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A. Proof of Theorem 3.1
In this section, we prove Theorem 3.1 which gives closed-
form formulation for the prior conditional layer PC in the
Gaussian prior case.

We first introduce a powerful tool named partition of unity
in Lemma in order to prove Theorem 3.1. We adopt the
notations in Section 3 here.

Lemma A.1 Assume A ∈ Rdc×d (dc < d) has full row-
rank, i.e. rank(A) = dc, there exists a matrix Ã ∈
R(d−dc)×d such that AÃT = 0 ∈ Rdc×(d−dc). And for any
symmetric positive definite matrix Σ, we have the following
decomposition of the identity (unit) matrix Id ∈ Rd×d:

Id =Σ
1
2AT (AΣAT )−1AΣ

1
2

+ Σ−
1
2 ÃT (ÃΣ−1ÃT )−1ÃΣ−

1
2

Proof: The matrix Ã is in fact the orthogonal complement
of A. Let V ∈ Rd be the row space of A, then dim(V ) =
dc < d, so the orthogonal complement V ⊥ of the subspace
V ⊂ Rd is non-trivial: dim(V ⊥) = d − dc > 0. Collect
a basis of V ⊥ and pack them in rows, we have a matrix
Ã ∈ R(d−dc)×d. By construction we know AÃT = 0,
because V and V ⊥ are orthogonal to each other.

Now consider the following matrix Ω ∈ Rd×d:
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2 ÃΣ−

1
2

]T
.

We have

ΩTΩ

=

[
(AΣAT )−

1
2AΣ

1
2
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where, since AÃT = 0 and Σ is symmetric: Σ = ΣT ,(
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)
11
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1
2
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So Ω is in fact a d× d orthonormal matrix, because

ΩTΩ =

[
Idc

Id−dc

]
= Id .

The orthonormality of Ω also implies ΩΩT = Id, which can
expand as

Id = ΩΩT
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And this proves Lemma A.1. �

Now we give the proof to Theorem 3.1.

Theorem 3.1 Suppose that ρ is a Gaussian with density
N (x; 0,Σ) where the covariance Σ is positive definite, then
with U c := ΣAT (AΣAT )−1 ∈ Rd×dc and Σc := Σ −
ΣAT (AΣAT )−1AΣ ∈ Rd×d, we have

ρ(x|Ax = xc) = N (x;U cxc,Σ
c) .

Furthermore, there exists a matrix W ∈ Rd×(d−dc) such
that Σc = WWT , and the prior conditioning layer PC can
be given as, with z ∈ Rd−dc being standard Gaussian

x = PC(xc, z) = U cxc +Wz ,

and PC is invertible between x and (xc, z).

Proof: The conditional probability rule suggests that

ρ(x|Ax = xc) = ρ(x)

/(∫
{x′:Ax′=xc}

ρ(x′)dx′

)
When xc is given and fixed, the denominator in the above is
a constant with respect to x. Therefore, since we recall that
the prior ρ is a Gaussian N (0,Σ), we have

log ρ(x|Ax = xc) = log ρ(x)− C ′ = −1

2
xTΣ−1x+ C ,

where C is a constant that only depends on xc and Σ.
Since log ρ(x|Ax = xc) is a quadratic function of x,
ρ(x|Ax = xc) should also be a Gaussian distribution. To
determine this distribution we only need to calculate its
mean E [x|Ax = xc] and covariance Cov [x|Ax = xc].

With U c := ΣAT (AΣAT )−1, we decompose x = (x −
U cAx) + U cAx. We will prove later that x − U cAx is
independent from Ax, so that,

E [x|Ax = xc] = E [(x− U cAx) + U cAx|Ax = xc]

=E [x− U cAx|Ax = xc] + E [U cAx|Ax = xc]

=0 + U cxc = U cxc .

To show x−U cAx = (Id−U cA)x is independent fromAx,
where Id ∈ Rd×d is the identity (unit) matrix, we notice that
they are both linear transformation of the Gaussian variable
x, so their joint distributions should also be a Gaussian, and
their covariance can be computed as

Cov [(Id − U cA)x,Ax] = (Id − U cA)ΣAT .
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Notice that U cAΣAT = ΣAT (AΣAT )−1AΣAT = ΣAT ,
so (Id − U cA)ΣAT = ΣAT − ΣAT = 0. Thus, x −
U cAx = (Id − U cA)x is independent from Ax.

Finally, since E [x|Ax = xc] = U cxc, we calculate

Cov [x|Ax = xc] = Cov [x− U cAx|Ax = xc] .

Because x − U cAx = (Id − U cA)x is independent from
Ax, we can drop the condition and write:

Cov [x|Ax = xc] = Cov [x− U cAx]

=(Id − U cA)Σ(Id − U cA)T

=Σ− U cAΣ− ΣAT (U c)
T

+ U cAΣAT (U c)
T
.

Plug in the definition of U c, we find

Cov [x|Ax = xc] = Σ− ΣAT (AΣAT )−1AΣ = Σc .

Therefore we can conclude that

ρ(x|Ax = xc) = N (x;U cxc,Σ
c) .

For the close form of PC, we first notice that

Σc = Σ− ΣAT (AΣAT )−1AΣ

= Σ
1
2

(
Id − Σ

1
2AT (AΣAT )−1AΣ

1
2

)
Σ

1
2 .

Using the identity decomposition in Lemma A.1, we have

Σc = Σ
1
2 Σ−

1
2 ÃT (ÃΣ−1ÃT )−1ÃΣ−

1
2 Σ

1
2

= ÃT (ÃΣ−1ÃT )−1Ã .

Now set W = ÃT (ÃΣ−1ÃT )−
1
2 , then W ∈ Rd×(d−dc)

and Σc = WWT . With the existence of W , it remains
to show that U cxc + Wz follows the same distribution as
ρ(x|Ax = xc) for a given xc, and Gaussian noise z.

We first check if the condition Ax = xc is satisfied,

A (U cxc +Wz) = AU cxc +AWz

=AU cxc +AÃT (ÃΣ−1ÃT )−
1
2 z = AU cxc

=AΣAT (AΣAT )−1xc = xc . (12)

Thus the condition is satisfied. On the other hand, with
xc given and fixed, and z being Gaussian noise, U cxc +
Wz follows a Gaussian distribution with mean U cxc and
covariance WWT = Σc. Therefore, the prior conditioning
layer PC can be given as

x = PC(xc, z) = U cxc +Wz .

Finally, to show the invertibility of PC between x and
(xc, z), it remains to show how to map x back to xc and z.
We claim that the inversion is given by

(xc, z) = PC−1(x) = (Ax, (ÃΣ−1ÃT )−
1
2 ÃΣ−1x) .

The first part holds true because

Ax = A (U cxc +Wz) = xc

as shown in (12). The second part holds because, when plug

in x = U cxc +Wz, we notice that

(ÃΣ−1ÃT )−
1
2 ÃΣ−1U c

=(ÃΣ−1ÃT )−
1
2 ÃΣ−1ΣAT (AΣAT )−1 = 0 ,

and similarly

(ÃΣ−1ÃT )−
1
2 ÃΣ−1W

=(ÃΣ−1ÃT )−
1
2 ÃΣ−1ÃT (ÃΣ−1ÃT )−

1
2 = I .

Therefore, (ÃΣ−1ÃT )−
1
2 ÃΣ−1x = 0xc + Iz = z. So the

invertibility of PC is guaranteed. �

We remark that PC is not unique, as for any orthonormal
matrix P ∈ R(d−dc)×(d−dc), the map x = U cxc +WPz is
also a valid candidate for PC.

B. Comparison of the Jeffreys divergence and
Kullback-Leibler divergence

The KL divergence sometimes can be inefficient to detect
multi-modes: it could be easily trapped by a local minimum
that misses some modes or is far from the ground-truth. We
support our claim by a concrete example below.

Given σ > 0, let q be a 1-D Gaussian mixture model, with
parameters µ1 and µ2 unknown but fixed:

q(x) =
1

2

(
N (x;µ1, σ

2) +N (x;µ2, σ
2)
)
.

Our parametric model p is also a 1-D Gaussian mixture
model with parameter θ = (θ1, θ2):

pθ(x) =
1

2

(
N (x; θ1, σ

2) +N (x; θ2, σ
2)
)
.

Setting µ1 = −µ2 = 1.5, and σ = 0.25, we plot the
landscape of single-sided KL divergences DKL(pθ‖q) and
DKL(q‖pθ), and the Jeffreys divergence DJ(pθ‖q) as func-
tions of θ = (θ1, θ2) in Figure 8.

It is now clear thatDKL(p‖q) alone might guide the training
towards the local minima around (1.5, 1.5) or (−1.5,−1.5),
where only one mode of q is captured, see Figure 8. We
explain this phenomenon as DKL(p‖q) = Ep [log(p/q)] =∫
p(x) (log p(x)− log q(x)) dx becomes small as long as

p is close to zero wherever q close to zero. (Nielsen &
Nock, 2009) describes this property as “zero-forcing”, and
observes that DKL(p‖q) will be small when high-density
region of p is covered by that of q. However, it doesn’t
strongly enforce p to capture all high-density region of q. In
our example, when (θ1, θ2) = (1.5, 1.5) or (−1.5,−1.5),
the only high-density region of p (around 1.5 or −1.5) is a
strict subset of high-density region of q (around both 1.5 and
−1.5), and thus it attains a local minimum of DKL(p‖q).

We also argue that the other KL divergence DKL(q‖p)
alone faces the risk as well. Similarly, DKL(q‖p) =
Eq [log(q/p)] =

∫
q(x) (log q(x)− log p(x)) dx becomes

small as long as q is close to zero wherever p is close to zero.
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Figure 8. Landscape of DKL(pθ‖q) (upper left), DKL(q‖pθ) (up-
per right), and DJ(pθ‖q) (lower left), density function of pθ and q
when they reach one of the local minima (lower right). We mark
the global minima (ground-truth) by golden cross, and other local
minima by green cross.

Thus if p captures all modes in q but also contains some ex-
tra modes, described as “zero-avoiding” in (Nielsen & Nock,
2009), we could also observe a small value of DKL(q‖p).
Therefore, we choose to use the Jeffreys divergence as a
robust learning objective to capture multi-modes.

C. Proof of Theorem 4.1
Theorem 4.1 The Jeffreys divergence and its derivative to
θ admit the following formulation which can be estimated
by the Monte Carlo method without samples from q,

DJ(pθ‖q) = Epθ
[
log

pθ
q

]
+ Eq̃

[
q

q̃
log

q

pθ

]
. (10)

∂

∂θ
DJ(pθ‖q) = Epθ

[(
1 + log

pθ
q

)
∂ log pθ
∂θ

]
− Eq̃

[
q

q̃

∂ log pθ
∂θ

]
.

(11)

Furthermore, the Monte Carlo estimation doesn’t need the
normalizing constant Z in (1) as it can cancel itself.

Proof: Equation (10) can be seen from

Eq̃
[
q

q̃
log

q

pθ

]
=

∫
q̃(x)

q(x)

q̃(x)
log

q(x)

pθ(x)
dx

=

∫
q(x) log

q(x)

pθ(x)
dx = Eq

[
log

q

pθ

]
,

so the right hand side of (10) resumes the definition of
Jeffreys divergence in (4).

For (11), we have, by definition
∂

∂θ
DJ(pθ‖q) =

∂

∂θ
Epθ

[
log

pθ
q

]
+

∂

∂θ
Eq̃
[
q

q̃
log

q

pθ

]
.

We compute
∂

∂θ
Epθ

[
log

pθ
q

]
=

∂

∂θ

∫
pθ(x) log

pθ(x)

q(x)
dx

=

∫ (
∂pθ(x)

∂θ
log

pθ(x)

q(x)
+ pθ(x)

∂ log pθ(x)

∂θ

)
dx ,

and
∂

∂θ
Eq̃
[
q

q̃
log

q

pθ

]
= −Eq̃

[
q

q̃

∂ log pθ
∂θ

]
.

Now since ∂
∂θ log pθ(x) = 1

pθ(x)
∂
∂θpθ(x), we have

∂

∂θ
pθ(x) = pθ(x)

∂

∂θ
log pθ(x) .

So the term ∂
∂θEpθ

[
log pθ

q

]
further simplifies to

∂

∂θ
Epθ

[
log

pθ
q

]
=

∫ (
pθ(x)

∂ log pθ(x)

∂θ
log

pθ(x)

q(x)

+ pθ(x)
∂ log pθ(x)

∂θ

)
dx

=Epθ
[(

1 + log
pθ
q

)
∂ log pθ
∂θ

]
.

So we can conclude (11).

Now instead of the normalized density q, suppose we only
have its unnomralized version Zq, with Z unknown. When
we replace q with Zq in (11), we get

Epθ
[(

1 + log
pθ
Zq

)
∂ log pθ
∂θ

]
− Eq̃

[
q

q̃

∂ log pθ
∂θ

]
=Epθ

[(
1 + log

pθ
q

)
∂ log pθ
∂θ

]
− Eq̃

[
q

q̃

∂ log pθ
∂θ

]
− logZ Epθ

[
∂ log pθ
∂θ

]
=
∂

∂θ
DJ(pθ‖q)− logZ

∫
pθ(x)

∂ log pθ(x)

∂θ
dx

=
∂

∂θ
DJ(pθ‖q)− logZ

∫
∂pθ(x)

∂θ
dx

=
∂

∂θ
DJ(pθ‖q)− logZ

∂

∂θ

(∫
pθ(x)dx

)
=
∂

∂θ
DJ(pθ‖q) ,

as
∫
pθ(x)dx = 1. We remark that we don’t have the

importance weight term like Zq/q̃ in this case, because we
can use the self-normalized importance weight. In practice,
if we have x̃i sampled i.i.d. from q̃ for i = 1, . . . ,M , the
importance weight for x̃i is given by wi = ŵi/

∑M
j=1 ŵj ,

where ŵj = Zq(x̃j)/q̃(x̃j), for j = 1, . . . ,M . We can see
that the weight wi is independent from Z as it cancels itself.
The similar argument goes for (10).

So we conclude that the Monte Carlo estimation of (10) and
(11) doesn’t need to know the normalizing constant Z in q
as defined in (1). �
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D. The Recursive Multiscale Structure
Here we detail the definitions and properties related to the
multiscale structure. Recall the recursive design introduced
in Section 3, and set L be the number of scales. At scale l
(1 ≤ l ≤ L), the problem dimension is dl, and dl increases
with l: d1 < d2 < . . . < dL = d.

For 2 ≤ l ≤ L, the downsample operator Al at scale l,
introduced in Section 3, is a linear operator from Rdl to
Rdl−1 . It links the variable xl at scales l to the variable xl−1

at scales l − 1 by xl−1 = Alxl. Similarly, the upsample
operator Bl at scale l, introduced in Section 2, is a linear
operator from Rdl−1 to Rdl , for 2 ≤ l ≤ L.

The prior ρl at scale l is defined recursively: at the finest
scale l = L, the prior ρL = ρ, and as for scale l (1 ≤ l < L),
ρl is the density of Al+1xl+1 if xl+1 follows the last scale
prior ρl+1. In other words, ρl is the push-forward density
of ρl+1 by Al+1 for 1 ≤ l < L.

To define the posterior ql at scale l, we first let B̂l =
BLBL−1 . . . Bl+1 be the linear upsample operator from
Rdl to RdL = Rd, for 1 ≤ l < L. It maps xl ∈ Rdl
to a valid input in Rd for F . For consistency, we define
B̂L = IdL , the identity map. Then we can introduce the
likelihood Ll at scale l as, for 1 ≤ l ≤ L,

Ll(y|xl) := L(y|B̂lxl) = N (y −F(B̂lxl); 0,Γ) .

Now we define the posterior ql at scale l, for 1 ≤ l ≤ L, as

ql(xl) =
1

Zl
ρl(xl)Ll(y|xl) ,

where Zl is the normalizing constant.

The auxiliary distribution q̃l at scale l, for 2 ≤ l ≤ L,
introduced in Section 2, is defined as

q̃l(xl) =
1

Z̃l
ρl(xl)Ll−1(y|Alxl) ,

where Z̃l is the normalizing constant. To see why q̃l ap-
proximates ql well, we notice that Alxl is a coarse-scale
version of xl, and by the multiscale property, F(B̂lxl) ≈

Figure 9. Conceptual diagram of the definitions. Arrows mean that
“contribute to the definition of”. We further remark that, (i) q̃l is the
upsampling of ql−1 by ρl(xl|xl−1), because ρl is the upsampling
of ql−1 by ρl(xl|xl−1), and (ii) ql can be well approximated by
q̃l, because Ll(y|xl) can be well approximated by Ll−1(y|Axl).

F(B̂l−1Alxl), so

Ll(y|xl) ≈ Ll−1(y|Alxl) ,
which implies that ql ≈ q̃l.

We also notice that, the hierarchical definition of ρl implies
the following decoupling, for xl−1 = Alxl,

ρl(xl) = ρl−1(xl−1)ρl(xl|xl−1) .

This decoupling is due to the conditional probability rule:

ρl(xl|xl−1) = ρl(xl|Axl = xl−1) = ρl(xl)/ρl−1(xl−1) .

Therefore, we arrive at an alternative formulation of q̃l:

q̃l(xl) :=
1

Z̃l
ρl(xl)Ll−1(y|Alxl)

=
1

Z̃l
ρl−1(Axl)ρl(xl|Alxl)Ll−1(y|Alxl)

=
Zl−1

Z̃l
ρl(xl|Axl)ql−1(Axl) ,

which suggests that a sample xl of q̃l can be generated in
the following way: (i) sample xl−1 from ql−1, and (ii) then
sample xl from ρl(xl|xl−1). The relation of ρl, Ll, ql and
q̃l is shown in Figure 9.

E. More Discussion about Related Work
In this section we provide more discussion and comparison
of our approach to related works.

In (Parno et al., 2016), a similar notion of multiscale struc-
ture is developed as follows. A likelihood function has the
(Parno et al., 2016)-multiscale structure, if there exists a
coarse-scale random variable γ of dimension dc (dc < d)
and a likelihood Lc such that

L(y|x, γ) = Lc(y|γ) . (13)

Then the joint posterior distribution of the fine- and coarse-
scale parameters (x, γ) can be decoupled as

q(x, γ) ∝ ρ(x, γ)L(y|x, γ)
(i)
= ρ(x, γ)Lc(y|γ)

(ii)
= ρ(x|γ)ρ(γ)Lc(y|γ)

(iii)
= ρ(x|γ)qc(γ) , (14)

with normalizing constants omitted in the equivalence rela-
tions. We use the (Parno et al., 2016)-multiscale structure
(13) in (i), and the conditional probability rule ρ(x, γ) =
ρ(x|γ)ρ(γ) in (ii). In (iii) we define qc(γ) := ρ(γ)Lc(y|γ)
as the (Parno et al., 2016)-posterior in coarse scale.

There are two important differences in these two definitions.
First, our coarse-scale parameter xc is a deterministic func-
tion of the fine-scale parameter x, while in (Parno et al.,
2016), γ is a random variable that may contain extra ran-
domness outside x (as demonstrated in numerical examples
in (Parno et al., 2016)). This difference in definition re-
sults in significant difference in modeling: our invertible
model has d-dimensional random noise z as input to ap-
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proximate the target posterior q(x), while models in (Parno
et al., 2016) has (d+dc)-dimensional random noise as input
to approximate the joint-posterior q(x, γ). Another conse-
quence is that users need to define the joint prior ρ(x, γ) in
(Parno et al., 2016), while in our definition the prior of xc is
naturally induced by the prior of x.

Second, our multiscale structure (8) is an approximate rela-
tion and we use invertible flow F in MsIGN to model this
approximation, while in (Parno et al., 2016) the multiscale
structure (14) is an exact relation and authors treat the prior-
upsampled solution ρ(x|γ)qc(γ) (right hand side of (14)) as
the final solution. Our approximate multiscale relation and
further treatment by transform F enables us to apply the
method recursively in a multiscale fashion, while in (Parno
et al., 2016) the proposed method is essentially a two-scale
method and there is not further correction based on the
prior-upsampled solution ρ(x|γ)qc(γ) at the fine-scale.

Finally, as we discussed in Section 5, the invertible model
in (Parno et al., 2016) is polynomials, which suffer from the
exponential growth of polynomial coefficients as dimension
grows. In this work, the invertible model is deep generative
networks, whose number of parameters are independent of
the problem dimension.

We also observe that (Spantini et al., 2015; Chen et al.,
2019a; Chen & Ghattas, 2020) seeks a best low-rank ap-
proximation of the posterior, and treat the approximation
as the final solution with no extra modification. As we will
see in Appendix F, the true posterior could still be far away
from the prior-upsampled solution, especially in the first
few coarse scales.

In addition, while in (Ardizzone et al., 2018) flow-based
generative models are also used to in distribution capture in
inverse problems, their definition of posterior is not equiva-
lent to ours, as they assume no error in measurement. Fur-
thermore, as their training strategy looks to capture the tar-
get distribution while simultaneously learning the forward
map F , they mainly focused on low-d Bayesian inference
problems, in contrast with our high-d setting here.

F. Experimental Setting and Additional
Results for BIPs in Section 6.1

F.1. Experimental Setting of BIPs

As introduced in Section 6.1, we don’t distinguish between
the vector representation of x as grid values on the 2-D
64× 64 uniform lattice: x ∈ Rd with d = 64 ∗ 64 = 4096,
and the piece-wise constant function representation of x on
the unit disk: x(s) for s ∈ Ω = [0, 1]

2.

We place a Gaussian distribution N (0,Σ) with the covari-
ance Σ as the discretization of β2(−∆)−1−α for both of our
Bayesian inverse problem examples. Here the discretization

Table 3. Hyper-parameter (α, β, γ) setting in BIPs

PROBLEM NAME α β γ

SYNTHETIC (SECTION 6.1.1) 0.1 2.0 0.2
ELLIPTIC (SECTION 6.1.2) 0.5 2.0 0.02

of the Laplacian operator ∆ can be understood as a graph
Laplacian when we consider x gives grid values on a 2-D
uniform lattice. We choose zero Dirichlet boundary condi-
tion for ∆. As for the distribution to model noise (error) as
in (2), we set Γ = γ2I , where I is the identity matrix. We
list the setting of (α, β, γ) for both BIPs in Table 3.

The synthetic BIP sets its ground-truth for x as x(s) =
sin(πs1) sin(2πs2), and defines its forward map as a non-
linear measurement of x:

F(x) = 〈ϕ, x〉2 =

(∫
Ω

ϕ(s)x(s)ds

)2

,

where ϕ(s) = sin(πs1) sin(2πs2).

The elliptic BIP is a benchmark problem for high-d infer-
ence from geophysics and fluid dynamics (Iglesias et al.,
2014; Cui et al., 2016). It also sets its ground-truth for x
as x(s) = sin(πs1) sin(2πs2). However, the forward map
is defined as F(x) = O ◦ S(x), where u = S(x) is the
solution to an elliptic partial differential equation with zero
Dirichlet boundary condition:

−∇ ·
(
ex(s)∇u(s)

)
= f(s) , s ∈ Ω ,

And O is linear measurements of the field function u:

O(u) =
[∫

Ω
ϕ1(s)u(s)ds . . .

∫
Ω
ϕm(s)u(s)ds

]T
.

The force term f of the elliptic PDE is set as

f(s) =
50

π

(
2e−10‖s−f1‖2 + 2e−10‖s−f2‖2

−e−10‖s−f3‖2 − e−10‖s−f4‖2
)
,

where f1 = (0.25, 0.3), f2 = (0.25, 0.7), f3 = (0.7, 0.3),
f4 = (0.7, 0.3), and ‖ · ‖ is the Euclidean norm in R2. f
is mirror-symmetric along the s2 direction: f(s1, s2) =
f(s1, 1 − s2). As for the measurement functions ϕk (1 ≤
k ≤ m), we set m = 15 and each ϕk gives local detection
of u. They are also mirror-symmetry along the s2 direction.
See Figure 10 for the visualization of f and ϕk.

By the symmetric design, our posterior q has the property
q(x) = q(x′), where, when considered in the representation
of function, x and x′ is linked by x(s1, s2) = x′(s1, 1− s2)
for s = (s1, s2) ∈ Ω. We carefully choose our hyper-
parameters (α, β, γ), as in Table 3, such that it ends up to
be q not only mirror-symmetric, but also double-modal pos-
terior distribution. To certify the multi-modality, we run
multiple gradient ascent searching of maximum-a-posterior
points, starting from different initial points. They all con-
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Figure 10. Left: 15 measurement functions in O. Here we plotted
non-zero patches of ϕk, k = 1, . . . , 15, with k labeled next to
them. ϕk has a constant non-zero value on its patch(es) and is
zero else where. The constant value here is chosen so that we have
‖ϕk‖L2 = 1. Right: The force term f of the elliptic PDE in S.
We remark that both measurement functions and the force term are
mirror-symmetric along the s2 direction (the orange dash line).

verge to two mutually mirror-symmetric points x∗ and x∗′:
for s = (s1, s2) ∈ Ω, x∗(s1, s2) = x∗′(s1, 1 − s2). Vi-
sualization of the 1D landscape profile of the posterior q
on the line passing through x∗ and x′∗ also shows a clear
double-modal feature.

To simulate the forward process F , we solve the PDE in
map S by the Finite Element Method with mesh size 1/64.
We remark here this setting is independent of the scale l
(1 ≤ l ≤ L) in our recursive strategy.

When counting the number of forward simulations (nFSs)
as our indicator for computational cost, we notice that all
SVGD-type methods: A-SVGD, SVGD and pSVGD, re-
quire not only the log posterior log q(x) but also its gradient:
∂x log q(x). Thanks to the adjoint method, the gradient can
be computed with only one extra forward simulation.

In Table 4 we report our hyperparameter of network setting
in BIPs. To initialize our multi-stage training as in line 2 of
Algorithm 1, we still try to minimize the Jeffreys divergence
DJ(pθ‖q) = Epθ [log(pθ/q)]+Eq[log(q/pθ)] , but this time
it is directly estimated by the Monte Carlo method with
samples from distribution pθ and q. pθ samples come from
the model itself and q samples come from an HMC chain.
We remark that at l = 1, the posterior lies in 4-D space,
which is relatively a low-d problem, so an HMC run can
approximate the target distribution q1 well. Our present
solution of seeking help from HMC can be replaced by
some other strategies, like other MCMC methods, and deep
generative networks.

For A-SVGD, we choose Glow (Kingma & Dhariwal, 2018)
as its network design, with the same network hyperpa-
rameter in Table 4. Due to the fact that MsIGN is more
parameter-saving than Glow with the same hyperparame-
ter, A-SVGD model has more trainable parameters than our
MsIGN model, reducing the possibility that that its network
is not expressive enough to capture the modes.

Table 4. Hyperparameter setting for MsIGN in Section 6.1. The
meaning of terms can be found in (Kingma & Dhariwal, 2018).

PROBLEM NAME SYNTHETIC ELLIPTIC

MINIBATCH SIZE 100 100
SCALES (L) 6 6
] OF GLOW BLOCKS (K) 16 32
] OF HIDDEN CHANNELS 32 64

As for our training of HMC, we grid search its hyperparam-
eters, and use curves of acceptance rate and autocorrelation
as evidence of mixing. We consider our HMC chain mix-
ing successfully if the acceptance rate stabilizes and falls
between 30% − 75%, as suggested by (Neal et al., 2011),
and the autocorrelation decays fast with respect to lag.

As for the ablation study shown in Section 6.1.3, all models
involved Glow or MsIGN adopt network hyperparameters as
shown in Table 4.We remark that it is not straightforward to
design multi-stage strategy for Glow models, because their
channel size increases with l. So for models with different
number of scales L, there is no direct way to initialize one
model with another. Therefore for methods using Glow, we
don’t consider multi-stage training.

Also, as will be seen in Appendix F.2.2, the elliptic problem
at l = 1 is ill-posed, its posterior is highly rough, and
MsIGN variants (like MsIGN trained by the KL divergence)
can hardly capture its two modes, see Table 5 and Figure
13. We report that in general it is unlikely for multi-stage
training to pick up the missing mode. Therefore, to make
more convincing comparison, for models with multi-stage
training, we use pretrained MsIGN model at l = 1 (who
captures q1 well) as their initialization for l = 2.

F.2. Additional Results of BIPs

In this section we provide more results on the Bayesian
inverse problems examples in Section 6.1.

F.2.1. SYNTHETIC BAYESIAN INVERSE PROBLEM

In Figure 11 we provide comparison of the marginal dis-
tribution in the critical direction w∗ at intermediate scales
l = 1, . . . , 5. For the final scale l = 6 please refer to Figure
3(a). We can see that as the dimension increases, A-SVGD
and SVGD become less robust in mode capture and collapse
to one mode. Besides, HMC becomes imbalanced between
modes, and pSVGD is a bit biased for q6 in Figure 3(a).
We remark here that in q1, A-SVGD failed to capture both
modes as it did to q2. This phenomenon might be caused
by the aliasing effect. Very rough resolution at this scale
pushes the prior to penalize the smoothness much, and also
adds the sensitivity to likelihood because entries of x can
easily influence its global behavior. Therefore, there is a
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larger log density gap between modes in the posterior q1

than other scales, which adds up to the difficulty of multi-
mode capture. A similar effect is observed in the elliptic
example as in the next section.

The learning curve in Figure 12 shows the effectiveness of
our multi-stage training of MsIGN. As we can see, the train-
ing process at l = 6 did improve the model, with the Jeffreys
divergence dropped from 252 to 56.8. Rather than simply
refining the resolution, our multi-stage training strategy does
improve our approximation to the distribution when enter-
ing the next scale. We will show more evidence about this
in the next section.

F.2.2. ELLIPTIC BAYESIAN INVERSE PROBLEM

In Figure 11 we provide comparison of marginal com-
parison in the critical direction w∗ at intermediate scales
l = 1, . . . , 5. For l = 6 please refer to Figure 4(a). Again,
for this complicated posterior we observe that all methods
except MsIGN and HMC failed in detecting all modes, and
could even get stuck in the middle. In this testbed, HMC
seems to capture both modes well. However we will point
out that its samples can’t be treated like a reference solu-
tion. The failure of HMC at q1 is due to the aliasing effect:
the prior penalizes fluctuation in spatial directions heavily,
and the likelihood is also very strong. As a consequence,
the posterior q1 is highly twisted, and the log density gap
between two modes becomes significant.

In Figure 12, we also show the necessity of training after
prior conditioning. In other words, ql is not the same as
the prior-conditioned surrogate q̃l−1, though they are sim-
ilar. We plot one of the modes we detected by our models
for l = 4, 5, 6. Comparing figures of Figure 12, we can
see the location, shape and scale of bumps and caves are
different, which means the learned ql is different from the
prior-conditioned surrogate q̃l−1, who serves as its initializa-
tion. Our multi-stage training does learn more information
at each scale, rather than simply scale up the resolution.

F.2.3. ABLATION STUDY OF BAYESIAN INVERSE
PROBLEM

In Figure 5 we compared different variants of MsIGN and
its training strategy at scale l = 6. In Figure 13 we plot
the same comparison at intermediate scales l = 1, . . . , 5.
Since the curves overlap each other heavily in Figure 13,
we conclude their results of mode capturing (together with
Figure 5) in Table 5.

We can see from Table 5 that our framework and strategy
outperforms all its variants in these two Bayesian inverse
problems, which proved the necessity of our prior condi-
tioning layer, network design, multi-stage training strat-
egy, and Jeffreys divergence. In particular, the experiment

of MsIGN-SNN supports our prior conditioning layer de-
sign, the experiment of MsIGN-KL supports our use of the
Jeffreys divergence and MsIGN-KL-S supports our use of
multi-stage training strategy.

Besides that, we can also see that multi-stage training also
benefits other models like MsIGN with KL divergence ob-
jective or A-SVGD with MsIGN. By carefully comparing
the marginals plotted in Figure 13, we can also conclude
that Jeffreys divergence can help capture more balanced
modes than KL divergence.

G. Experimental Setting and Additional
Results for Image Synthesis in Section 6.2

G.1. Experimental Setting of Image Synthesis

Although there is no posterior for natural images, we can
still use MsIGN to capture the distribution of natural images.
We still feed Gaussian noises to MsIGN, and hope to get
high-quality images from it as in (3). The training of MsIGN
is now governed by the Maximal Likelihood Estimation due
to the lack of the posterior density. In other words, we
train our MsIGN by maximizing Ex∼q[log pθ(x)], which is
equivalent to minimizing DKL(q‖pθ), where q is the em-
pirical distribution of natural images given by the data set.
As for the multiscale strategy, we naturally take ql to be the
distribution of (downsampled) images at resolution dl.

We use the invertible block introduced in (Kingma & Dhari-
wal, 2018) as our model for the invertible flow. For our
numbers in Table 2, we report our hyperparameter settings
in Table 6. Samples from those data sets are treated as 8-bit
images. For all experiments we use Adam (Kingma & Ba,
2014) optimizer with α = 0.001 and default choice of β1,
β2. For models here that requires mutli-stage training in
Algorithm 1, non-final stages (l < L) will only be trained
for 125 epochs.

To establish the prior conditioning layer PC in this image
application, we let the downsample operator Al from scale
l to scale l − 1 be the average pooling operator with kernel
size 2 and stride 2. We further assume the covariance Σl
at each scale be a scalar matrix, i.e. a diagonal matrix with
equal diagonal elements.

+1 +1

+1 +1 ⋯

⋮ ⋱

+1 -1

+1 -1 ⋯

⋮ ⋱

+1 +1

-1 -1 ⋯

⋮ ⋱

+1 -1

-1 +1 ⋯

⋮ ⋱

Figure 14. Left most: an example row of Al, plotted as a matrix;
The rest: example rows of Ãl correspond to the former row of Al.
They (with some unplotted ones) form the Haar basis, and can be
expressed as local convolution operation.
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Figure 11. Marginal comparison at the intermediate scales l = 1, . . . , 5. Left: Synthetic BIP; Right: Elliptic BIP. In the synthetic example,
as the dimension increases, SVGD and A-SVGD failed in mode capture. Besides, HMC becomes imbalanced between modes, and
pSVGD is a bit biased for q6 in Figure 3(a). In the elliptic example, all methods except MsIGN and HMC failed in detecting all modes,
and could even get stuck in the middle. HMC has acceptable performance, but still suffers from imbalanced modes at some scales.
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Figure 12. Necessity of training after prior conditioning. Left: learning curve of multi-stage MsIGN at l = 6 in the synthetic BIP example;
Middle and Right: comparison of the modes captured by the prior conditioned untrained model and the trained model in the elliptic BIP
example. The learning curve shows that the model distribution is constantly getting closer to the target distribution in the last stage of
training, supporting the necessity of training after prior conditioning. The mode comparison shows that bumps and caves in the left images
are different from the right ones, especially in scale, as shown by color shade. Therefore, prior conditioning provides a good initial guess,
but training is still necessary.

Table 5. Table for mode capturing results by eye ball norm. Upper: synthetic Bayesian inverse problem; Lower: elliptic Bayesian inverse
problem. “T” demotes the successful capturing of two modes, “F” denotes mode collapse, while “I” denotes biased, not well-separated
modes capturing. For results marked with “I”, we refer readers to Figure 13 for detail information. ∗: we initialize the l = 2 model by our
MsIGN l = 1 pretrained model, see Appendix F.1.

SCALE l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

GLOW T F F F F F
MSIGN-SNN T T T T I I
MSIGN-KL-S T F F F I F
MSIGN-KL∗ T T T T T T
MSIGN-AS-S T F F F F F
MSIGN-AS∗ T T T I I I
MSIGN T T T T T T

SCALE l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

GLOW F F F F F F
MSIGN-SNN F F F F F F
MSIGN-KL-S F F F F F F
MSIGN-KL∗ F I I I I I
MSIGN-AS-S F F F F F F
MSIGN-AS∗ F I I T I I
MSIGN T T T T T T

Table 6. Hyperparameter setting for results in Table 2. Here the meaning of terms can be found in (Kingma & Dhariwal, 2018).

DATA SET MNIST CIFAR-10 CELEBA IMAGENET 32 IMAGENET 64

MINIBATCH SIZE 400 400 200 400 200
SCALES (L) 2 3 3 3 3
] OF GLOW BLOCKS (K) 32 32 32 32 32
] OF HIDDEN CHANNELS 512 512 512 512 512
] OF EPOCHS 2000 2000 1000 400 200
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Figure 13. Ablation study at intermediate scales l = 1, . . . , 5. Left: Synthetic Bayesian inverse problem; Right: Elliptic Bayesian inverse
problem. For MsIGN-AS and MsIGN-KL, we initialize their l = 2 models by our MsIGN l = 1 pretrained model, see Appendix F.1.
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Since Al ∈ Rdl−1×dl is the average pooling operator, its
rows, which give averages of each local patch, is a subset of
the Haar basis, see Figure 14. We can collect the rest Haar
basis as Ãl ∈ R(dl−dl−1)×dl . Due to the orthogonality of
the Haar basis, there exists a constant λl > 0 such that[

AlA
T
l

ÃlÃ
T
l

]
=

[
Al
Ãl

] [
Al
Ãl

]T
= λlIdl

=

[
Al
Ãl

]T [
Al
Ãl

]
= ATl Al + ÃTl Ãl .

As a by-product we see AlATl = λlIdl−1
and ÃlÃ

T
l =

λlIdl−dl−1
. In our case, as Al is the average pooling opera-

tor, we actually have λl = 1/4.

Since we assume the covariance Σl is a scalar matrix, we can
find a scalar cl > 0 such that Σl = clIdl . Now following
Theorem 3.1, we can find an explicit form for Σl|l−1, l ≥ 2,
which is the Σc at scale l:

Σl|l−1 = Σl − ΣlA
T
l (AlΣlA

T
l )−1AlΣl

= clIdl − clATl (λlIdl−1
)−1Al

=
cl
λl

(ATl Al + ÃTl Ãl)−
cl
λl
ATl Al

=
cl
λl
ÃTl Ãl .

Therefore, we obtain the decomposition of Σl|l−1 = WlW
T
l

in Theorem 3.1 for free, where now Wl is the original W at
scale l. One apparent choice isWl = µlÃ

T
l with µl =

√
cl
λl

.
Finally, as suggested by Theorem 3.1 we are now only left
to estimate the scalar µl for each l ≥ 2 to establish PCl.

The constant µl is estimated numerically on data sets. In
fact, we have accessible to different resolutions of images
from the data set when we perform pooling operation. We
take xl to be the pooling of images from data set to its
resolution, and estimate µl according to Theorem 3.1:

xl = Ul−1xl−1 +Wlzl = Ul−1xl−1 + µlÃ
T
l zl ,

where zl ∼ N (0, Idl−dl−1
) are the random noise at scale l,

and Ul−1 by definition is

Ul−1 = ΣlA
T
l (AlΣlA

T
l )−1

= clA
T
l (clAlA

T
l )−1 = ATl (AlA

T
l )−1

= ATl (λlIdl−1
)−1 =

1

λl
ATl .

Plug it back, we have

xl =
1

λl
ATl xl−1 + µlÃ

T
l zl .

Now multiply both sides with Ãl, noticing that ÃlÃTl =

λlIdl−dl−1
and ÃlATl = 0, we arrive at

Ãlxl = λlµlzl .

Since µl is a scalar, it can be estimated by moment match-

Table 7. Estimate of µl for different data sets and scale l.
DATA SET µ2 µ3

MNIST 0.67 –
CIFAR-10 0.48 0.46
CELEBA 64 0.22 0.30
IMAGENET 32 0.32 0.42
IMAGENET 64 0.28 0.36

ing of both sides, as λl and Ãl is known. Here xl is the
natural images at resolution dl. For example, we use 10000
randomly sampled images from each data set and estimate
µl by matching the variance of both sides, we report our
estimates of µl in Table 7.

G.2. Additional Results of Image Synthesis

We attach more synthesized images by MsIGN from MNIST
and CIFAR-10 in Figure 15, 16. For the CelebA data set, we
made use of our multiscale design and trained our MsDGN
for a higher resolution 128. In this case, the number of
scales L = 4, and we set the hyperparameters for the first 3
scales the same as we use for the 64 ∗ 64 resolution model.
For the last scale l = 4, due to memory limitation, we set
K = 32 and hidden channels 128. We show our synthesized
128 ∗ 128 resolution results in Figure 17.

We also use this 4-scale model to show the interpret-ability
of our internal neurons in Figure 18. We snapshot internal
neurons for 4 times every scale, resulting a snapshot chain
of length 4 ∗ 4 = 16 for every generated image. We can
see our MsIGN generates global features at the beginning
scales and starts to add more local details at higher scales.
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Figure 15. Synthesized 28× 28-resolution images from MsIGN on the MNIST data set, temperature = 1.0. We show 4 samples per digit.

Figure 16. Synthesized images of resolution 32× 32 from MsIGN on the CIFAR-10 data set, temperature = 1.0.

Figure 17. Synthesized images of resolution 128× 128 from MsIGN on the CelebA data set, temperature = 0.8.
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Figure 18. Visualization of internal neurons of MsIGN in synthesizing or recovering 128× 128-resolution images on CelebA data set.
Snapshots (from top to bottom) are taken 4 times every scale, resulting 4 ∗ 4 = 16 checkpoints for every image generated. At scale l
(1 ≤ l ≤ 4), where the resolution is 23+l × 23+l, we take 4 snapshots at the head, two trisection points and tail of the invertible flow Fl.
Left: when recovering images from the data set; Right: when synthesizing new images from random noise.


