2019; Zhao
etal., 2019; Pitis et al., 2020). There have also been attempts
at incorporating search as inductive biases within the value
function (Silver et al., 2016b; Tamar et al., 2016; Farquhar
et al., 2017; Racaniere et al., 2017; Lee et al., 2018; Srinivas
et al., 2018). The focus of this line of work is to improve
the low-level policy and is thus orthogonal to our work.
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Figure 2. An overview of L3P, which learns a small number of latent landmarks for planning. The main components of our method are:
learning reachability estimates (via Q-learning and regression), learning a latent space (via an auto-encoder with reachability constraints),
learning latent landmarks (via clustering in the latent space), graph search on the world model and online planning.

Recent work in Hierarchical RL (HRL) builds upon goal-
based RL by learning a high-level parametric manager that
feeds goals to the low-level goal-based agent (Dayan & Hin-
ton, 1993; Vezhnevets et al., 2017; Nachum et al., 2018).
This can be viewed as a parametric alternative to classical
planning, as discussed in the introduction. Recently, (Jur-
genson et al., 2020; Pertsch et al., 2020) have derived HRL
methods that are intimately tied to tree search algorithms.
These papers are further connected to a recent trend in the
literature wherein classical search methods are combined
with parametric control (Savinov et al., 2018a; Eysenbach
et al., 2019; Huang et al., 2019; Liu et al., 2019; Yang et al.,
2020; Emmons et al., 2020). Several of these articles will
be discussed throughout this paper. LEAP (Nasiriany et al.,
2019) also considers the problem of proposing sub-goals for
a goal-conditioned agent: it uses a VAE (Kingma & Welling,
2013) and does CEM on the prior distribution to form the
landmarks. Our method constrains the latent space with
temporal reachability between goals, a concept previously
explored in (Savinov et al., 2018b), and uses latent cluster-
ing and graph search rather than sampling-based methods
to learn and propose sub-goals.

3. Background

We consider the problem of Multi-Goal RL under
a Markov Decision Process (MDP) parameterized by
(S,A,P,G,¥,R,po). S and A are the state and action
space. The probability distribution of the initial states is
given by po(s), and IP(s'|s, a) is the transition probability.
¥ : S — G is a mapping from the state space to the goal
space, which assumes that every state s can be mapped to a
corresponding achieved goal g. The reward function R can
be defined as R(s,a,s’,g) = —1{¥(s") # g}. We further
assume that each episode has a fixed horizon T'.

A multi-goal policy is a probability distribution 7 : S x
G x A — RT, which gives rise to trajectory samples of the
form 7 = {sp, ag, g, 51, - - - 7 }. The purpose of the policy
m is to learn how to reach the goals drawn from the goal
distribution p,. With a discount factor v € (0,1), it maxi-

leeS j( ) ngpq TNTF [Zt 0 ’yt R St,at,8t+1,g)]

Q-learning provides a sample-efficient way to optimize the
above objective by utilizing off-policy data stored in a replay
buffer B. Q(s,a, g) estimates the reward-to-go under the
current policy 7 conditioned upon the given goal. An ad-
ditional technique, called Hindsight Experience Replay, or
HER (Andrychowicz et al., 2017), uses hindsight relabelling
to drastically speed up training. This relabeling crucially
relies upon the mapping ¥ : S +— G in the multi-goal MDP
setting. We can write the the joint objective of multi-goal Q-
learning with HER as minimizing (with @ being the online
network and @ being the target network):

(Q(st,at,g) - (R(st+1vg) + @(Stﬂ»a/»g)))Q ey

where 7 ~ B,t ~ {0---T — 1}, (s¢, a¢, S¢41) ~ T, k ~
{t+ 1T}7g = \Il<skr)7a/ ~ 7((' | St+1’g)'

4. The L?P Algorithm

Our overall objective in this section is to derive an algorithm
that learns a small number of landmarks scattered across
goal space in terms of reachability and use those learned
landmarks for planning. There are three chief difficulties we
must overcome when considering such an algorithm. First,
how can we group together goals that are easily reachable
from one another? The answer is to embed goals into a latent
space, where the latent representation captures some notion
of temporal distance between goals — in the sense that goals
that would take many timesteps to navigate between are
further apart in latent space. Second, we need to find a way
to learn a sparse set of landmarks used for planning. Our
method performs clustering on the constrained latent space,
and decodes the learned centroids as the landmarks we seek.
Finally, we need to develop a non-parametric planning algo-
rithm responsible for selecting sequences of landmarks the
agent must traverse to accomplish its high-level goal. The
proposed online planning algorithm is simple, scalable, and
robust.

4.1. Learning a Latent Space

Let us consider the following question: “How should we go
about learning a latent space of goals where the metric re-



World Model as a Graph: Learning Latent Landmarks for Planning

flects reachability?” Suppose we have an auto-encoder (AE)
in the agent’s goal space, with deterministic encoder fr and
decoder fp. As usual, the reconstruction loss is given by

2
Lrec(g) = HfD (fe(9)) — gH . We want to make sure that
2

the distance between two latent codes would roughly corre-
spond to the number of steps it would take the policy to go
from one goal to another. Concretely, for any pair of goals
(91, 92), we optimize the following loss Liatent (g1, g2):

(||fE(g1) - fE(gz)H; - %(V(thz) + V(92,91))>2
)

Where V : G x G — RT is a mapping that estimates how
many steps it would take the policy 7 to go from one goal
to another goal on average. By adding this constraint and
solving a joint optimization L. + A - Ligtent, the encoding-
decoding mapping can no longer be arbitrary, giving more
structure to the latent space. Goals that are close by in
terms of reachability will be naturally clustered in the latent
space, and interpolations between latent codes will lead to
meaningful results.

Of course, the constraint in Equation 2 is quite meaningless
if we do not have a way to estimate the mapping V. We
will proceed towards this objective by noting the following
interesting connection between multi-goal Q-functions and
reachability. In the multi-goal RL framework considered in
the background section, the reward is binary in nature. The
agent receives a reward of —1 until it reaches the goal, and
then 0 when it reaches the desired goal. In this setting, the
Q-function is implicitly estimating the number of steps it
takes to reach the goal g from the current state s after the
action a is taken. Denote this quantity as D(s, a, g), the
Q-function can be re-written as:

D(s;a,9)—1 T-1
Q(s,a,g) = > A (-1)+ 70
t=0 t=D(s,a,q) 3)
1— ,YD(s,a,g)
= 1=~

Choosing to parameterize Q-functions in this way disentan-
gles the effect of v on multi-goal Q-learning. It also pro-
vides us with access the direct distance estimation function
D(s,a, g). We note that this distance is not a mathematical
distance in the sense of a metric. Instead, we use the word
distance to refer to the number of steps the policy 7 needs
to take in the environment.

Given our tractable estimate of D, it is now a straightfor-
ward matter to estimate the desired quantity V', which ap-
proximates how many steps it takes the policy to transition
between goals. To get the desired estimate, we regress V/

towards D by minimizing

m‘}n <D(St, ag, ‘I’(Sk)) - V(‘I’(St+1)7 ‘I’(Sk))> )

with 7 ~ B,t ~ {OT - 1},(St,at78t+1) ~ T,k ~
{t+1---T}, and ¥ being given by the environment to
map the states to the goal space. One crucial detail is the
use of W(sy41) rather than W(s;) in the inputs to V. This
is due to the fact that D : S x A x G — R outputs the
number of steps to go after an action is taken, when the state
has transitioned into s;1. The objective above provides an
unbiased estimate of the average number of steps between
two goals.

The estimates D and V' will prove useful beyond helping to
optimize the auto-encoder in Equation 2. They will prove
essential in weighting and planning over latent landmark
nodes in Section 4.3.

4.2. Learning Latent Landmarks

Planning on a graph can be expensive, as the number of
edges can grow quadratically with the number of nodes. To
battle this issue in scalability, we use the constrained latent
space to learn a sparse set of landmarks. A landmark can
be thought of as a waypoint that the agent can pass through
enroute to achieve a desired goal. Ideally, goals that are
easily reachable from one another should be grouped to
Jorm one single landmark. Since our latent representation
captures the temporal reachability between goals, this can
be achieved by doing clustering in the latent space. The
cluster centroids, when decoded from the decoder, will be
precisely the latent landmarks we are seeking.

Clustering proceeds as follows. For IV clusters to be learned,
we define a mixture of Gaussians in the latent space with N
trainable latent centroids, {¢; - - - ¢ }, and a shared trainable
variance vector o. We maximize the evidence lower bound
(ELBO) with a uniform prior p(c):

bw@=h@)

> Bz [ logp(= | ©)] = Dice (ate | 2) | p(e))

Ideally, we would like each batch of data given to the latent
clustering model to be representative of the whole replay
buffer, such that the centroids will quickly learn to scatter
out. To this end, we propose to use the Greedy Latent Spar-
sification (GLS) algorithm (see the Appendix) on each batch
of data sampled from the replay before taking a gradient
step with the batch. GLS is inspired by kmeans++ (Arthur &
Vassilvitskii, 2007), with several key differences: this spar-
sification process is used for both training and initialization,
it uses a neural metric for determining the distance between
data points, and that it is compatible with mini-batch-style
gradient-based training.

(&)
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4.3. Planning with Latent Landmarks

Having derived a latent encoding algorithm and an algo-
rithm for learning latent landmarks, we at last turn our atten-
tion to search and planning. L3P is agnostic to the graph
search algorithm being used. In practice, we use a variant
of the Floyd algorithm, where our relaxation operations use
a soft max rather than hard max for better stability (see the
Appendix for more details). To construct a weight matrix
that provides raw distance estimates between latent land-
marks in the first place, we begin by decoding the learned
centroids in the latent space into the nodes in the graph
{fp(e1) - fp(en)}. Tobuild the graph, we add two edges
directed in reverse orders for every pair of latent landmarks.
For instance, for an edge going from fp(c;) to fp(c;), the
weight on that edge is w; ; = —V(fp(¢;), fp(c;)). Notice
that the distances are negated. At the start of an episode, the
agent receives a goal g, and we construct matrix WW:

0 . W1,N _V(fD(cl)ag)
W = : : (6)
WN,1 0 —V(fplen).g)
oo o0 0

Algorithm 1 Online Planning in L3P
Given: Environment env, initial state s, goal g.
1: Cnt =0. SubG = None.
2: Solve for d._, 4 with graph search using V.
3: fort=1to 7T do > One episode
4 if Cnt > 1.0 then
5 Cnt =Cnt —1
6: else > We do not re-plan at every step
7
8
9

Calculate d,_, ..
d 4 dyse + dessyg
> Remove the immediate previous landmark

10: if SubG # None then

11: d[SubG]| + —oc0

12: end if

13: SubG, Cnt < argmaxd, — maxd
14: end if

15: a ~ 7(s,SubG); s + env.step(a).
16: end for

For online planning, when the agent receives a goal at the
start of an episode, we use graph search to solve for d._,
(which is fixed throughout an episode). For an observation
state s, the algorithm calculates d_,.:

—D(s7 (s, fp(e1)), fD(Cl))
de e = 0
—D(s, (s, fp(en)), folen))
_D(Sa 7T(87g)7g)

The chosen landmark is subgoal « argmax(ds_. +

B0 DR
\ lf’/\(f’/
,-é:.—a R Y

Figure 3. We consider two environments involving a fetch robot, a
block, and a box. In Box-Distractor-PickAndPlace, the fetch must
learn to pick and place the block while avoiding collision with the
box. In Place-Inside-Box, the fetch must pick the block and place
it inside the box. We visualize the fetch states corresponding to
learned landmarks in the second row of images.

dc—g). To further provide temporal abstraction and ro-
bustness, the agent will be asked to consistently pursue
subgoal for K = —ds_,.[subgoal] number of steps,
which is how many steps it thinks it will need. The proposed
goal does not change during this period. In this way, L3P
makes sure that the agent does not re-plan at every step,
and this mechanism for temporal abstraction is crucial to its
robustness. This mechanism is detailed in Algorithm 1.

After this K many steps, the agent will decide on the next
landmark to pursue by re-calculating ds_, ., but the immedi-
ate previous landmark will not be considered as a candidate
landmark. The reason is that, if the agent has failed to reach
a self-proposed landmark within the reachability limit it has
set for itself, then the agent should try something new for
the immediate next goal rather than stick to the immediate
previous landmark for another round. We have found that
this simple algorithm helps the agent avoid getting stuck
and improves the overall robustness of the agent.

In summary, we have derived an algorithm that learns a
sparse set of latent landmarks scattered across goal space in
terms of reachability, and uses those learned landmarks for
robust planning.

5. Experiments and Evaluation

We investigate the impact of L3P in a variety of robotic
manipulation and navigation environments. These include
standard benchmarks such as Fetch-PickAndPlace, and
more difficult environments such as AntMaze-Hard and
Place-Inside-Box that have been engineered to require test-
time generalization. Videos of our algorithm in action are
available at: https://sites.google.com/view/
latent-landmarks/.

5.1. Baselines

We compare our method with a variety of baselines. HER
(Andrychowicz et al., 2017) is a model-free RL algorithm.
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Figure 4. Test time success rate vs. total number of timesteps, on a variety of challenging robotic navigation and manipulation environments.
L3 P demonstrates better sample efficiency, higher asymptotic performance, and in some cases, the ability to generalize to longer horizons.
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Figure 5. For both Point and Ant, during training, the initialization
state distribution and the goal proposal distribution are uniform
around the maze. During test time, the agent is asked to traverse
the longest path in the maze, which is not seen during training.
Importantly, the map of the environment is not given to the agent
at any given point; the agent has to learn the structure of the envi-
ronment purely through interaction. The success rate during test
is reported in Figure ??. This environment demonstrates L3 P’s
ability to generalize to longer horizon goals during test time.

SORB (Eysenbach et al., 2019) is a method that combines
RL and graph search by using the entire replay buffer. Map-
ping State Space (MSS Huang et al. 2019) reduces the num-
ber of vertices by sub-sampling the replay buffer. L3P,
SORB, and MSS all use the same hindsight relabelling strat-
egy proposed in HER. All of the domains are continuous
control tasks, so we adopt DDPG (Lillicrap et al., 2015) as
the learning algorithm for the low-level actor.

5.2. Generalization to Longer Horizons

The PointMaze-Hard and AntMaze-Hard environments in-
troduced in Figure 6 are designed to test an agent’s abil-
ity to generalize to longer horizons. While PointMaze
and AntMaze have been previously used in (Duan et al.,
2016; Huang et al., 2019; Pitis et al., 2020), we make slight
changes to those environments in order to increase their
difficulty. We use a short, 200-timestep time horizon dur-

SORB Path L3P Path
. " ) . .. ., . "
Switching subgoals Leveraging

too often temporal abstraction

MSS Path

Gets stuck Avoids getting stuck Lad

pursuing the next goal ‘ with adaptive planning ’ w
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Figure 6. Visualizing the paths taken by SORB, MSS and L3P
on AntMaze at test time. The blue dots in the backgrounds are
the learned landmarks using L? P. The is the starting
location of the Ant. The red dot is the final goal. The blue stars
indicate the landmarks chosen by the planning algorithms. As
illustrated in the figure above, L? P addresses two major failure
modes of graph-based planning with RL. Firstly, graph-based
methods tend to switch proposed subgoals too frequently and
fall into a loop due to wormholes in distance estimates, whereas
L3P leverages temporal abstraction in both landmark learning
and online planning to avoid this pitfall. Secondly, when the
agent pursues a subgoal unsuccessfully (due to obstacles, etc),
other methods tend to get stuck by continuing proposing the same
subgoal, whereas L3P can adapt to the encountered failure and
propose different subgoals in the event of getting stuck.
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ing training and a pg that is uniform in the maze. At test
time, we always initialize the agent on one end of the maze,
and set the goal on the other end. The horizon of the test
environment is 500 steps. Crucially, no prior knowledge on
the shape of the maze is given to the agent. We also set a
much stricter threshold for determining whether an agent
has reached the goal. In Figure ??, we see L3P is the only
algorithm capable of solving AntMaze-Hard consistently.

We observe an interesting trend where the success rates for
some of other graph search methods crash and then slowly
recover after making some initial progress. We postulate
this occurs because methods that are based on using the
entire replay or sub-sampling the replay for landmark selec-
tion will struggle as the buffer size increases. For instance,
in the AntMaze-Hard environment, MSS and SORB use 400
and tens of thousands of landmarks respectively, whereas
L3P obtains a lean graph that only contain 50 learnable
landmarks. The result suggests that learning latent land-
marks is significantly more sample efficient and stable than
either directly using or sub-sampling the replay buffer to
build the graph. The online planning algorithm in L3P,
which effectively leverages temporal abstraction to improve
robustness, also contributes to the asymptotic success rate.
As explained in Figure 6, L? P successfully addresses the
common failure modes of graph-based RL methods. The
result convincingly shows that, at least on the navigation
tasks considered, L3 P is most effective at taking advantage
of the problem’s inherent graph structure (without any prior
knowledge of the map or environment configurations) and
generalizing to longer horizons during test time.

5.3. Robotic Manipulation Tasks

We also benchmark challenging robotic manipulations tasks
with a Fetch robot introduced in (Plappert et al., 2018;
Andrychowicz et al., 2017). Besides the PickAndPlace
task, we also evaluate our method on two additional Fetch
tasks involving a box on a table, as illustrated in Figure 3. In
Box-Distractor-PickAndPlace environment, the agent needs
to perform the pick-and-place task with a box in the middle
of the table serving as a distractor. The Place-Inside-Box
environment aims to teach the agent to place an object with
randomly initialized locations into the box and has a sim-
ple curriculum. During training, the goal distribution has
80% regular pick-and-place goals, enabling the agent to first
learn how to fetch in general. Meanwhile, only 20% of the
goals are inside the box, which is the harder part of the task.
During testing, we evaluate the agent’s ability to pick up
the object from the table and place it inside the box. Our
method achieves dominant performance in both learning
speed and test-time generalization on those three robotic
manipulation environments. We note that on those manipu-
lation tasks considered, many prior planning methods hurt
the performance of the model-free agent. L3P is the only
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Figure 7. Ablation studies on the graph search module, including
the choice of graph search algorithms and a key hyper-parameter
in graph search: the edge weight cutoff threshold.

method that is able to help the model-free agent learn faster
and perform better on all three tasks.

5.4. Understanding Model Choices in L3P

We investigate L P’s sensitivity to different design choices
and hyper-parameters via a set of ablation studies. More
specifically, we study how the following four factors affect
the performance of L3P: the choice of graph search algo-
rithms, and edge weight cutoff threshold in graph search
(a key hyper-parameter in the graph search module); the
choice of online planning algorithms, and the number of
latent landmarks being learned (a key hyper-parameter in
the planning module).

While L3P is agnostic to the graph search algorithm being
used, we study the effect of two possible choices: Floyd
algorithm and a soft version of Floyd (soft Floyd). As shown
in Figure 7, the choice seems to have a relatively small effect
on learning. During the early phase of experimentation, we
find that having a soft operation for relaxation in Floyd
leads to better overall training stability. A hard version of
relaxation helps the learning curve take off faster but suffers
from greater instability during policy improvement. The
likely reason is that neural distance estimates are not entirely
accurate, and in the presence of occasional bad edges, using
softmax rather than hard max improves robustness. We
therefore use soft relaxation in L P.

In the graph search module, a very sensitive hyper-parameter
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Figure 8. Ablation studies on the online planning module, includ-
ing the choice of planners and a key hyper-parameter in graph-
based planning: the number of nodes (landmarks).

is the edge weight cutoff threshold, denoted as d_max. This
clipping threshold is commonly used in prior works such as
(Savinov et al., 2018a; Eysenbach et al., 2019; Huang et al.,
2019; Emmons et al., 2020). It essentially means that if the
weight of an edge is bigger than d_max, then it is set to be
infinity during the graph search process. The motivation
for introducing this common hyper-parameter is two-fold.
Firstly, we only trust distance estimates when they are local,
because value iterations are inherently local. Secondly, we
want the next sub-goal to be relatively nearby in terms of
reachability. The d_max value determines the maximum
(perceived) distance from the current state to next proposed
subgoal. As shown in Figure 7, our current approach is still
quite sensitive to this hyper-parameter; changes to d_max
can have a considerable impact on learning. As this weak-
ness is common to this class of approaches, we believe that
further research is required to discover more principled ways
of encouraging the search results to be local.

For online planning, the L3 P planner introduced in Algo-
rithm 1 is essential to the success of L3P. Our planning
algorithm can take advantage of the temporal abstraction
provided by the graph-structured world model. As previ-
ously shown in Figure 6, the design of L3P planner avoids
many common pitfalls. It does not re-plan at every step,
but instead uses the reachability estimates to dynamically
decide when to re-plan, striking a balance between adapt-
ability and consistency in planning. This planner is also
more tolerant of errors: it removes the immediate previ-

ous landmark when it re-plans, so that the agent will be
less prone to getting stuck. In Figure 8, we compare the
L3 P planner to a naive planner, which simply re-calculates
the shortest path at every step. The result shows that our
planning algorithm is crucial to the success of L3 P.

An important hyper-parameter in graph-based planning is
the number of landmarks being used. Intuitively, since L3 P
is learning the nodes on the graph, it should be robust to the
changes in the number of nodes (landmarks) being learned.
In Figure 8, we show that this is indeed the case: L3P is
robust to the number of latent landmarks. In contrast to
prior methods, L2 P is able to learn the nodes (landmarks)
used for graph search from the agent’s own experience. We
vary this hyper-parameter in the challenging AntMaze-Hard
environment, and we find that L3 P is robust against a variety
of values. This is expected, because the landmarks in the
latent space of L2 P will try to be equally scattered across the
goal space according to the learned reachability metric. As
the number of landmarks decreases, the learning procedure
will automatically push the landmarks to be further away
from one another.

6. Closing Remarks

In this work, we introduce a way of learning graph-
structured world models that endow agents with the ability
to do temporally extended reasoning. The algorithm, L3P,
learns a set of latent landmarks scattered across the goal
space to enable scalable planning. We demonstrate that
L3P achieves significantly better sample efficiency, higher
asymptotic performance, and generalization to longer hori-
zons on a range of challenging robotic navigation and ma-
nipulation tasks. Here we briefly discuss two promising
future directions. First, how can an agent quickly generate a
set of plausible landmarks in a previously unseen environ-
ment? A lot of progress has been made on the topics of meta
reinforcement learning and learning to explore; can L3 P be
combined with meta learning techniques for fast landmarks
generation? Second, can we learn graph-structured world
models from offline datasets? Batch RL is a more realistic
setting for many RL applications, since online interaction
can be expensive in the real world. Applying L3 P to offline
datasets might require a notion of uncertainty in different
parts of the graph.
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