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Abstract

The deadly triad refers to the instability of a re-
inforcement learning algorithm when it employs
off-policy learning, function approximation, and
bootstrapping simultaneously. In this paper, we
investigate the target network as a tool for break-
ing the deadly triad, providing theoretical support
for the conventional wisdom that a target network
stabilizes training. We first propose and analyze
a novel target network update rule which aug-
ments the commonly used Polyak-averaging style
update with two projections. We then apply the
target network and ridge regularization in several
divergent algorithms and show their convergence
to regularized TD fixed points. Those algorithms
are off-policy with linear function approximation
and bootstrapping, spanning both policy evalua-
tion and control, as well as both discounted and
average-reward settings. In particular, we provide
the first convergent linear Q-learning algorithms
under nonrestrictive and changing behavior poli-
cies without bi-level optimization.

1. Introduction

The deadly triad (see, e.g., Chapter 11.3 of Sutton & Barto
(2018)) refers to the instability of a value-based reinforce-
ment learning (RL, Sutton & Barto (2018)) algorithm when
it employs off-policy learning, function approximation, and
bootstrapping simultaneously. Different from on-policy
methods, where the policy of interest is executed for data
collection, off-policy methods execute a different policy
for data collection, which is usually safer (Dulac-Arnold
et al., 2019) and more data efficient (Lin, 1992; Sutton et al.,
2011). Function approximation methods use parameterized
functions, instead of a look-up table, to represent quanti-
ties of interest, which usually cope better with large-scale
problems (Mnih et al., 2015; Silver et al., 2016). Bootstrap-
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ping methods construct update targets for an estimate by
using the estimate itself recursively, which usually has lower
variance than Monte Carlo methods (Sutton, 1988). How-
ever, when an algorithm employs all those three preferred
ingredients (off-policy learning, function approximation,
and bootstrapping) simultaneously, there is usually no guar-
antee that the resulting algorithm is well behaved and the
value estimates can easily diverge (see, e.g., Baird (1995);
Tsitsiklis & Van Roy (1997); Zhang et al. (2021)), yielding
the notorious deadly triad.

An example of the deadly triad is ()-learning (Watkins &
Dayan, 1992) with linear function approximation, whose
divergence is well documented in Baird (1995). However,
Deep-@Q-Networks (DQN, Mnih et al. (2015)), a combina-
tion of (Q-learning and deep neural network function ap-
proximation, has enjoyed great empirical success. One
major improvement of DQN over linear ()-learning is the
use of a target network, a copy of the neural network func-
tion approximator (the main network) that is periodically
synchronized with the main network. Importantly, the boot-
strapping target in DQN is computed via the target network
instead of the main network. As the target network changes
slowly, it provides a stable bootstrapping target which in
turn stabilizes the training of DQN. Instead of the peri-
odical synchronization, Lillicrap et al. (2015) propose a
Polyak-averaging style target network update, which has
also enjoyed great empirical success (Fujimoto et al., 2018;
Haarnoja et al., 2018).

Inspired by the empirical success of the target network in
RL with deep networks, in this paper, we theoretically in-
vestigate the target network as a tool for breaking the deadly
triad. We consider a two-timescale framework, where the
main network is updated faster than the target network. By
using a target network to construct the bootstrapping target,
the main network update becomes least squares regression.
After adding ridge regularization (Tikhonov et al., 2013) to
this least squares problem, we show convergence for both
the target and main networks.

Our main contributions are twofold. First, we propose a
novel target network update rule augmenting the Polyak-
averaging style update with two projections. The balls for
the projections are usually large so most times they are just
identity mapping. However, those two projections offer sig-
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nificant theoretical advantages making it possible to analyze
where the target network converges to (Section 3). Second,
we apply the target network in various existing divergent
algorithms and show their convergence to regularized TD
(Sutton, 1988) fixed points. Those algorithms are off-policy
algorithms with linear function approximation and boot-
strapping, spanning both policy evaluation and control, as
well as both discounted and average-reward settings. In
particular, we provide the first convergent linear ()-learning
algorithms under nonrestrictive and changing behavior poli-
cies without bi-level optimization, for both discounted and
average-reward settings.

2. Background

Let M be a real positive definite matrix and x be a vector, we
use ||z]|,, = V& Mz to denote the norm induced by M
and ||-|| ,, to denote the corresponding induced matrix norm.
When M is the identity matrix I, we ignore the subscript [
for simplicity. We use vectors and functions interchangeably
when it does not cause confusion, e.g., given f : X — R,
we also use f to denote the corresponding vector in RI*1.
All vectors are column vectors. We use 1 to denote an all one
vector, whose dimension can be deduced from the context.
0 is similarly defined.

We consider an infinite horizon Markov Decision Process
(MDP, see, e.g., Puterman (2014)) consisting of a finite
state space S, a finite action space A, a transition kernel
p:Sx8SxA—[0,1], and a reward function r : S X
A — R. At time step ¢, an agent at a state S; executes
an action A; ~ w(:|S¢), where 7 : A xS — [0,1] is
the policy followed by the agent. The agent then receives
areward Ry 11 = r(S, A;) and proceeds to a new state
Sp1 ~ p(-[Se, Ar).

In the discounted setting, we consider a discount fac-
tor v € [0,1) and define the return at time step ¢ as
Gy = > v ' R4, which allows us to define the action-
value function ¢.(s,a) = E; ,[G,|S: = s, A, = a]. The
action-value function ¢, is the unique fixed point of the
Bellman operator T, ie., ¢ = TrGx = 7 + YPrqr,
where P, € RISIMAIXISIIAL ig the transition matrix, i.e.,
Py((s,a), (s, ")) = X, p(s'|s, a)m(a'|").

In the average-reward setting, we assume:

Assumption 2.1. The chain induced by 7 is ergodic.

This allows us to define the reward rate
T = limy o0 3 S, E[Rq|p, ). The differential action-
value function g, (s, a) is defined as

Wz e Yo B p[7(St, Ar) — 72| So = s, Ag = dl.
The differential Bellman equation is

q=r—71+ P.q, 1)

where ¢ € RISIMI and 7 € R are free variables.
It is well known that all solutions to (1) form a set
{(g,7) | T = Tr,q = ¢z + 1, c € R} (Puterman, 2014).

The policy evaluation problem refers to estimating ¢, or
(@r,Tx). The control problem refers to finding a policy 7
maximizing g (s, a) for each (s, @) or maximizing 7. With
linear function approximation, we approximate ¢ (s, a) or
Gr(s,a) with z(s,a) Tw, where z : S x A — R¥ isa
feature mapping and w € R is the learnable parameter.
We use X € RISIIAIXE to denote the feature matrix, each
row of which is (s, a) ", and assume:

Assumption 2.2. X has linearly independent columns.

In the average-reward setting, we use an additional param-
eter 7 € R to approximate 7. In the off-policy learning
setting, the data for policy evaluation or control is collected
by executing a policy p (behavior policy) in the MDP, which
is different from 7 (target policy). In the rest of the paper,
we consider the off-policy linear function approximation set-
ting thus always assume A; ~ p(-|S¢). We use as shorthand
Tt = .Q?(St, At), Tt = Za 7r(a|St)x(St, Cl).

Policy Evaluation. In the discounted setting, similar to
Temporal Difference Learning (TD, Sutton (1988)), one
can use Off-Policy Expected SARSA to estimate q,, which
updates w as

5t <— Rt+1 + vfctllwt — xtth,

Wig1 & Wi + 06y Ty, 2
where {ay } are learning rates. In the average-reward setting,
(1) implies that 7, = d' (7 + PGz — Gx) holds for any
probability distribution d. In particular, it holds for d = d,,.
Consequently, to estimate ¢, and 7, Wan et al. (2020);
Zhang et al. (2021) update w and 7 as

Wiy < Wy -+ Ctt(Rt+1 — 7+ f;:_lwt — :v;rwt):ct,

Ft+1 — Ft + Ctt(Rt+1 + i’;;fwt — x;rwt — Ft) (3)
Unfortunately, both (2) and (3) can possibly diverge (see,
e.g., Tsitsiklis & Van Roy (1997); Zhang et al. (2021)),

which exemplifies the deadly triad in discounted and
average-reward settings respectively.

Control. In the discounted setting, Q-learning with linear
function approximation yields

NT T
0p < Ryy1 + ’ymz}xx(SHha ) wy — xy wy,
a
W41 < Wy + oztétxt. (4)

In the average-reward setting, Differential ()-learning (Wan
et al., 2020) with linear function approximation yields

- NT T
O < Ryyq — T4 —|—’ym2/mxa:(St+1,a) wy — T, Wy,
a

Wil < Wi + 00Ty,  Tyq1 < Tp + 0y (5)
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Unfortunately, both (4) and (5) can possibly diverge as well
(see, e.g., Baird (1995); Zhang et al. (2021)), exemplifying
the deadly triad again.

Motivated by the empirical success of the target network
in deep RL, one can apply the target network in the linear
function approximation setting. For example, using a target
network in (4) yields

6t < Rt+1 + ’}/HlE/lX I(St+1, a')Tﬁt — a:;rwt,
Wil < Wi + 00y, 6)
Or1 Oy + Be(we — 0y), @)

where 0 denotes the target network, {;} are learning rates,
and we consider the Polyak-averaging style target network
update. The convergence of (6) and (7), however, remains
unknown. Besides target networks, regularization has also
been widely used in deep RL, e.g., Mnih et al. (2015) con-
sider a Huber loss instead of a mean-squared loss; Lillicrap
et al. (2015) consider ¢5 weight decay in updating ()-values.

3. Analysis of the Target Network

In Sections 4 & 5, we consider the merits of using a target
network in several linear RL algorithms (e.g., (2) (3) (4) (5)).
To this end, in this section, we start by proposing and ana-
lyzing a novel target network update rule:

0111 =T, (0 + Be(Tp, (we) — 01)). ®)

In (8), w denotes the main network and 6 denotes the target
network. I'z, : R — RX is a projection to the ball
By = {z e R | ||z| < Rp, }. ie.,

Up, (z) = 2Lz <rs, + (B 2/|2ID)l2)>Rp, »

where I is the indicator function. I'p, is a projection onto
the ball By with a radius Rp,. We make the following
assumption about the learning rates:

Assumption 3.1. {f;} is a deterministic positive nonin-
creasing sequence satisfying » , f; = 00, , BE < .
While (8) specifies only how 6 is updated, we assume w is
updated such that w can track 6 in the sense that

Assumption 3.2. There exists w* : RX — RX such that
limy_ o0 ||we — w*(0:)]| = 0 almost surely.

After making some additional assumptions on w*, we arrive
at our general convergent results.

Assumption 3.3. supy |w*(0)|| < Rp, < Rp, < .
Assumption 3.4. w* is a contraction mapping w.r.t. ||-||.
Theorem 1. (Convergence of Target Network) Under As-
sumptions 3.1-3.4, the iterate {0,} generated by (8) satisfies

limy oo wy = limy_, oo 0; = 0 almost surely,

where 0 is the unique fixed point of w*(-).

Assumptions 3.2 - 3.4 are assumed only for now. Once the
concrete update rules for w are specified in the algorithms in
Sections 4 & 5, we will prove that those assumptions indeed
hold. Assumption 3.2 is expected to hold because we will
later require that the target network to be updated much
slower than the main network. Consequently, the update of
the main network will become a standard least-square re-
gression, whose solution w* usually exists. Assumption 3.4
is expected to hold becuase we will later apply ridge regu-
larization to the least-square regression. Consequently, its
solution w* will not change too fast w.r.t. the change of the
regression target.

The target network update (8) is the same as that in (7)
except for the two projections, where the first projection I' g,
is standard in optimization literature. The second projection
I'p,, however, appears novel and plays a crucial role in our
analysis. First, if we have only I'g,, the iterate {6;} would
converge to the invariant set of the ODE

L0(t) = w* (0(t)) — 0(t) + (1), ©)

where ((t) is a reflection term that moves 6(t) back to By
when 6(t) becomes too large (see, e.g., Section 5 of Kushner
& Yin (2003)). Due to this reflection term, it is possible
that 0(t) visits the boundary of B; infinitely often. It thus
becomes unclear what the invariant set of (9) is even if w* is
contractive. By introducing the second projection I' 5, and
ensuring Rp, > Rp,, we are able to remove the reflection
term and show that the iterate {6, } tracks the ODE

£0(t) = w*(0(t)) — 6(t), (10)

whose invariant set is a singleton {6* } when Assumption 3.4
holds. See the proof of Theorem 1 in Section A.1 based on
the ODE approach (Kushner & Yin, 2003; Borkar, 2009)
for more details. Second, to ensure the main network tracks
the target network in the sense of Assumption 3.2 in our
applications in Sections 4 & 3, it is crucial that the target
network changes sufficiently slowly in the following sense:

Lemma 1. ||0;11 — 6| < B:Co for some constant Cyy > 0.

Lemma 1 would not be feasible without the second projec-
tion I' g, and we defer its proof to Section A.2

In Sections 4 & 5, we provide several applications of Theo-
rem | in both discounted and average-reward settings, for
both policy evaluation and control. We consider a two-
timescale framework, where the target network is updated
more slowly than the main network. Let {c;} be the learn-
ing rates for updating the main network w; we assume

Assumption 3.5. {«;} is a deterministic positive nonin-

creasing sequence satisfying >, ay = 00,y ai < oo.

Further, for some d > 0, 3", (B;/ )¢ < oo.
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4. Application to Off-Policy Policy Evaluation

In this paper, we consider estimating the action-value g,
instead of the state-value v, for unifying notations of policy
evaluation and control. The algorithms for estimating v, are
straightforward up to change of notations and introduction
of importance sampling ratios.

Discounted Setting. Using a target network for bootstrap-
ping in (2) yields

=T T .
W1 < Wy + O[t(Rt+1 + ’Yl't+10t — Xy U}t).’Lt.

As 0, is quasi-static for w; (Lemma 1 and Assumption 3.5),
this update becomes least squares regression. Motivated
by the success of ridge regularization in least squares and
the widespread use of weight decay in deep RL, which is
essentially ridge regularization, we add ridge regularization
to this least squares, yielding QQ-evaluation with a Target
Network (Algorithm 1).

Algorithm 1 Q)-evaluation with a Target Network

INPUT:» > 0,Rp, > Rp, >0
Initialize 6y € B; and Sy
Sample Ag ~ p(:So)
fort=0,1,... do
Execute Ay, get R;11 and Sy q
Sample A¢y 1 ~ p(-[Si41)
Tyy1 = Do T(d[St1)2(St41,a")
515 = Rt+1 + ’}/.f;rJrlet — x;'—wt
Wip1 = Wi + 00Ty — oWy
041 =T, (0 + B: (T, (we) — 61))
end for

We defer the proof to Section A.3. Theorem 2 requires
that the balls for projection are sufficiently large, which is
completely feasible in practice. Theorem 2 also requires that
the feature norm || X || is not too large. Similar assumptions
on feature norms also appear in Zou et al. (2019); Du et al.
(2019); Chen et al. (2019b); Carvalho et al. (2020); Wang &
Zou (2020); Wu et al. (2020) and can be easily achieved by
scaling.

The solutions to Aw — b = 0, if they exist, are TD fixed
points for off-policy policy evaluation in the discounted
setting (Sutton et al., 2009b;a). Theorem 2 shows that Al-
gorithm 1 finds a regularized TD fixed point w;, which
is also the solution of Least-Squares TD methods (LSTD,
Boyan (1999); Yu (2010)). LSTD maintains estimates for
A and b (referred to as A and 13) in an online fashion, which
requires O(K?) computational and memory complexity per
step. As A is not guaranteed to be invertible, LSTD usu-
ally uses (fl +nl )’1?) as the solution and 7 plays a key
role in its performance (see, e.g, Chapter 9.8 of Sutton &
Barto (2018)). By contrast, Algorithm 1 finds the LSTD
solution (i.e., wy) with only O(K') computational and mem-
ory complexity per step. Moreover, Theorem 2 provides a
performance bound for wy. Let wg = A~1b; Kolter (2011)
shows with a counterexample that the approximation error
of TD fixed points (i.e., | Xw{ — ¢x||) can be arbitrarily
large if p is far from 7, as long as there is representation
error (i.e., | Ip,qr — qWH > 0) (see Section 6 for details).
By contrast, Theorem 2 guarantees that ||X wy — qWH is
bounded from above, which is one possible advantage of
regularized TD fixed points.

Let A= X"D, (I —vP;)X,b=X"D,r, where D, is a
diagonal matrix whose diagonal entry is d,,, the stationary
state-action distribution of the chain induced by u. Let
Ilp, = X(X"D,X)"'X"D, be the projection to the
column space of X. We have

Assumption 4.1. The chain in S x A induced by i is er-
godic.

Theorem 2. Under Assumptions 2.2, 3.1, 3.5, & 4.1, for

any & € (0,1), let Cy = W’Cl = 2!5‘% + 1, then
"

fO}’Clll HX” < 00,01 < RBluRBl — f < R32 < R31 the
iterate {wy} generated by Algorithm 1 satisfies

im0 wy = W

n almost surely,

where wy is the unique solution of (A +nl)w —b = 0, and
12w, = gl

max (X)?
S(Unlin(;)4Ur(nin)(Du)2'5 ||Q7rH77 + HHDMQW - QTrH)/£7

where Omax(+), Omin () denotes the largest and minimum
singular values.

Algorithm 2 Diff. @-evaluation with a Target Network
INPUT:» > 0,Rp, > Rp, >0
Initialize (07,08 T]T € By and Sy
Sample Ay ~ p(-|So)
fort =0,1,... do
Execute A, get Ry1q and St11
Sample A;11 ~ pu(-|Ses1)
Typ1 = ) m(a[St1)2(Sty1, a')
(5t = Rt+1 — 9{ + f;ﬁrl@;" — x:wt
W1 = W + 0Ty — g
Frp1 =T+ ap(Req + /100 — [ 0 —74)

AR AP

011
end for

Average-reward Setting. In the average-reward setting,
we need to learn both 7 and w. Hence, we consider target
networks 6" and 6" for ¥ and w respectively. Plugging
0" and 6" into (3) for bootstrapping yields Differential Q-
evaluation with a Target Network (Algorithm 2), where
{B;,} are now balls in RX*1. In Algorithm 2, we impose
ridge regularization only on w as 7 is a scalar and thus does
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not have any representation capacity limit.

Theorem 3. Under Assumptions 2.1, 2.2, 3.1, 3.5, & 4.1,

Sorany & € (0,1), there exist constants Cy and Cy such that

Jorall HX” < Cy,C1 < Rp,,Rp, =€ < Rp, < Rp,, the

iterates {71} and {w;} generated by Algorithm 2 satisfy
My o0 7t = dj} (1 + PrXw} — Xw),

lim; oo wy = w  almost surely,

n
where w;, is the unique solution of (A+nI)w — b = 0 with
A=X(D, —dud))I - Pr)X,
b=X"(D, —dd,)r.

If features are zero-centered (i.e., X Tdu =0), then

X, — a2l < Gt 2z

+ HD}LQ‘fcr - 677Cr|‘)/£7
75 = el < [l (Pr = D) imf | (X, = 2],

where @ = qr + cl.

We defer the proof to Section A.4. As the differential Bell-
man equation (1) has infinitely many solutions for ¢, all of
which differ only by some constant offsets, we focus on
analyzing the quality of Xwy w.rt. 7 in Theorem 3. The
zero-centered feature assumption is also used in Zhang et al.
(2021), which can be easily fulfilled in practice by subtract-
ing all features with the estimated mean. In the on-policy
case (i.e., 4 = m), we have d; (Pr — I) = 0, indicating
7 = T, 1.e., the regularization on the value estimate does

n
not pose any bias on the reward rate estimate.

As shown by Zhang et al. (2021), if the update (3) converges,
it converges to wg, the TD fixed point for off-policy policy
evaluation in the average-reward setting, which satisfies
Awg +b = 0. Theorem 3 shows that Algorithm 2 converges
to a regularized TD fixed point. Though Zhang et al. (2021)
give a bound on || Xw{ — ¢Z||, their bound holds only if x
is sufficiently close to 7. By contrast, our bound on wy, in
Theorem 3 holds for all .

5. Application to Off-Policy Control

Discounted Setting. Introducing a target network and ridge
regularization in (4) yields Q-learning with a Target Net-
work (Algorithm 3), where the behavior policy 9 depends
on 6 through the action-value estimate X 6 and can be any
policy satisfying the following two assumptions.

Assumption 5.1. Let P be the closure of { P,,, | 6 € R¥}.
Forany P € P, the Markov chain evolving in S X A induced
by P is ergodic.

Assumption 5.2. g (als) is Lipschitz continuous in 6.

Assumption 5.1 is standard. When the behavior policy p
is fixed (independent of ), the induced chain is usually
assumed to be ergodic when analyzing the behavior of Q-
learning (see, e.g., Melo et al. (2008); Chen et al. (2019b);
Cai et al. (2019)). In Algorithm 3, the behavior policy
Lo changes every step, so it is natural to assume that any
of those behavior policies induces an ergodic chain. A
similar assumption is also used by Zou et al. (2019) in
their analysis of on-policy linear SARSA. Moreover, Zou
et al. (2019) assume not only the ergodicity but also the
uniform ergodicity of their sampling policies. Similarly, in
Assumption 5.1, we assume ergodicity for not only all the
transition matrices, but also their limits (c.f. the closure P).
A similar assumption is also used by Marbach & Tsitsiklis
(2001) in their analysis of on-policy actor-critic methods.
Assumption 5.2 can be easily fulfilled, e.g., by using a
softmax policy w.r.t. z(s,-) 6.

Algorithm 3 Q-learning with a Target Network

INPUT: ) > 0, Rp, > Rg, > 0
Initialize 6y € B; and S,
Sample Ag ~ pg,(+So)
fort=0,1,... do
Execute Ay, get Ry11 and Sy 1
Sample Ayy1 ~ pg, (+St)
8¢ = Ryyq +ymaxy x(Siiq,a’) 0 — 2] w,
Wip1 = Wi + 00Ty — oWy
0111 =T, (0 + BT, (we) — 0r))
end for

Theorem 4. Under Assumptions 2.2, 3.1, 3.5, 5.1, & 5.2,
forany ¢ € (0,1),Rg, > Rp, > Rp, — & > 0, there
exists a constant Cy such that for all | X || < Cy, the iterate
{w;:} generated by Algorithm 3 satisfies

lim; oo wy = w  almost surely,

n

*

» 18 the unique solution of

where w

(Ary oy F0)w =y, =0 (11)

inside B1. Here
Appw = X' Dy (I —vPr )X, by, = XD,y
and ., denotes the greedy policy w.r.t. z(s,-) T w.

We defer the proof to Section A.5. Analogously to the policy
evaluation setting, if we call the solutions of A, ,, w —
b., = 0 TD fixed points for control in the discounted
setting, then Theorem 4 asserts that Algorithm 3 finds a
regularized TD fixed point.

Algorithm 3 and Theorem 4 are significant in two aspects.
First, in Algorithm 3, the behavior policy is a function of
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the target network and thus changes every time step. By
contrast, previous work on )-learning with function approx-
imation (e.g., Melo et al. (2008); Maei et al. (2010); Chen
et al. (2019b); Cai et al. (2019); Chen et al. (2019a); Lee &
He (2019); Xu & Gu (2020); Carvalho et al. (2020); Wang
& Zou (2020)) usually assumes the behavior policy is fixed.
Though Fan et al. (2020) also adopt a changing behavior
policy, they consider bi-level optimization. At each time
step, the nested optimization problem must be solved ex-
actly, which is computationally expensive and sometimes
unfeasible. To the best of our knowledge, we are the first
to analyze -learning with function approximation under a
changing behavior policy and without nested optimization
problems. Compared with the fixed behavior policy setting
or the bi-level optimization setting, our two-timescale set-
ting with a changing behavior policy is more closely related
to actual practice (e.g., Mnih et al. (2015); Lillicrap et al.
(2015)).

Second, Theorem 4 does not enforce any similarity between
1o and m,,; they can be arbitrarily different. By contrast,
previous work (e.g., Melo et al. (2008); Chen et al. (2019b);
Cai et al. (2019); Xu & Gu (2020); Lee & He (2019)) usu-
ally requires the strong assumption that the fixed behavior
policy  is sufficiently close to the target policy m,,. As
the target policy (i.e., the greedy policy) can change ev-
ery time step due to the changing action-value estimates,
this strong assumption rarely holds. While some work re-
moves this strong assumption, it introduces other problems
instead. In Greedy-GQ, Maei et al. (2010) avoid this strong
assumption by computing sub-gradients of an MSPBE ob-
jective MSPBE(w) = || A, ,w — bu||é;1 directly, where

Cy, = X "D, X. If linear Q-learning (4) under a fixed be-
havior policy p converges, it converges to the minimizer of
MSPBE(w). Greedy-GQ, however, converges only to a sta-
tionary point of MSPBE(w). By contrast, Algorithm 3 con-
verges to a minimizer of our regularized MSPBE (c.f. (11)).
In Coupled @-learning, Carvalho et al. (2020) avoid this
strong assumption by using a target network as well, which
they update as

9t+1 — 9t + at((mtx:)wt — Ht) (12)

This target network update deviates much from the com-
monly used Polyak-averaging style update, while our (8) is
identical to the Polyak-averaging style update most times
if the balls for projection are sufficiently large. Coupled
Q@-learning updates the main network w as usual (see (6)).
With the Coupled Q-learning updates (6) and (12), Carvalho
et al. (2020) prove that the main network and the target net-

work converge to 1 and @ respectively, which satisfy
Xw=XX"D, T, Xw, X0=Ip, Tr,Xw.

It is, however, not clear how @ and 6 relate to TD fixed
points. Yang et al. (2019) also use a target network to avoid

this strong assumption. Their target network update is the
same as (8) except that they have only one projection I'p, .
Consequently, they face the problem of the reflection term
¢(t) (c.f. (9)). They also assume the main network {w;} is
always bounded, a strong assumption that we do not require.
Moreover, they consider a fixed sampling distribution for
obtaining i.i.d. samples, while our data collection is done
by executing the changing behavior policy pg in the MDP.

One limit of Theorem 4 is that the bound on || X || (i.e., Cp)
depends on 1/Rp, (see the proof in Section A.5 for the
analytical expression), which means Cj could potentially be
small. Though we can use a small n accordingly to ensure
that the regularization effect of 7 is modest, a small Cjy may
not be desirable in some cases. To address this issue, we pro-
pose Gradient (Q-learning with a Target Network, inspired
by Greedy-GQ. We first equip MSPBE(w) with a chang-
ing behavior policy pi.,,, yielding the following objective
| Ary 0w — by, ||é“_1 . We then use the target network 6
in place of w in the non-convex components, yielding

. 2 2
L(w,@) = HAﬂe,Mew - bue”c;(; +77H’LU|| ,  (13)

where we have also introduced a ridge term. At time step
t, we update w; following the gradient V,, L(w, ;) and
update the target network 6; as usual. Details are provided
in Algorithm 4, where the additional weight vector u € RX
results from a weight duplication trick (see Sutton et al.
(2009b;a) for details) to address a double sampling issue in
estimating V,, L(w, ).

Algorithm 4 Gradient (Q-learning with a Target Network

INPUT:» > 0,Rp, > Rp, >0
Initialize 6y € B; and Sy
Sample Ag ~ pg, (+1S0)
fort=0,1,... do
Execute A, get Ry1q and Sii1
Sample A¢1 ~ po, (+[St)
Tiv1 = Do T, (@[St41)2(St41, @)
515 = Rt+1 + ’Y.’f;r+1wt — ZE:IUt
U1 = Uy + oy (0 — Jc;rut)l‘t
We1 = Wy + (T — YTg1) T, Up — g
0i1+1=Ip, (9t + Be(I'p, (wy) — et))
end for

In Algorithm 3, the target policy m,, is a greedy policy,
which is not continuous in w. This discontinuity is not
a problem there but requires sub-gradients in the analysis
of Algorithm 4, which complicates the presentation. We,
therefore, impose Assumption 5.2 on 7, as well.

Assumption 5.3. 7y(a|s) is Lipschitz continuous in 0.

Though a greedy policy no longer satisfies Assumption 5.3,
we can simply use a softmax policy.
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Theorem 5. Under Assumptions 2.2, 3.1, 3.5, & 5.1-5.3,
there exist positive constants Cy and Cy such that for all
IX|| < Co, Rp, > Rp, > C4, the iterate {w;} generated
by Algorithm 4 satisfies

im0 wy = W

" almost surely,

where wy is the unique solution of

(AL Cr AL, FnDw=Al  C b, .

Tw;Hhw — Hw Tw s hw — Hw

We defer the proof to Section A.6. Importantly, the Cj here
does not depend on Rp, and Rp,. More importantly, the
condition on || X|| (or equivalently, ) in Theorem 5 is only
used to fulfill Assumption 3.4, without which {6;} in Algo-
rithm 4 still converges to an invariant set of the ODE (10).
This condition is to investigate where the iterate converges
to instead of whether it converges or not. If we assume
wy = lim, o w;; exists and AﬂwS g is invertible, we can
see Aﬂw;; o wy — by, . = 0, indicating wy is a TD fixed
point. w;y can therefore be regarded as a regularized TD
fixed point, though how the regularization is imposed here
(c.f. (13)) is different from that in Algorithm 3 (c.f. (11)).

Average-reward Setting. Similar to Algorithm 2, intro-
ducing a target network and ridge regularization in (5)
yields Differential ()-learning with a Target Network (Al-

gorithm 5). Similar to Algorithm 2, { B;} are now balls in
RE+L

Algorithm 5 Diff. Q)-learning with a Target Network

INPUT: ; > 0, R, > Rp, >0

Initialize [05, 0% T]T € By and Sy

Sample Ag ~ pu(:[So)

fort=0,1,... do
Execute Ay, get Ry11 and Sy 1
Sample A y1 ~ gy (| Se+1)
8¢ = Rip1 — 07 +maxy 2(Siy1,a") T0F — 2] w,
Wi = Wi + 0Ty — Qpnwy
8 = Ry + max, x(Siy1,a’) 1O
Ter1 = T + 40)

el e -

end for

T pw =
—x, 0 — 7y

Theorem 6. Under Assumptions 2.2, 3.1, 3.5, 5.1, & 5.2,
let L, denote the Lipschitz constant of g, for any § €
(0,1),Rp, > Rp, > Rp, — & > 0, there exist constants
Co and Cy such that for all || X| < Co,L, < Ci, the
iterate {wy} generated by Algorithm 5 satisfies

limy 0o wy = W

" almost surely,

where wy is the unique solution of

(Ary . + 01w — by, = 0inside By, where
Aﬂ'w:ﬂw iX(D —dy,d,, )(I—Pﬁw)X,

Hw How ™ oy
7 - T T
b“w =X (Dﬂw - dﬂw d,uw )r’

and T, is a greedy policy w.r.t. z(s,-) T w.

We defer the proof to Section A.7. Theorem 6 requires jig to
be sufficiently smooth, which is a standard assumption even
in the on-policy setting (e.g., Melo et al. (2008); Zou et al.
(2019)). It is easy to see that if (5) converges, it converges to
a solution of A, ., w—"b,,, = 0, which we call a TD fixed
point for control in the average-reward setting. Theorem 6,
which shows that Algorithm 5 finds a regularized TD fixed
point, is to the best of our knowledge the first theoretical
study for linear Q-learning in the average-reward setting.

6. Experiments
All the implementations are publicly available. !

We first use Kolter’s example (Kolter, 2011) to investigate
how 7 influences the performance of wy, in the policy eval-
uation setting. Details are provided in Section D.1. This
example is a two-state MDP with small representation er-
ror (ie., ||lIp,vr — ’U7rH is small). We vary the sampling
probability of one state (d,,(s1)) and compute correspond-
ing wy analytically. Figure la shows that with = 0, the
performance of w; becomes arbitrarily poor when d,(s1)
approaches around 0.71. With = 0.01, the spike exists
as well. If we further increase 7 to 0.02 and 0.03, the per-
formance for w;, becomes well bounded. This confirms the
potential advantage of the regularized TD fixed points.

We then use Baird’s example (Baird, 1995) to empirically
investigate the convergence of the algorithms we propose.
We use exactly the same setup as Chapter 11.2 of Sutton
& Barto (2018). Details are provided in Section D.2. In
particular, we consider three settings: policy evaluation (Fig-
ure 1b), control with a fixed behavior policy (Figure 1c),
and control with an action-value dependent behavior policy
(Figure 1d). For the policy evaluation setting, we compare a
TD version of Algorithm 1 and standard Off-Policy Linear
TD (possibly with ridge regularization). For the two con-
trol settings, we compare Algorithm 3 with standard linear
Q-learning (possibly with ridge regularization). We use con-
stant learning rates and do not use any projection in all the
compared algorithms. The exact update rules are provided
in Section D.2. Interestingly, Figures 1b-d show that even
with n = 0, i.e., no ridge regularization, our algorithms
with target network still converge in the tested domains. By
contrast, without a target network, even when mild regu-
larization is imposed, standard off-policy algorithms still
diverge. This confirms the importance of the target network.

lhttps ://github.com/ShangtongzZzhang/DeepRL
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Figure 1. (a) Effect of regularization on Kolter’s example. v, is the true state-value function. (b) Policy evaluation on Baird’s example.
(c) Control on Baird’s example with a fixed behavior policy. (d) Control on Baird’s example with an action-value-dependent behavior
policy. In (b)(c)(d), the curves are averaged over 30 independent runs with shaded region indicating one standard deviation. g, is the
optimal action-value function. 7 is the weight for the ridge term. Those marked “ours” are curves of algorithms we propose; those marked
“standard” are standard semi-gradient off-policy algorithms. Interestingly, the three “standard” curves overlap and get unbounded quickly.

7. Discussion and Related Work

For all the algorithms we propose, both the target network
and the ridge regularization are at play. One may wonder if
it is possible to ensure convergence with only ridge regular-
ization without the target network. In the policy evaluation
setting, the answer is affirmative. Applying ridge regulariza-
tion in (2) directly yields

Wig1 < Wi + a0y — oy, (14)

where d; is defined in (2). The expected update of (14) is

Ay =b—(A+nlHw
=b—X"D,Xw+vX"D,(PrXw) — nuw.

If its Jacobian w.r.t. w, denoted as J,,(A,,), is negative defi-
nite, the convergence of {w;} is expected (see, e.g., Section
5.5 of Vidyasagar (2002)). This negative definiteness can
be easily achieved by ensuring 7 > || X ||? |Du(I —~P)l
(see Diddigi et al. (2019) for similar techniques). This direct
ridge regularization, however, would not work in the control
setting. Consider, for example, linear )-learning with ridge
regularization (i.e., (14) with §; defined in (4)). The Jaco-
bian of its expected update is J,, (b, — (Ary,,pe + 1)W).
It is, however, not clear how to ensure this Jacobian is neg-
ative definite by tuning 7. By using a target network for
bootstrapping, P, Xw becomes P, X6. So J,(A,) be-
comes —J,,(X " D, Xw + nw), which is always negative
definite. Similarly, J,,(b., — (Ar, .. + 7)w) becomes
wa(XTD“e Xw + nw) in Algorithm 3, which is always
negative definite regardless of 6. The convergence of the
main network {w;} can, therefore, be expected. The con-
vergence of the target network {6;} is then delegated to
Theorem 1. Now it is clear that in the deadly triad setting,
the target network stabilizes training by ensuring the Jaco-
bian of the expected update is negative definite. One may
also wonder if it is possible to ensure convergence with
only the target network without ridge regularization. The

answer is unclear. In our analysis, the conditions on || X||
(or equivalently, n) are only sufficient and not necessarily
necessary. We do see in Figure 1 that even with = 0, our
algorithms still converge in the tested domains. How small
1 can be in general and under what circumstances 7 can be
0 are still open problems, which we leave for future work.
Further, ridge regularization usually affects the convergence
rate of the algorithm, which we also leave for future work.

In this paper, we investigate target network as one possi-
ble solution for the deadly triad. Other solutions include
Gradient TD methods (Sutton et al. (2009b;a; 2016) for
the discounted setting; Zhang et al. (2021) for the average-
reward setting) and Emphatic TD methods (Sutton et al.
(2016) for the discounted setting). Other convergence re-
sults of @-learning with function approximation include
Tsitsiklis & Van Roy (1996); Szepesvari & Smart (2004),
which require special approximation architectures, Wen &
Van Roy (2013); Du et al. (2020), which consider deter-
ministic MDPs, Li et al. (2011); Du et al. (2019), which
require a special oracle to guide exploration, Chen et al.
(2019a), which require matrix inversion every time step, and
Wang et al. (2019); Yang & Wang (2019; 2020); Jin et al.
(2020), which consider linear MDPs (i.e., both p and r are
assumed to be linear). Achiam et al. (2019) characterize
the divergence of ()-learning with nonlinear function ap-
proximation via Taylor expansions and use preconditioning
to empirically stabilize training. Van Hasselt et al. (2018)
empirically study the role of a target network in the deadly
triad setting in deep RL, which is complementary to our
theoretical analysis.

Regularization is also widely used in RL. Yu (2017) intro-
duce a general regularization term to improve the robustness
of Gradient TD algorithms. Du et al. (2017) use ridge regu-
larization in MSPBE to improve its convexity. Zhang et al.
(2020) use ridge regularization to stabilize the training of
critic in an off-policy actor-critic algorithm. Kolter & Ng
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(2009); Johns et al. (2010); Petrik et al. (2010); Painter-
Wakefield et al. (2012); Liu et al. (2012) use Lasso regular-
ization in policy evaluation, mainly for feature selection.

8. Conclusion

In this paper, we proposed and analyzed a novel target net-
work update rule, with which we improved several linear RL
algorithms that are known to diverge previously due to the
deadly triad. Our analysis provided a theoretical understand-
ing, in the deadly triad setting, of the conventional wisdom
that a target network stabilizes training. A possibility for
future work is to introduce nonlinear function approxima-
tion, possibly over-parameterized neural networks, into our
analysis.
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