
Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks

A. Supplementary Materials
A.1. Theoretical Proof

In this paper, we use∞-norm for both weight and gradient
in our 1-Lipschitz neural network. For ease representation,
we use ‖ · ‖ to replace ‖ · ‖∞ in our 1-Lipschitz neural
network.

Lemma 1 [Lagrange’s Mean Value Theorem] For any con-
tinuous function f on the closed interval [a, b] and differen-
tiable on the open interval (a, b), then there exists a point c
in (a, b) such that the tangent at c is parallel to the secant
line through the endpoints (a, f(a)) and (b, f(b)).

f ′(c) =
f(a)− f(b)

a− b (14)

Proof. Please refer to the book (Sharma & Vasishtha, 2010)
for detailed proof.

Theorem 1 For anyKl-Lipschitz nonlinear activation func-
tion f̄ : RN 7→ RN , if f̄ is everywhere differentiable and
f̄(x) = 0 ∈ RN at x = 0 ∈ RN , then there must exist a
linear function g such that f̄(x) ≤ g(x) for ∀x,x ∈ RN .

Proof. The proof of this theorem can be divided into two
cases: scalar and vector cases.

(Scalar case.) According to Definition 1 and
Lemma 1, given large enough M , the domain
(−∞,+∞) can be partitioned into M subintervals
P =

{
[x0, x1], [x1, x2], · · ·, [xm−1, xm], · · ·, [xM−1, xM]

}
,

where −∞ = x0 < x1 < x2 < · · · < xm−1 < xm <
· · · < xM−1 < xM = +∞, such that any Kl-Lipschitz
nonlinear activation function f̄ : R 7→ R on (−∞,+∞)
become linear or near-linear on each subinterval. There-
fore, f̄(x) can be rewrite as the piecewise function f̄ ′(x̂i)x
w.r.t. variable x on M subintervals P , i.e., each piecewise
function is approximately equivalent to a linear function
with the slope of f̄ ′(x̂i) through the origin.

f̄(x) ≈
M∑
i=1

f̄ ′(x̂i)x (15)

where x̂i ∈ (xi−1, xi) and

f̄ ′(x̂i) =


f̄(xi)− f̄(xi−1)

xi − xi−1
, if x ∈ [xi−1, xi],

0, if x /∈ [xi−1, xi].

(16)

Since f̄ isKl-Lipschitz on R, we have the following inequal-
ity for any x1, x2 ∈ R.

f̄ ′ =
f̄(x1)− f̄(x2)

x1 − x2
≤ |f̄(x1)− f̄(x2)|

|x1 − x2|
≤ Kl (17)

Thus, there exist a linear function g(x) = Klx such that

f̄(x) =

M∑
i=1

f̄ ′(x̂i)x ≤ Klx = g(x) (18)

(Vector case.) For any Kl-Lipschitz nonlinear activation
function f̄ : RN 7→ RN on (−∞,+∞) w.r.t. infinity norm,
we can follow the same strategy in the scalar case to par-
tition the domain of each component in an N -dimensional
vector x into M subintervals, such that f̄(x) become linear
or near-linear on each subinterval of each component. Simi-
larly, f̄(x) can be rewrite as the piecewise function∇x̂i f̄ ·x
w.r.t. M subintervals of each component.

f̄(x) ≈
M∑
i=1

∇x̂i f̄ · x (19)

Since f̄ is gradient infinity-norm preservation, we have

f̄(x) ≈
M∑
i=1

∇x̂i f̄ · x

=

M∑
i=1

[∂f̄
∂x̂i1

, · · · , ∂f̄

∂x̂iN

]
· x

≤
M∑
i=1

[∣∣ ∂f̄
∂x̂i1

∣∣, · · · , ∣∣ ∂f̄
∂x̂iN

∣∣] · x
≤

M∑
i=1

max
{∣∣ ∂f̄
∂x̂i1

∣∣, · · · , ∣∣ ∂f̄
∂x̂iN

∣∣} · x
=

M∑
i=1

‖∇x̂i f̄‖∞x

= Klx = g(x)

(20)

Therefore, the proof is concluded.

Theorem 2 By following the definition in Eq.(2), we build
a (L + 1)-layer 1-Lipschitz neural network F̄ : RN0 7→
RNL , with a gradient norm preserving activation func-
tion ‖∇z̄l−1

f̄‖ = Kl almost everywhere and a norm-
constrained weight matrix ‖W̄l‖ = 1/Kl like the defini-
tions in Eq.(7). If Kl > 1 for ∀l, 2 ≤ l ≤ L, our 1-Lipschitz
neural network F̄ achieves better expressive power than the
neural network F̃ constructed by the GroupSort model (Anil
et al., 2019; Cohen et al., 2019).

Proof. Let F : RN0 7→ RNL be a regular (L + 1)-layer
fully connected neural network with unconstrained ReLU as
the activation f and unrestricted weight matrix Wl at layer
l, F̃ be a (L + 1)-layer 1-Lipschitz neural network with

Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks

1-Lipschitz GroupSort activation f̃ and norm constrained
weight matrix W̃l proposed by the GroupSort model (Anil
et al., 2019; Cohen et al., 2019), and F̄ : RN0 7→ RNL

be our (L + 1)-layer 1-Lipschitz neural network with Kl-
Lipschitz Weibull activation f̄ and norm-contained weight
matrix W̄l.

Namely, for F , ‖f(zl)‖∞ = ‖ReLU(zl)‖∞ ≤ ‖zl‖∞.

For F̃ , ‖f̃(z̃l)‖∞ = ‖z̃l‖∞ as f̃ only sorts and permutates
the elements in each z̃l but do not change the component
values. In addition, ‖∇z̃l−1

f̃‖ = 1 and ‖W̃l‖ = 1.

For F̄ , ‖∇z̄l−1
f̄‖ = Kl, ‖W̄l‖ = 1 if l = 1, and ‖W̄l‖ =

1/Kl if l > 1.

By using the triangle inequality and submultiplicativity of
matrix norms, the output difference between the 1-Lipschitz
neural network F̃ by the GroupSort model and the regular
fully connected neural network F is calculated below.

‖F̃ (x)− F (x)‖

=‖W̃Lf̃(z̃L−1) + bL − (WLf(zL−1) + bL)‖

=‖W̃L[f̃(z̃L−1)−ReLU(zL−1)]+

W̃LReLU(zL−1)−WLf(zL−1)‖

≤‖W̃L‖‖f̃(z̃L−1)−ReLU(zL−1)‖+
‖ReLU(zL−1)‖‖W̃L −WL‖

=‖f̃(z̃L−1)−ReLU(zL−1)‖+
‖ReLU(zL−1)‖‖W̃L −WL‖

≤‖f̃(z̃L−1)‖+ ‖ReLU(zL−1)‖+
‖ReLU(zL−1)‖(‖W̃L‖+ ‖WL‖)
≤‖z̃L−1‖+ ‖zL−1‖+ ‖zL−1‖(‖W̃L‖+ ‖WL‖)

(21)

By following the same strategy used for the Kl-Lipschitz

nonlinear activation function f̄ in Theorem 1, we have

‖F̃ (x)− F (x)‖
≤‖z̃L−1‖+ ‖zL−1‖+ ‖zL−1‖(‖W̃L‖+ ‖WL‖)

≈
∥∥∥ M∑
i=1

∇ẑ1i z̃L−1 · z̃1

∥∥∥+ ‖zL−1‖+

‖zL−1‖(‖W̃L‖+ ‖WL‖)

≤
∥∥∥ M∑
i=1

∇ẑ1i z̃L−1

∥∥∥‖z̃1‖+ ‖zL−1‖+

‖zL−1‖(‖W̃L‖+ ‖WL‖)
=‖z̃1‖+ ‖zL−1‖+ ‖zL−1‖(‖W̃L‖+ ‖WL‖)
=‖W̃1x + b1‖+ ‖zL−1‖+
‖zL−1‖(‖W̃L‖+ ‖WL‖)
≤‖W̃1‖‖x‖+ ‖b1‖+ ‖zL−1‖+
‖zL−1‖(‖W̃L‖+ ‖WL‖)

=‖x‖+ ‖b1‖+ ‖zL−1‖+ ‖zL−1‖(‖W̃L‖+ ‖WL‖)
=ε̃

(22)

Similarly, the output difference between the our 1-Lipschitz
neural network F̄ and the regular fully connected neural
network F is computed as follows.

‖F̄ (x)− F (x)‖
=‖W̄Lf̄(z̄L−1) + bL − (WLf(zL−1) + bL)‖
=‖W̄L[f̄(z̄L−1)−ReLU(zL−1)]+

W̄LReLU(zL−1)−WLf(zL−1)‖
≤‖W̄L‖‖f̄(z̄L−1)−ReLU(zL−1)‖+
‖ReLU(zL−1)‖‖W̄L −WL‖

=
1

KL
‖f̄(z̄L−1)−ReLU(zL−1)‖+

‖ReLU(zL−1)‖‖W̄L −WL‖

≤ 1

KL
(‖f̄(z̄L−1)‖+ ‖ReLU(zL−1)‖)+

‖ReLU(zL−1)‖(‖W̄L‖+ ‖WL‖)

≤ 1

KL
(‖f̄(z̄L−1)‖+ ‖zL−1‖)+

‖zL−1‖(‖W̄L‖+ ‖WL‖)

(23)

By using the same strategy used in Theorem 1, we get

Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks

‖F̃ (x)− F (x)‖

≤ 1

KL
(‖f̄(z̄L−1)‖+ ‖zL−1‖)+

‖zL−1‖(‖W̄L‖+ ‖WL‖)

≈ 1

KL

(∥∥∥ M∑
i=1

∇ẑ(L−1)i
f̄ · z̄L−1

∥∥∥+ ‖zL−1‖
)

+

‖zL−1‖(‖W̄L‖+ ‖WL‖)

≤ 1

KL

(∥∥∥ M∑
i=1

∇ẑ(L−1)i
f̄
∥∥∥‖z̄L−1‖+ ‖zL−1‖

)
+

‖zL−1‖(‖W̄L‖+ ‖WL‖)

≤ 1

KL
(KL‖z̄L−1‖+ ‖zL−1‖)+

‖zL−1‖(‖W̄L‖+ ‖WL‖)

≈
∥∥∥ M∑
i=1

∇ẑ1i z̄L−1 · z̄1

∥∥∥+
‖zL−1‖
KL

+

‖zL−1‖(‖W̃L‖+ ‖WL‖)

≤
∥∥∥ M∑
i=1

∇ẑ1i z̄L−1

∥∥∥‖z̄1‖+
‖zL−1‖
KL

+

‖zL−1‖(‖W̃L‖+ ‖WL‖)

=‖z̄1‖+
‖zL−1‖
KL

+ ‖zL−1‖(‖W̄L‖+ ‖WL‖)

=‖W̄1x + b1‖+
‖zL−1‖
KL

+

‖zL−1‖(‖W̄L‖+ ‖WL‖)

≤‖W̄1‖‖x‖+ ‖b1‖+
‖zL−1‖
KL

+

‖zL−1‖(‖W̄L‖+ ‖WL‖)

=‖x‖+ ‖b1‖+
‖zL−1‖
KL

+ ‖zL−1‖(‖W̄L‖+ ‖WL‖)

=ε̄

(24)

So, we have

ε̃− ε̄
=‖x‖+ ‖b1‖+ ‖zL−1‖+ ‖zL−1‖(‖W̃L‖+ ‖WL‖)−(
‖x‖+ ‖b1‖+

‖zL−1‖
KL

+ ‖zL−1‖(‖W̄L‖+ ‖WL‖)
)

=2(1− 1

KL
)‖zL−1‖

(25)

Therefore, ε̃ > ε̄ when KL > 1, i.e., our F̄ achieves closer
approximation result to the regular F than the GroupSort
model F̃ .

In addition, it is straightforward to follow the above same
proof process to derive F̄ achieves better expressive power
than F̃ on each layer l when Kl > 1 for ∀l, 2 ≤ l < L.

Theorem 3 Given a regular (L+ 1)-layer fully connected
neural network F : RN0 7→ RNL with unconstrained
ReLU as the activation and unrestricted weight, and our
(L+ 1)-layer 1-Lipschitz neural network F̄ defined in The-
orem 2, if an error budget between each layer of two neu-
ral networks is limited to ε, i.e., ‖z̄l − zl‖ ≤ ε, where
zl and z̄l are the representations at layer l in F and F̄
respectively, then Kl ≤ min

{
‖f̄(z̄l−1)‖

‖Wlf(zl−1)‖−ε ,max
{
−

min
j

∂f̄
∂z̄(l−1)j

,max
j

∂f̄
∂z̄(l−1)j

}}
.

Proof. In order to control the approximation error at layer
L within the error budget ε, we have

ε ≥‖F̄ (x)− F (x)‖
=‖W̄Lf̄(z̄L−1) + bL − (WLf(zL−1) + bL)‖
=‖WLf(zL−1)− W̄Lf̄(z̄L−1)‖
≥‖WLf(zL−1)‖ − ‖W̄Lf̄(z̄L−1)‖
≥‖WLf(zL−1)‖ − ‖W̄L‖‖f̄(z̄L−1)‖

(26)

Solving the above inequality, we get

KL =
1

‖W̄L‖
≤ ‖f̄(z̄L−1)‖
‖WLf(zL−1)‖ − ε (27)

For the purpose of maintaining the property of infinity norm,
we have

KL = ‖∇z̄L−1 f̄‖∞

=
∥∥∥[∂f̄

∂z̄(L−1)1

, · · · , ∂f̄

∂z̄(L−1)NL−1

]∥∥∥
∞

≤ max
{
−min

j

∂f̄

∂z̄(L−1)j

,max
j

∂f̄

∂z̄(L−1)j

} (28)

Therefore, we have

KL ≤min
{ ‖f̄(z̄L−1)‖
‖WLf(zL−1)‖ − ε ,

max
{
−min

j

∂f̄

∂z̄(L−1)j

,max
j

∂f̄

∂z̄(L−1)j

}} (29)

Similarly, it is straightforward to extend the above conclu-
sion to other layers l for ∀l, 2 ≤ l < L by utilizing the
above same proof process.

Theorem 4 Given an Nl × Nl−1 matrix A, the nearest
orthonormal matrix B of A is unique. It is equal to B̂ =
AH−1 by using the fast hybrid polar decomposition, where
H =

√
ATA is positive definite.

Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks

Proof. Let A = U

[
Σ
O

]
VT be the singular value decom-

position of A, where UT = U−1, VT = V−1, O is the
zero matrix, and Σ is a square positive diagonal matrix with
the singular values of A on its diagonal. We will prove that
the nearest orthogonal matrix is B̂ = A(ATA)−1/2 =

U

[
Σ
O

]
VT

(
V[ΣTO]UTU

[
Σ
O

]
VT

)−1/2

=

U

[
I
O

]
VT .

Now we demonstrate that B̂ is unique by verifying the dif-
ference ‖A − B‖F for any Nl−1 × Nl matrix B with Nl

orthonormal columns (i.e. BTB = I).

Frobenius norm has an important property of being invari-
ant under rotations and unitary operations in general. That
is, ‖X‖F = ‖XS‖F for any Nl ×Nl−1 matrix X and any
Nl−1×Nl−1 unitary matrix S or ‖X‖F = ‖SX‖F for any
Nl×Nl−1 matrix X and any Nl×Nl unitary matrix S. We
change ‖A −B‖F by unitary pre- or post-multiplication,
such that ‖A−B‖F = ‖UT (A−B)V‖F . Now we have

UTAV =

[
Σ
O

]
,UT B̂V =

[
I
O

]
, and

UTBV =

[
P
Q

]
satisfying PTP + QTQ = I

(30)

Therefore, ‖A − B‖F =∥∥∥∥[Σ
O

]
−
[

I
O

]
+

[
I
O

]
−
[

P
Q

]∥∥∥∥
F

= ‖T‖F ,

where T =

[
Σ− I
O

]
−
[

P− I
Q

]
. As a result,

TTT = (Σ−I)2−(Σ−I)(P−I)−(P−I)T (Σ−I)+(P−
I)T (P−I)+QTQ = (Σ−I)2 +Σ · (I−P)+(I−PT)Σ.
Now, I − P = O only when B = B̂. Otherwise
Diag(I−P) ≥ O because Diag(PTP) ≤ I. At least one
element of Diag(I−P) must be positive, and thus we find
‖A−B‖2F = trace(TTT) > trace(Σ−I)2 = ‖A−B̂‖2F
as was claimed for B 6= B̂.

Therefore, the proof is concluded.

Theorem 5 Consider a 1-Lipschitz neural network F̄ :
RN0 7→ R, built with norm-constrained weights (‖W̄l‖ ≤
1) and 1-Lipschitz, element-wise, monotonic activation func-
tions ‖∇z̄l−1

f‖ = 1. If ||∇xF̄ (x)|| = 1 almost everywhere,
then F̄ is linear (Anil et al., 2019).

Proof. Please refer to Theorem 1 in the GroupSort pa-
per (Anil et al., 2019) for detailed proof.

Theorem 6 Given T Weibull activation functions with the
definition in Eq.(11), there must exist solutions of parame-
ters αt, λt, and µt to guarantee ‖∇z̄l f̄‖ = Kl.

Proof. In this paper, we choose a value of αt < 1 to stimu-
late the attack failure rate decreasing with the perturbation
diffusion. When αt < 1, f̄ ′(z) is monotonically decreasing
function. We have

lim
z→µt

f̄ ′(z) =

T∑
t=1

αt
λt

0αt−1e0αt =∞ > Kl if z ≥ µt (31)

On the other hand,

lim
z→∞

f̄ ′(z) =

T∑
t=1

αt
λt
∞αt−1e−∞

αt
= 0 < Kl (32)

Notice that ‖∇z̄l f̄‖∞ = f̄ ′(z̄lU) = ∂f̄
∂z̄lU

, where ∂f̄
∂z̄lU

=

max{| ∂f̄∂z̄l1
|, · · · , | ∂f̄

∂z̄lNl
|}. Therefore, we can always find

the appropriate parameters αt, λt, and µt to make
f̄ ′(z̄lU) = Kl.

Lemma 2 [Restricted Stone-Weierstrass Theorem] Sup-
pose that (X, dX) is a compact metric space with at least
two points and F is a lattice in CF (X,R) with the property
that for any two distinct elements x, y ∈ X and any two
real numbers a and b such that |a − b| ≤ dX(x, y) there
exists a function f ∈ F such that f(x) = a and f(y) = b.
Then F is dense in CF (X,R) (Anil et al., 2019).

Proof. Please refer to Lemma 1 in the GroupSort paper (Anil
et al., 2019) for detailed proof.

Theorem 7 Let LNNL
∞ : RN0 7→ RNL denote the class of

(L + 1)-layer 1-Lipschitz neural networks F̄ with norm-
contained weight matrices ‖W̄l‖∞ = 1 (l = 1) and
‖W̄l‖∞ = 1/Kl (l > 1), and gradient norm preserv-
ing activation function ‖∇z̄l−1

f̄‖∞ = Kl, by following
the definitions in Eqs.(2) and (7). Let input X be a closed
and bounded subset of RN0 with the L∞ metric. Then the
closure of LNNL

∞ is dense in CF (X ,R).

Proof. For any two input x1 = [x11, · · · ,x1N0
],x2 =

[x21, · · · ,x2N0
] ∈ RN0 , ||x1 − x2||∞ = maxN0

j=1 |x1j −
x2j |. Based on Definition 1 and Lemma 1, by using the same
strategy used in Theorem 1, we have the outputs F̄ (x1) and
F̄ (x2) through the above (L+ 1)-layer 1-Lipschitz neural

Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks

networks F̄ as follows.

F̄ (x1)

= W̄Lh̄L−1 + bL = W̄Lf̄(z̄L−1) + bL

≈ W̄L

M∑
i=1

∇ẑ(L−1)i
f̄ · z̄L−1 + bL

= W̄L

M∑
i=1

[∂f̄

∂ẑ(L−1)i1

, · · · , ∂f̄

∂ẑ(L−1)iNL−1

]
· z̄L−1 + bL

≤ W̄L

M∑
i=1

[∣∣ ∂f̄

∂ẑ(L−1)i1

∣∣, · · · , ∣∣ ∂f̄

∂ẑ(L−1)iNL−1

∣∣] · z̄L−1 + bL

≤ W̄L

M∑
i=1

max
{∣∣ ∂f̄

∂ẑ(L−1)i1

∣∣, · · · , ∣∣ ∂f̄

∂ẑ(L−1)iNL−1

∣∣}
· z̄L−1 + bL

= W̄L

M∑
i=1

‖∇ẑ(L−1)i
f̄‖∞z̄L−1 + bL

= KLW̄Lz̄L−1 + bL

≈ KLW̄L

M∑
i=1

∇x̂1i z̄L−1 · x1 + bL

≤ KLW̄L

M∑
i=1

max
{∣∣∂z̄L−1

∂x̂1i1

∣∣, · · · , ∣∣ ∂z̄L−1

∂x̂1iN0

∣∣} · x1 + bL

= KLW̄L

M∑
i=1

‖∇x̂1i z̄L−1‖∞x1 + bl = KLW̄Lx1 + bL

(33)

Similarly, we have F̄ (x2) ≤ KLW̄Lx2 + bL. Therefore,

||F̄ (x1)− F̄ (x2)||∞ ≤ ‖KLW̄Lx1 −KLW̄Lx2‖∞
≤ KL‖W̄L‖∞‖x1 − x2‖∞

≤ KL
1

KL
‖x1 − x2‖∞

= ‖x1 − x2‖∞

(34)

Based on the Restricted Stone-Weierstrass Theorem, the
closure of LNNL

∞ is dense in CF (X ,R).

Therefore, for any input x ∈ RN0 , our 1-Lipschitz neu-
ral network F̄ (x) ∈ LNNL

∞ can be used to approximate
any function RN0 7→ RNL in continuous function space
CF (X ,R). Namely, our 1-Lipschitz neural network F̄ (x)
withKl-Lipschitz Weibull activation is very expressive, com-
pared with the norm-constrained neural networks with com-
mon 1-Lipschitz activation functions (e.g. ReLU, Leaky
ReLU, Sigmoid, SoftPlus, or tanh).

A.2. Supplementary Experiments on Transferability

Table 6: Experiment Datasets

Dataset Cora Citeseer BLOGCATALOG
#Nodes 2,708 3,327 10,312
#Edges 5,429 4,732 333,983

#Classes 7 6 39

In this section, we use three popular real graph datasets in
network embedding and node classification for transferabil-
ity experiments (Sen et al., 2008; Xu et al., 2019b; Zhu et al.,
2019; Hasanzadeh et al., 2019; Zheng et al., 2020; Jin et al.,
2020b; Feng et al., 2020; Perozzi et al., 2014; Wang et al.,
2016; Dai et al., 2019; Wu et al., 2020b) , as shown in Table
6.

Transferability study. We explore whether our proposed
our expressive and robust 1-Lipschitz neural network can
be applied to other graph learning tasks. In this vein, we
select two representative graph applications for evaluation,
i.e., node classification and network embedding. In the
network embedding, we use a node clustering algorithm of
K-Means (Lloyd, 1982) to partition nodes into Y clusters
and adopt Dunn index (Liu et al., 2010; Zhou et al., 2015a)
to evaluate the clustering quality. A larger Dunn value
denotes a better clustering result.

Dunn(G1, · · · , GS)

=

S∑
s=1

Y∑
y=1

min1≤x<y≤Y ‖cx − cy‖22
max1≤y≤Y

1
|Cy|

∑
vsi∈Cy

‖vsi − cy‖22

(35)

where Cy represents the yth cluster among total Y clusters
and cy is the center of cluster Cy. |Cy| denotes the size
of Cy. ‖cx − cy‖22 represents the inter-cluster distance
between clusters Cx and Cy , and ‖vs

i − cy‖22 measures the
intra-cluster distance of cluster Cy. A cluster with a large
Dunn index indicates that the cluster has high inter-cluster
distance and low intra-cluster distance. The algorithms that
produce clusters with high Dunn index are more desirable.

Node classification baselines. We compare our ERNN
model with two recent general graph denoising algorithms,
two state-of-the-art robust node classification models against
adversarial attacks, and two representative Lipschitz-bound
neural architectures for restricting the perturbation propaga-
tion. GCN-Jaccard (Wu et al., 2019a) eliminates edges that
connect nodes with Jaccard similarity of features smaller
than a threshold τ . Here we use structural features of nodes
to calculate the Jaccard similarity. GCN-SVD (Entezari
et al., 2020) learns a low-rank approximation of the graph
to resist high-rank perturbations. Both GCN-Jaccard and

Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks

Table 7: Accuracy of node classification with 10% perturbed edges

Dataset Cora BLOGCATALOG
Attack Model Clean RND Attack GC-RWCS Attack Clean RND Attack GC-RWCS Attack
GCN-Jaccard 35.6 33.1 19.9 32.7 29.3 22.6
GCN-SVD 36.2 33.6 25.9 30.6 12.5 28.3
Pro-GNN 32.3 29.2 31.9 31.9 17.6 17.6
GRAND 31.9 30.4 30.1 23.0 23.0 23.1
GroupSort 56.6 55.8 55.9 47.2 29.4 29.3
BCOP 58.9 54.9 58.1 46.9 29.6 29.2
ERNN 59.2 57.6 58.5 66.9 61.5 64.0

Table 8: Accuracy of node classification of ERNN variants with 10% perturbed edges

Dataset Cora BLOGCATALOG
Attack Model Clean RND Attack GC-RWCS Attack Clean RND Attack GC-RWCS Attack
ERNN-1 56.9 54.9 55.2 63.9 57.2 59.8
ERNN-R 52.1 50.2 52.0 59.1 55.8 56.2
ERNN-N 48.6 45.9 48.2 55.1 53.9 52.1
ERNN 59.2 57.6 58.5 66.9 61.5 64.0

GCN-SVD are general perturbation elimination models ir-
relevant to specific graph learning tasks and architectures.
Pro-GNN (Jin et al., 2020b) jointly learns a clean graph
and a robust GNN model for defending node classification.
GRAND (Entezari et al., 2020) is a graph random neural
network with random propagation and data augmentation
to increase the robustness of node classification. Group-
Sort (Anil et al., 2019; Cohen et al., 2019) is a 1-Lipschitz
fully-connected neural network that restricts the perturba-
tion propagation by imposing a Lipschitz constraint on each
layer. BCOP (Li et al., 2019b) is a Lipschitz-constrained
convolutional network with expressive parameterization of
orthogonal convolution operations. For GCN-SVD and Pro-
GNN, we utilize a GCN on the denoised graphs generated
by these two models to learn the node classification. Since
some comparison methods do not use attributes for the tasks
of node classification and network embedding, in order to
make a fair comparison, we use only the graph structures
without attributes in all the experiments of node classifica-
tion and network embedding.

GC-RWCS (Ma et al., 2020a) is a novel black-box attack
model for node classification on GNNs with a constraint of
limited node access, by exploiting the structural inductive
biases of GNNs. We will utilize Random attack (RND) and
GC-RWCS to attack the node classification algorithms.

For the node classification task, the following loss L is
utilized and minimized based on the cross-entropy loss for
GCN-Jaccard, GCN-SVD, GroupSort, and BCOP, while
Pro-GNN and GRAND use the default loss function in their
papers.

L = −
∑
vi∈D

Y∑
y=1

Yviy log Ỹviy (36)

where Y is the number of classes, D is the training data, Y
is the ground-truth label matrix and Ỹ = softmax(zL) are
predictions of the GCNs or the Lipschitz-bounded neural
networks by passing the hidden representation zL in the
final layer to a softmax function.

Network embedding baselines. We compare the ERNN
model with two state-of-the-art robust network embedding
models against adversarial attacks, GCN-SVD, and Group-
Sort. DWNS (Dai et al., 2019) proposes adversarial training
method for network embedding models which can improve
both model robustness and generalization ability. GIB (Wu
et al., 2020b) presents an information-theoretic principle
that optimally balances expressiveness and robustness of
the learned representation of graph-structured data against
adversarial attacks.

The following loss is used to maximize the similarities be-
tween connected nodes while minimizing the similarities
between isolated nodes for optimizing the network embed-
ding.

L =
∑
vi∈D

(∑
vj∈N(vi)

(
− log σ

(
E(vi)

T · E(vj)
))

+

K∑
k=1

Evk∼p(vk)

(
log σ

(
E(vi)

T · E(vk)
)))

(37)

Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks

Table 9: Dunn of node clustering of with 10% perturbed edges

Dataset Cora Citeseer
Attack Model RND Attack NEA Attack RND Attack NEA Attack
GCN-SVD 30.6 33.0 30.1 28.9
DWNS 52.3 60.3 60.0 65.3
GIB 55.0 63.5 56.6 62.6
GroupSort 49.5 45.9 43.8 45.0
ERNN-1 61.8 61.0 61.3 54.9
ERNN-R 58.2 59.6 58.9 55.7
ERNN-N 55.1 55.2 55.1 50.4
ERNN 64.1 64.2 63.6 69.3

where E(·) represents the node embeddings by various
network embedding models. E(vi)

T is the transpose of
E(vi). N(vi) is the set of neighbors of node vi. p(vk)
denotes the distribution for sampling K negative nodes
vk 6= vj through the negative sampling method (Mikolov
et al., 2013). σ(·) is the sigmoid function. The inner product
· represents the similarity degree between two embedding
vectors. The above loss is equivalent to a cross-entropy loss
with (vi,vj) as positive samples and (vi,vk) as negative
ones.

For the node classification experiments, by following the
similar setting in (Zügner et al., 2018; Chang et al., 2020),
we split the graph into labeled (30%) and unlabeled nodes
(70%). Further, the labeled nodes are splitted into equal
parts for training and validation. The defense performance
is evaluated with the node classification accuracy under ad-
versarial attacks. Accuracy is used to quantify the quality of
node classification. In the network embedding tests, we run
the K-Means algorithm (Lloyd, 1982) on the node embed-
dings generated by different network embedding methods
to partition nodes into Y clusters. We use Dunn to validate
the performance of node clustering. As we can see from
Tables 7-9, while all the node classification and network
embedding methods are effective, our method achieves the
best robustness in most experiments. It validates the gen-
eralization ability of our expressive and robust 1-Lipschitz
neural network on other graph learning models.

A.3. Supplementary Experiments on Parameter
Analysis

In this section, we conduct more experiments to validate
the sensitivity of various parameters in our expressive and
robust 1-Lipschitz neural network for the graph matching
task.

Impact of error budget ε. In Theorem 3, we use error
budget ε to control the approximation error between our 1-
Lipschitz neural network and regular fully connected neural

network. Based on a given ε, we derive the lower and upper
bounds of feasible Kl. Figure 7 (a) shows the impact of ε
in our 1-Lipschitz neural network model over two groups of
datasets by varying ε from 5 to 30. We have witnessed the
performance curves initially stable and then drop quickly
when ε continuously increases. This demonstrates that our 1-
Lipschitz neural network can approximate the regular neural
network well and produce an expressive learning result with
reasonable error budget. We have observed that the Hits@1
scores oscillate within the range of 27.4% and 10.6% on AS
and CAIDA respectively.

Sensitivity of shape parameter αt. In our composite
Weibull activation function, there are four parameters of
shape parameter αt, scale parameter λt, shift parameter µt,
and number T of combined Weibull activation functions.
Figure 7 (b) exhibits the impact of αt in the Weibull activa-
tion function by varying αt from 0.01 to 1. the Hits@1 val-
ues have concave curves when increasing αt. This demon-
strates that a smaller αt < 1 can effectively model the
relationship between the perturbation diffusion and the at-
tack failure, while an appropriate αt approaching 1 indi-
cates that the attack failure rate has less correlation with the
perturbation diffusion, especially the attack failure rate be-
comes constant over the perturbation diffusion when αt = 1.
Therefore, a smaller αt < 1 can help the Weibull activation
function robust to adversarial attacks.

Impact of shift parameter µt. Figure 7 (c) presents the
impact of shift parameter µt in the Weibull activation func-
tion with αt between 0.01 and 1. It is observed that the
Hits@1 values are very stable with varying µt. Namely,
our composite Weibull activation function is insensitive to
µt. A reasonable explanation is that the shift parameter cor-
responds to the time of the attack failure. This demonstrates
that our 1-Lipschitz neural network can always result in the
attack failure after enough perturbation diffusion.

Influence of number T of combined Weibull activation
functions. Figure 7 (d) shows the sensitivity of T in the
Weibull activation function with T between 1 and 15. The

Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks

5 10 15 20 25 30
5

10

15

20

25

30

35

40

45

Error Budget ε

H
it
s
@

1
 (

%
)

RND Attack on AS
NEA Attack on AS
GMA Attack on AS
RND Attack on CAIDA
NEA Attack on CAIDA
GMA Attack on CAIDA

(a) Error Budget ε

0.01 0.05 0.1 0.5 1
5

10

15

20

25

30

35

40

45

Shape Parameter α
t

H
it
s
@

1
 (

%
)

RND Attack on AS
NEA Attack on AS
GMA Attack on AS
RND Attack on CAIDA
NEA Attack on CAIDA
GMA Attack on CAIDA

(b) Shape Parameter αt

0.01 0.05 0.1 0.5 1
5

10

15

20

25

30

35

40

45

Shift Parameter µ
t

H
it
s
@

1
 (

%
)

RND Attack on AS

NEA Attack on AS

GMA Attack on AS
RND Attack on CAIDA

NEA Attack on CAIDA

GMA Attack on CAIDA

(c) Shift Parameter µt

1 5 10 15
5

10

15

20

25

30

35

40

45

#Combined Weibull Activation Functions T

H
it
s
@

1
 (

%
)

RND Attack on AS

NEA Attack on AS

GMA Attack on AS
RND Attack on CAIDA

NEA Attack on CAIDA

GMA Attack on CAIDA

(d) #Combined Activations T

8 16 32 64 128 256
0

5

10

15

20

25

30

35

40

45

Representation Dimensions N
L

H
it
s
@

1
 (

%
)

RND Attack on AS
NEA Attack on AS
GMA Attack on AS
RND Attack on CAIDA
NEA Attack on CAIDA
GMA Attack on CAIDA

(e) Dimensions NL

0.0001 0.0005 0.001 0.005 0.01
5

10

15

20

25

30

35

40

45

Learning Rate

H
it
s
@

1
 (

%
)

RND Attack on AS
NEA Attack on AS
GMA Attack on AS
RND Attack on CAIDA
NEA Attack on CAIDA
GMA Attack on CAIDA

(f) Learning Rate

50 100 200 300 400 500

5

10

15

20

25

30

35

40

45

Iterations

H
it
s
@

1
 (

%
)

RND Attack on AS

NEA Attack on AS

GMA Attack on AS
RND Attack on CAIDA

NEA Attack on CAIDA

GMA Attack on CAIDA

(g) Iterations

Figure 7: Hits@1 (%) with varying parameters

performance curves continuously increase with increasing
T . This is consistent with the fact that non-saturating non-
linear activation functions can achieve faster training than
the saturating ones. A large T help the Weibull activation
function achieve the advantage of non-saturating nonlinear-
ity.

Impact of representation dimensions NL at final layer
L. Figure 7 (e) exhibits the impact of the number of node
representation dimensions in the ERNN model over two
dataset. We have observed that the performance initially
raises when the number of dimension increases. Intuitively,
the final node representations with more dimensions can
introduce enough information for sparse graphs, and thus
help improve the quality of graph matching running on the
latent representations. Later on, the performance curves
keep relatively stable or even decrease when the number of
dimensions continuously increases. A reasonable explana-
tion is that the additional dimensions are unnecessary for
future prediction if we already have enough information for
graph matching analysis. In addition, less dimensions can
help improve the efficiency of both representation learning
and graph matching. Thus, it is important to determine the
optimal number of dimensions for the graph matching.

Sensitivity of learning rate. Figure 7 (f) shows the impact
of learning rate in our ERNN model by varying it from
0.0001 to 0.01. the Hits@1 values have concave curves

when increasing learning rate. A too small learning rate
may result in a long training process that could get stuck,
whereas a too large learning rate may result in learning a
sub-optimal set of weights too fast or an unstable training
process. Thus, this demonstrates that there must exist the
optimal learning rate that makes the performance of our
1-Lipschitz neural network be maximally optimized.

Convergence study. Figure 7 (g) presents the convergence
of our 1-Lipschitz neural network for the graph matching
tasks. As we can see, the Hits@1 values keep increasing
when we iteratively perform the defense task. The method
converges when the numbers of iterations go beyond some
thresholds. We have observed that the curves on two datasets
converge very quickly in 100 iterations. This verifies the
efficiency and potential of our 1-Lipschitz neural network
to combat with perturbations for any kind of adversarial
attacks.

A.4. Experimental Details
Environment. Our experiments were conducted on a com-
pute server running on Red Hat Enterprise Linux 7.2 with
2 CPUs of Intel Xeon E5-2650 v4 (at 2.66 GHz) and 8
GPUs of NVIDIA GeForce GTX 2080 Ti (with 11GB of
GDDR6 on a 352-bit memory bus and memory bandwidth
in the neighborhood of 620GB/s), 256GB of RAM, and 1TB
of HDD. Overall, our experiments took about 4 days in a
shared resource setting. We expect that a consumer-grade

Expressive 1-Lipschitz Neural Networks for Robust Multiple Graph Learning against Adversarial Attacks

single-GPU machine (e.g., with a 1080 Ti GPU) could com-
plete our full set of experiments in around 8 days, if its full
resources were dedicated. The codes were implemented in
Python 3.7.3 and PyTorch 1.0.14. We also employ Numpy
1.16.4 and Scipy 1.3.0 in the implementation. Since the
datasets used are all public datasets and the hyperparameter
settings are explicitly described, our experiments can be
easily reproduced on top of a GPU server.

Implementation. For random attack model, we add the
noisy edges to the datasets with different levels of noisy
data, say 5% (i.e., 0.05), by randomly adding or removing
edges with the half noise level respectively, say 2.5%. For
other four attack models of NEA 1, GMA 2, RL-S2V 3, and
GC-RWCS 4, we used the open-source implementation and
default parameter settings by the original authors for our
experiments. For two general graph denoising methods of
GCN-Jaccard 5 and GCN-SVD 6, two node classification al-
gorithms of Pro-GNN 7 and GRAND 8, three graph classifi-
cation approaches of PAN 9, RoboGraph 10, and GraphCL 11,
two Lipschitz-bound neural architectures of GroupSort 12

and BCOP 13, six graph matching methods of FINAL 14,
REGAL 15, MOANA 16, DGMC 17, CONE-Align 18, and G-
CREWE 19, two network embedding baselines of DWNS 20

and GIB 21, we also utilized the same model architecture as
the official implementation provided by the original authors
and used the same perturbed graphs to validate the robust-
ness of these graph learning models in all experiments. For
the GCN model 22, we also use the default parameters in the
authors’ implementation. We used the public TensorFlow
implementation of GCN and pass the hidden representation
in the final layer by the GCN to a softmax function as the

1https://www.in.tum.de/daml/node-embedding-attack/
2https://github.com/DMML-AU/GMA
3https://github.com/Hanjun-Dai/graph adversarial attack
4https://github.com/Mark12Ding/GNN-Practical-Attack
5https://github.com/DSE-MSU/DeepRobust/
6https://github.com/DSE-MSU/DeepRobust/
7https://github.com/ChandlerBang/Pro-GNN
8https://github.com/THUDM/GRAND
9https://github.com/YuGuangWang/PAN

10https://github.com/RobustGraph/RoboGraph
11https://github.com/Shen-Lab/GraphCL
12https://github.com/cemanil/LNets
13https://github.com/ColinQiyangLi/LConvNet
14https://github.com/sizhang92/FINAL-network-alignment-

KDD16
15https://github.com/GemsLab/REGAL
16https://github.com/sizhang92/Multilevel-network-alignment-

Moana-
17https://github.com/rusty1s/deep-graph-matching-consensus
18https://github.com/GemsLab/CONE-Align
19https://github.com/cruiseresearchgroup/G-CREWE
20https://github.com/wonniu/AdvT4NE WWW2019
21http://snap.stanford.edu/gib/
22https://github.com/tkipf/gcn

node classification results. Since some comparison methods
do not use attributes for the tasks of node classification and
network embedding, in order to make a fair comparison, we
use only the graph structures without attributes in all the
experiments of node classification and network embedding.

For our expressive and robust 1-Lipschitz neural net-
work, we performed hyperparameter selection by per-
forming a parameter sweep on Lipschitz constant Kl ∈
{0.5, 1, 1.5, 2, 2.5}, error budget ε ∈ {5, 10, 15, 20, 25, 30}
between our 1-Lipschitz neural network and regu-
lar fully connected neural network, shape parameter
αt ∈ {0.01, 0.05, 0.1, 0.5, 1}, shift parameter µt ∈
{0.01, 0.05, 0.1, 0.5, 1}, number T ∈ {1, 5, 10, 15, 20} of
combined Weibull activation functions, dimensions NL ∈
{8, 16, 32, 64, 128, 256} of final layer L, and learning rate
∈ {0.0001, 0.0005, 0.001, 0.005, 0.01}. We select the best
parameters over 50 iterations of training and evaluate the
model at test time. After the hyperparameter selection, the
model was trained for 500 iterations, with a batch size of
512, and a learning rate of 0.001.

