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Abstract

Recent findings have shown multiple graph learn-
ing models, such as graph classification and graph
matching, are highly vulnerable to adversarial
attacks, i.e. small input perturbations in graph
structures and node attributes can cause the model
failures. Existing defense techniques often de-
fend specific attacks on particular multiple graph
learning tasks. This paper proposes an attack-
agnostic graph-adaptive 1-Lipschitz neural net-
work, ERNN, for improving the robustness of
deep multiple graph learning while achieving
remarkable expressive power. A Kl-Lipschitz
Weibull activation function f̄ is designed to en-
force the gradient norm ‖∇f̄(x)‖ as Kl at layer l.
The nearest matrix orthogonalization and polar de-
composition techniques are utilized to constraint
the weight norm ‖W̄l‖ as 1/Kl and make W̄l

close to the original weight Wl. The theoretical
analysis is conducted to derive lower and upper
bounds of feasible Kl under the 1-Lipschitz con-
straint. The combination of norm-constrained f̄
and W̄l leads to the 1-Lipschitz neural network
for expressive and robust multiple graph learning.

1. Introduction
Multiple graph learning aims to automatically extract, man-
age, infer, and transfer knowledge in multiple graph data.
Popular multiple graph learning tasks include graph clas-
sification (Rieck et al., 2019; Wu et al., 2019b; Zhao &
Wang, 2019; Magelinski et al., 2020; Peng et al., 2020; Ma
et al., 2020b; 2021), graph matching (i.e., network align-
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ment) (Zhang & Tong, 2016; Heimann et al., 2018; Li et al.,
2019a; Chu et al., 2019; Zhang et al., 2019; Xu et al., 2019a;
Du et al., 2019; Huynh et al., 2020; Fey et al., 2020; Yu
et al., 2020a;b; Ren et al., 2020; Yan et al., 2020), multi-
graph clustering (Ma et al., 2017; Wang et al., 2020b; Fan
et al., 2020; Luo et al., 2020; Wang et al., 2020a), multi-
view network embedding (Ma et al., 2017; Qu et al., 2017;
Liu et al., 2018; Fu et al., 2019; Sun et al., 2019; Fu et al.,
2020), and graph kernel (Yanardag & Vishwanathan, 2015;
Al-Rfou et al., 2019; Kriege et al., 2019; Togninalli et al.,
2019; Oettershagen et al., 2020).

We have witnessed various adversarial defense techniques
to improve the robustness of single graph learning tasks
against adversarial attacks, such as node classification (Zhu
et al., 2019; Miller et al., 2019; Xu et al., 2019b; Tang
et al., 2020b; Entezari et al., 2020; Zheng et al., 2020; Zhou
& Vorobeychik, 2020; Jin et al., 2020b; Feng et al., 2020;
Elinas et al., 2020; Zhang & Zitnik, 2020), network embed-
ding (Dai et al., 2019), graph clustering (Jia et al., 2020),
link prediction (Zhou et al., 2019a), and influence maxi-
mization (Logins et al., 2020). However, there is still a
paucity of robust multiple graph learning methods under
adversarial attacks, which is much more difficult to study,
since the multiple graph learning tasks need to analyze both
intra-graph and inter-graph links of multiple graphs. In
addition, the defense strategies for single graph learning
models may not work well for multiple graphs with unique
characteristics, such as size, density, and degree distribu-
tion. Only recently, researchers have started to study how
to improve the robustness of deep multiple graph learning
methods, including graph classification (Zhang & Lu, 2020;
You et al., 2020; Jin et al., 2020a; Gao et al., 2020), graph
matching (Yu et al., 2021), and multiple network embed-
ding (Zhou et al., 2020b). However, the above techniques
often defend specific attacks on particular learning tasks
(e.g., only graph classification or graph matching). Can we
design an attack-agnostic graph-adaptive neural architecture
for protecting deep multiple graph learning models from
adversarial attacks?

Recently, Lipschitz-constrained neural networks are pro-
posed to offer attack-agnostic defense solutions by imposing
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a Lipschitz constraint on each layer to restrict the diffusion
of input perturbations on the neural networks (Cissé et al.,
2017; Tsuzuku et al., 2018; Fazlyab et al., 2019). The Lip-
schitz bound for the entire neural network is the product
of the bound on each layer. This allows to constraint the
change of its output in proportion to the change in its in-
put. Lipschitz-constrained neural networks are very useful
for defending multiple graph learning models since small
input perturbations can be propagated within and across
graphs, which dramatically amplifies the perturbations in
the output space. However, bounding the Lipschitz constant
and maintaining the expressive power are often regarded
as orthogonal techniques with different optimization goals.
Three recent studies of GroupSort (Anil et al., 2019; Cohen
et al., 2019) and BCOP (Li et al., 2019b) improve the expres-
sive power of 1-Lipschitz neural networks while enhancing
the robustness by enforcing both weight norm and gradient
norm as 1. We argue that simply limiting the above two
norms to 1 still sacrifices the expressive power, compared
with regular neural networks that do not hold the constraints
on the weight and gradient. In addition, a 1-Lipschitz neural
network with fixed weight and gradient norms may lead
to sub-optimal defense when tackling multiple graphs with
individual characteristics.

To our best knowledge, this work is the first attack-agnostic
graph-adaptive 1-Lipschitz neural network for improving
the robustness of deep multiple graph learning while achiev-
ing remarkable expressive power, by making the weight
and gradient norms adaptive to multiple input graphs and
restricting the diffusion of any input perturbations.

Popular 1-Lipschitz activation functions, e.g. ReLU, Sig-
moid, and tanh, must trade nonlinear processing for gradient
norm preservation, leading to less expressive networks. In
statistics, the Weibull distribution can model hazard func-
tions that are monotonically decreasing, increasing, or con-
stant of the proportion of adopters over time, allowing it
to describe any phase of an item’s lifetime (Weibull, 1951).
The major advantage of Weibull analysis is that it is suitable
to reliability and failure analysis. In the context of robust
deep multiple graph learning, the perturbation diffusion over
the layers is similar to a monotonically decreasing hazard
function, i.e, the attack failure possibility decreases with the
perturbation diffusion. Motivated by this, a Kl-Lipschitz
Weibull activation function f̄ , i.e., ‖∇f̄(x)‖ = Kl, is de-
signed to restrict the gradient norm as Kl at layer l of the
neural network. In addition, we utilize nearest matrix or-
thogonalization and polar decomposition techniques (Bjorck
& Bowie, 1971; Gander, 1990; Higham et al., 2004) to dis-
cover a weight matrix W̄l with the norm 1/Kl near to the
original weight Wl, i.e., ‖W̄l‖ = 1/Kl.

By enforcing ‖∇f̄(x)‖ = Kl and ‖W̃l‖ = 1/Kl at each
layer, the composite Lipschitz constant of the entire neural

network is constrained to 1. We theoretically derive an
important property of our 1-Lipschitz neural network for
expressive and robust multiple graph learning: Kl is relevant
to and should be adaptive to input graphs and layers. Given
an error budget between our 1-Lipschitz neural network
and regular neural network without constrained weight and
gradient, we validate the existence of feasible Kl under the
1-Lipschitz constraint, i.e., derive lower and upper bounds
of feasible Kl for expressive and robust multiple graph
learning against adversarial attacks. The theoretical analysis
is conducted to demonstrate that our 1-Lipschitz neural
network with Kl-Lipschitz Weibull activation function f̄
is universal Lipschitz function approximator, i.e., f̄ can
approximate any linear or nonlinear functions.

Empirical evaluation over graph classification and graph
matching demonstrates the superior performance of our
ERNN model against state-of-the-art robust graph learning
models and Lipschitz-bound neural architectures. We vali-
date that the proposed robust learning strategies are transfer-
able to other popular graph learning tasks in Appendix A.2.

2. Background and Problem Statement
2.1. C-Lipschitz Functions

A function F : RN 7→ RM is globally Lipschitz continuous
on variable space X ⊆ RN if there exists a nonnegative
constant C ≥ 0 such that for all x1 and x2 in X .

‖F (x2)− F (x1)‖ ≤ C‖x2 − x1‖, ∀x1,x2 ∈ X (1)

where the smallest such C for which the above inequality
holds is the Lipschitz constant of F . If the Lipschitz con-
stant of a function is C, it is called a C-Lipschitz function.
If F is everywhere differentiable then its Lipschitz constant
is bounded by the operator norm of its Jacobian.

If x2 is denoted as a perturbation of x1, i.e., x2 = x1 + δ,
then the Lipschitz constant is the maximum ratio between
perturbations ‖F (x1 + δ)−F (x1)‖ in the output space and
perturbations ‖(x1 + δ)− x1‖ in the input space. Thus, it
is a useful metric to measure the sensitivity of the function
F regarding input perturbations.

2.2. Lipschitz-Constrained Neural Networks

Given an input vector x ∈ RN0 , a (L+ 1)-layer neural net-
work y = F (x) is defined as follows: layer 0 takes h0 = x
as input, layers 1, · · · , L−1 produces the hidden representa-
tions h2, · · · ,hL−1, and layer L outputs an output variable
y = zL ∈ RNL .{

zl = Wlhl−1 + bl,hl = f(zl), if 1 ≤ l ≤ L− 1,

zl = Wlhl−1 + bl,y = zl, if l = L.
(2)

where Nl is the dimensionality of layer l, Wl ∈ RNl×Nl−1

is the weight matrix between layers l−1 and l, and bl ∈ RNl
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is the bias for layer l. zl = [zl1, · · · , zlNl ] denotes the pre-
activation vector in layer l and hl = [hl1, · · · ,hlNl ] is the
activation vector with zl. f is the activation function. At
layer L, the pre-activation zL is used as the final output y.

The Lipschitz constantC of neural network is derived below.

C = ‖WL‖ · ‖∇zL−1f‖ · ‖WL−1‖ · · · ‖∇z1f‖ · ‖W1‖ (3)

Adversarial robustness. When the function F is charac-
terized by a deep neural network, tight bounds on its Lip-
schitz constant can be extremely useful to improve the ro-
bustness of the neural network against adversarial attacks.
Concretely, if the Lipschitz constant C of F is limited to a
small number, say 1 used in GroupSort (Anil et al., 2019;
Cohen et al., 2019) and BCOP (Li et al., 2019b), such that
‖F (x+δ)−F (x)‖ ≤ ‖(x+δ)−x‖ for a 1-Lipschitz neural
network, then this can help effectively control the diffusion
of input perturbations through the neural networks.

2.3. Multiple Graph Learning

Given a set of S graphs G = {G1, · · · , GS}. Each graph
is denoted as Gs = (V s, Es) (1 ≤ s ≤ S), where V s =
{vs1, · · · , vsNs} is the set of Ns nodes and Es = {(vsi , vsj ) :
1 ≤ i, j ≤ Ns, i 6= j} is the set of edges. Each Gs has
an Ns ×Ns binary adjacency matrix As, where each entry
As

ij = 1 if there exists an edge (vsi , v
s
j ) ∈ Es; otherwise

As
ij = 0. As

i: specifies the ith row vector of As and is used
to denote the representation of a node vsi . In this paper, we
focus on enhancing the robustness of two multiple graph
learning tasks, but it is straightforward to extend to others.

Graph classification. We associate each graph Gs with a
label ys ∈ Y = {1, 2, ..., Y }, where Y is the number of
classes. The training data denotes a set of known graph-
label pairs, i.e., D = {(Gs, ys)|Gs↔ys, Gs ∈ G, ys ∈ Y},
where Gs↔ys indicates that Gs and ys are the correspond-
ing graph-label pair. The goal of graph classification is to
employ D as the training data to predict label ys for graph
Gs in the test data. A classifier F : G 7→ Y is optimized to
minimize the following loss over all labeled graphs.

L =
1

|D|

|D|∑
s=1

L
(
F (Gs), ys

)
(4)

where L is the cross-entropy loss.

Graph matching. The entire training data consists of a
set of training data between pairwise graphs, i.e., D =
{D12, · · · , D1S , · · · , D(S−1)S}. Each Dst (1 ≤ s <
t ≤ S) specifies a set of pre-aligned node pairs Dst =
{(vsi , vtj)|vsi↔vtj , vsi ∈ V s, vtj ∈ V t}, where vsi↔vtj repre-
sents that two nodes vsi and vtj are the equivalent ones in
two graphs Gs and Gt. The objective of graph matching is
to utilize Dst as the training data to identify the one-to-one
node matchings between nodes vsi and vtj in the test data.
By following the same idea in existing efforts (Man et al.,

2016; Zhou et al., 2018a; Yasar & Çatalyürek, 2018; Li
et al., 2019a), this paper aims to learn an embedding func-
tion F to map the node pairs (vsi , v

t
j) ∈ Dst with different

features across two graphs into common embedding space,
i.e, minimize the distances between projected source nodes
F (vsi ) ∈ Dst and target ones F (vtj) ∈ Dst. The node pairs
(vsi , v

t
j) ∈ Dst with the smallest distances in the test data

are selected as the matching results.

L =

S∑
s=1

S∑
t=s+1

E(vsi ,v
t
j)∈D

st‖F (vsi )− F (vtj)‖22 (5)

With the perturbed graphs as input, this paper aims to de-
velop an attack-agnostic graph-adaptive 1-Lipschitz neural
network to improve the robustness against adversarial per-
turbations while achieving remarkable expressive power in
the context of multiple graph learning.

3. Expressive and Robust 1-Lipschitz Neural
Network for Multiple Graph Learning

Deep learning models have demonstrated their remarkable
expressive power by using nonlinear activation functions
to stimulate and learn any linear or nonlinear functions
representing a question, and provide accurate predictions.
Regular neural networks do not hold the constraints on the
weight and gradient in order to achieve the superior non-
linearity. GroupSort (Anil et al., 2019; Cohen et al., 2019)
and BCOP (Li et al., 2019b) proposed 1-Lipschitz neural
networks to achieve the model robustness while improving
the expressive power by limiting both weight and gradient
norms as 1. Their Lipschitz constant is computed below.

C = ‖W̃L‖ · ‖∇z̃L−1 f̃‖ · ‖W̃L−1‖ · · · ‖∇z̃1 f̃‖ · ‖W̃1‖
= 1 · 1 · 1 · · · 1 · 1 = 1

(6)

The GroupSort activation function f̃ is essentially a permu-
tation operation that sorts and permutes the elements in each
zl on each layer l. Thus, both ‖W̃l‖ and ‖∇z̃l f̃‖ are con-
strained to 1. This may lead to sub-optimal defense when
tackling multiple graphs with individual characteristics.

We propose an attack-agnostic graph-adaptive 1-Lipschitz
neural network with a Kl-Lipschitz activation function f̄ ,
i.e., ‖∇zl−1

f̄‖ = Kl and a constrained weight matrix
‖W̄l‖ = 1/Kl for achieving better expressive power.

C = ‖W̄L‖ · ‖∇z̄L−1 f̄‖ · · · ‖W̄2‖ · ‖∇z̄1 f̄‖ · ‖W̄1‖

=
1

KL
·KL · · ·

1

K2
·K2 · 1 = 1

(7)

where ‖W̄l‖ = 1/Kl if l > 1, otherwise ‖W̄l‖ = 1. In
this paper, we use ∞-norm for both weight and gradient.
For ease representation, we use ‖ · ‖ to replace ‖ · ‖∞ in our
1-Lipschitz neural network.

The following theorems validate the existence of feasibleKl

under the 1-Lipschitz constraint for robust and expressive
multiple graph learning against adversarial attacks. Theo-
rem 2 derives lower bound of feasible Kl and demonstrates
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that selecting an appropriate Kl rather than 1 can guarantee
that our 1-Lipschitz neural network achieves better expres-
sive power than GroupSort (Anil et al., 2019; Cohen et al.,
2019). Theorem 3 derives upper bound of feasible Kl when
we are given an error budget between our 1-Lipschitz neural
network and regular neural network without constrained
weight and gradient. Theorem 3 also exhibits that Kl is rel-
evant to and should be adaptive to input graphs and layers.
Definition 1, Lemma1, and Theorem 1 are the preparation
of the proof of Theorem 2-3.
Definition 1 [Finite Partition of an Interval] A partition P
of an interval [a, b] on the real line is a sequence of a finite
number of subintervals of [a, b]

P =
{

[x0, x1], [x1, x2], · · ·, [xm−1, xm], · · ·, [xM−1, xM ]
}

(8)

where a = x0 < x1 < x2 < · · · < xm−1 < xm < · · · <
xM−1 < xM = b. The points xm, 0 ≤ m ≤M , are called
the partition points in P . Each [xm−1, xm] is referred to as
a subinterval of the partition P .

Based on Definition 1, given large enough M , it is always
feasible to partition an interval [a, b] into multiple subinter-
vals, such that any continuous nonlinear function f on [a, b]
become linear or near-linear on each subinterval.

Lemma 1 [Lagrange’s Mean Value Theorem] For any con-
tinuous function f on the closed interval [a, b] and differen-
tiable on the open interval (a, b), then there exists a point c
in (a, b) such that the tangent at c is parallel to the secant
line through the endpoints (a, f(a)) and (b, f(b)) (Sharma
& Vasishtha, 2010).

f ′(c) =
f(a)− f(b)

a− b (9)

When a continuous function f is linear on the interval [a, b],
its slope is equal to f ′(c). The above observations inspire
us to design and transform a nonlinear activation function
f̄ going through the origin into an approximate piecewise
linear function for the proof of the following three theorems
and to finally derive the lower and upper bounds of Kl.
Theorem 1 For anyKl-Lipschitz nonlinear activation func-
tion f̄ : RN 7→ RN , if f̄ is everywhere differentiable and
f̄(x) = 0 ∈ RN at x = 0 ∈ RN , then there must exist a
linear function g such that f̄(x) ≤ g(x) for ∀x,x ∈ RN .
Theorem 2 By following the definition in Eq.(2), we build
a (L + 1)-layer 1-Lipschitz neural network F̄ : RN0 7→
RNL , with a gradient norm preserving activation func-
tion ‖∇z̄l−1

f̄‖ = Kl almost everywhere and a norm-
constrained weight matrix ‖W̄l‖ = 1/Kl like the defini-
tions in Eq.(7). If Kl > 1 for ∀l, 2 ≤ l ≤ L, our 1-Lipschitz
neural network F̄ achieves better expressive power than the
neural network F̃ constructed by the GroupSort model (Anil
et al., 2019; Cohen et al., 2019).
Theorem 3 Given a regular (L+ 1)-layer fully connected
neural network F : RN0 7→ RNL with unconstrained

ReLU as the activation and unrestricted weight, and our
(L+ 1)-layer 1-Lipschitz neural network F̄ defined in The-
orem 2, if an error budget between each layer of two neu-
ral networks is limited to ε, i.e., ‖z̄l − zl‖ ≤ ε, where
zl and z̄l are the representations at layer l in F and F̄
respectively, then Kl ≤ min

{
‖f̄(z̄l−1)‖

‖Wlf(zl−1)‖−ε ,max
{
−

min
j

∂f̄
∂z̄(l−1)j

,max
j

∂f̄
∂z̄(l−1)j

}}
.

Proof. Please refer to Appendix A.1 for detailed proof of the
above three theorems.

In this paper, we use a random variable x denoting the node
representation as input of the neural network for multiple
graph learning. Since h0 = x, z1 depends on h0, and other
zl (∀l, 2 ≤ l ≤ L) are related to z1, the upper bound of Kl

is relevant to input graphs and layers.

Based on Theorems 2-3, we need to make 1 < Kl ≤ min{
‖f̄(z̄l−1)‖

‖Wlf(zl−1)‖−ε ,max
{
− min

j

∂f̄
∂z̄(l−1)j

,max
j

∂f̄
∂z̄(l−1)j

}}
,

such that our 1-Lipschitz neural network F̄ achieves better
expressive power than the GroupSort model F̃ and compa-
rable quality to the regular network F at layer l.

3.1. Constraining ‖W̄l‖ = 1/Kl

According to Theorem 2 in the GroupSort paper (Anil et al.,
2019), when enforcing ‖W̃l‖ = 1, it needs to adjust the
weight matrix Wl to have singular values of 1 without
sacrificing nonlinear processing capacity. In our case, the
equivalent problem is that all singular values of the norm-
contained weight matrix ‖KlW̄l‖ are equal to 1.

Recall that the singular values of a real matrix A are the
eigenvalues of the positive-semidefinite real matrix ATA,
where AT is the transpose of A. The singular values of A
are all 1 iff A is orthogonal, i.e., ATA = I, where I is the
identity matrix. Thus, the original problem is equivalent to
finding the nearest orthonormal matrix of KlWl.

For ease of representation, let A = KlWl and B = KlW̄l.
Formally, given an Nl ×Nl−1 matrix A, we aim to find the
nearest Nl ×Nl−1 matrix B with Nl orthonormal columns
(i.e. BTB = I), i.e., we try to minimize ‖A − B‖F =√

trace
(
(A−B)T (A−B)

)
.

Polar decomposition is an effective technique that finds the
nearest orthonormal matrix. However, traditional iterative
algorithms have non-trival computational cost based on oper-
ation counts, including Björck Orthonormalization (Bjorck
& Bowie, 1971) and Newton iteration-based methods (Gan-
der, 1990; Byers & Xu, 2008). In order to improve the cost
of the iterative algorithms, a fast hybrid algorithm was pro-
posed to adaptively switches from the matrix inversion based
iteration to a matrix multiplication based iteration (Higham
& Schreiber, 1990). The hybrid algorithm tends to require
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at most 7 iterations for convergence. In addition, if B is
not required to full accuracy then there is no need to iterate
to converge–just 1 or 2 iterations may yield a sufficiently
accurate approximation to B. In our implementation, we
use 3-4 iterations of the fast hybrid algorithm per forward
pass to get a good approximation ‖KlW̄l‖.

Theorem 4 exhibits the uniqueness of the nearest orthonor-
mal matrix B by using the above fast hybrid algorithm.

Theorem 4 Given an Nl × Nl−1 matrix A, the nearest
orthonormal matrix B of A is unique. It is equal to B̂ =
AH−1 by using the fast hybrid polar decomposition, where
H =

√
ATA is positive definite.

Proof. Please refer to Appendix A.1 for detailed proof.

Practically, we can compute a residual R = ATA− I and
then use a series to approximate B̂.

B̂ = A(ATA)−1/2 = A(I + R)−1/2

= A−AR(1/2− 3R/8 + 5R2/16− 35R4/128 + · · · )
(10)

In order to further improve the computational cost, we can
calculate the first few terms without losing much accuracy.
If ‖R‖F comes near to zero, then B̂ can be approximated
adequately B̌ = A−AR/2 = B̂(I−3R2/8+R3/8−· · · )
as its residual B̌T B̌ − I = R2(R − 3I)/4 is trivial. On
the other hand, if ‖R‖F << 1/2, then the columns of
B̌ will be more nearly orthonormal than those of A; and
repeating upon B̌ the process performed upon A can yield
an approximation B̂(I− 27R4/128 + · · · ).

3.2. Kl-Lipschitz Weibull Activation ‖∇z̄l f̄‖ = Kl

To bound the Lipschitz constant of neural network, the gra-
dient norm must be preserved by each layer in the network
during backpropagation. Unfortunately, Theorem 5 exhibits
that norm-constrained neural networks with common 1-
Lipschitz activation functions (e.g. ReLU, Leaky ReLU,
Sigmoid, SoftPlus, or tanh) must trade nonlinear processing
for gradient norm preservation, leading to less expressive
networks. Namely, such norm-constrained neural networks
can only approximate the linear functions with less expres-
sive power. It is straightforward to extend the conclusion
of Theorem 5 to our 1-Lipschitz neural network. In addi-
tion, for our 1-Lipschitz neural network, most of popular
nonlinear activation functions with gradient norm preser-
vation ‖∇z̄l−1

f‖ = Kl, can not achieve the feasible Kl,
since the maximum values of their derivatives are smaller
than the lower bound of the feasible Kl, e.g, 1 for ReLU,
Leaky ReLU, and PReLU, 0.25 for Sigmoid, 1 for tanh and
Softplus, and 1 for GroupSort (Anil et al., 2019). Therefore,
we utilize the Weibull distribution to design an expressive
Kl-Lipschitz nonlinear activation function to allow our 1-
Lipschitz neural network to approximate any functions.

Theorem 5 Consider a 1-Lipschitz neural network F̄ :
RN0 7→ R, built with norm-constrained weights (‖W̄l‖ ≤
1) and 1-Lipschitz, element-wise, monotonic activation func-
tions ‖∇z̄l−1

f‖ = 1. If ||∇xF̄ (x)|| = 1 almost everywhere,
then F̄ is linear (Anil et al., 2019).

In statistics, the Weibull distribution is a continuous prob-
ability distribution (Weibull, 1951). It can model hazard
functions that are monotonically decreasing, increasing or
constant of the proportion of adopters over time, allowing
it to describe any phase of an item’s lifetime. Therefore,
the major advantage of Weibull analysis is that it is suit-
able to reliability and failure analysis. In addition, a recent
study reports that the non-saturating nonlinear activation
functions, such as ReLU and Leaky ReLU, often achieve
faster training than the saturating ones, e.g., Sigmoid and
tanh (Krizhevsky et al., 2012). In order to achieve the advan-
tage of non-saturating nonlinearity, we combine T Weibull
activation functions f̄1(z), · · · , f̄T (z) with different param-
eters into a composite one, such that the upper bound of
f̄(z) is increased to T .

f̄(z) =


T∑
t=1

f̄t(z), if z ≥ µt,

Klz, if z < µt.

, ft(z) = 1−e−(
z−µt
λt

)αt (11)

where f̄t is the tth Weibull activation function with unique
parameters αt, λt, and µt. z is an element in z̄l, αt > 0
is the shape parameter, λt > 0 is the scale parameter, and
µt is the shift parameter. A value of αt < 1 indicates that
the failure rate decreases with time. This happens if there
is significant “infant mortality”, or few defective parts fail-
ing to result in the malfunction of the entire item early and
the failure rate decreasing over time as more parts gradu-
ally become defective over time. In the context of robust
deep multiple graph learning, the perturbation diffusion over
the layers is similar to a monotonically decreasing hazard
function, i.e, the attack failure possibility decreases with the
perturbation diffusion, and the diffusion of any perturbations
finally leads to the attack success when enough diffusion
is allowed. Thus, the Weibull activation function can ef-
fectively model the relationship between the perturbation
diffusion and the attack failure.

The derivative of f(z) is thus generated as follows.

f̄ ′(z) =


T∑
t=1

αt
λt

(z − µt
λt

)αt−1

e
−(

z−µt
λt

)αt
, if z ≥ µt,

Kl, if z < µt.

(12)

Theorem 6 Given T Weibull activation functions with the
definition in Eq.(11), there must exist solutions of parame-
ters αt, λt, and µt to guarantee ‖∇z̄l f̄‖ = Kl.

Proof. Please refer to Appendix A.1 for detailed proof.

In statistics, a scale parameter λt is a special kind of numer-
ical parameter of a parametric family of probability distribu-
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tions. If it is large, then the distribution will be more spread
out; if it is small then it will be more concentrated. There-
fore, f̄(z) is more sensitive to λt. Notice that ‖∇z̄l f̄‖∞ =

f̄ ′(z̄lU ) = ∂f̄
∂z̄lU

, where ∂f̄
∂z̄lU

= max{| ∂f̄∂z̄l1
|, · · · , | ∂f̄

∂z̄lNl
|}.

With selected αt and µt, we utilize the Newton-Raphson
method to find an approximate λt of the following equation
to make f̄ ′(z̄lU ) = Kl when z ≥ µt (Gil et al., 2007).

αt
λt

( z̄lU − µt
λt

)αt−1

e
−(

z̄lU−µt
λt

)αt
= Kl (13)

3.3. Universal Approximation of Kl-Lipschitz Weibull
Activation

The following theorems demonstrate that our 1-Lipschitz
neural network architecture with a Kl-Lipschitz activation
function f̄ is universal Lipschitz function approximator, i.e.,
f̄ can approximate any linear or nonlinear functions.

Definition 2 We say that a set of functions, F , is a lattice if
for any f, g ∈ F we have max(f, g) ∈ F and min(f, g) ∈
F (where max and min are defined pointwise).

Lemma 2 [Restricted Stone-Weierstrass Theorem] Sup-
pose that (X, dX) is a compact metric space with at least
two points and F is a lattice in CF (X,R) with the property
that for any two distinct elements x, y ∈ X and any two
real numbers a and b such that |a − b| ≤ dX(x, y) there
exists a function f ∈ F such that f(x) = a and f(y) = b.
Then F is dense in CF (X,R) (Anil et al., 2019).

Theorem 7 Let LNNL
∞ : RN0 7→ RNL denote the class

of (L+ 1)-layer 1-Lipschitz neural networks F̄ with norm-
constrained weight matrices ‖W̄l‖∞ = 1 (l = 1) and
‖W̄l‖∞ = 1/Kl (l > 1), and gradient norm preserving
activation function ‖∇z̄l−1

f̄‖∞ = Kl, by following the
definitions in Eqs.(2) and (7). Let input X be a closed
and bounded subset of RN0 with the L∞ metric. Then the
closure of LNNL

∞ is dense in CF (X ,R).

Proof. Please refer to Appendix A.1 for detailed proof of the
above two theorems.

Theorem 7 demonstrates that the closure of LNNL
∞ is dense

in CF (X ,R). Namely, for any input x ∈ RN0 , function
F̄ (x) ∈ LNNL

∞ can be used to approximate any function
RN0 7→ RNL in continuous function space CF (X ,R).

4. Experiments
We perform extensive evaluation on the robustness of our
ERNN model for graph classification on three real datasets:
BZR, BZR MD and MUTAG (Jin et al., 2020a; TUD) and
for graph matching over three datasets: autonomous systems
(AS) (AS), CAIDA relationships datasets (CAI), and DBLP
coauthor graphs (DBL), as shown in Table 1.

Graph classification baselines. We compare our ERNN
model with one regular graph classification algorithm, two

robust node classification models, one general graph denois-
ing method, two state-of-the-art robust graph classification
models against adversarial attacks, and two representative
Lipschitz-bound neural architectures for restricting the per-
turbation propagation. PAN (Ma et al., 2020c) is a path
integral based GNN containing self-consistent convolution
and pooling units for producing regular graph classifica-
tion. Pro-GNN (Jin et al., 2020b) jointly learns a clean
graph and a robust GNN model for defending node clas-
sification. GRAND (Feng et al., 2020) is a graph random
neural network with random propagation and data augmenta-
tion to increase the robustness of node classification. GCN-
SVD (Entezari et al., 2020) is a general perturbation elimina-
tion model irrelevant to specific graph learning architectures.
RoboGraph (Jin et al., 2020a) is the first certifiably robust
graph classification model based on Lagrange dualization
and convex envelope. GraphCL (You et al., 2020) is a
graph contrastive learning framework with data augmenta-
tions for GNN pre-training for boosting the robustness of
graph classification. GroupSort (Anil et al., 2019; Cohen
et al., 2019) is a 1-Lipschitz fully-connected neural network
that restricts the perturbation propagation by imposing a Lip-
schitz constraint on each layer. BCOP (Li et al., 2019b) is
a Lipschitz-constrained convolutional network with expres-
sive parameterization of orthogonal convolution operations.
For two node classification models, the average of node
labels within the same graphs is output as graph labels.

Graph matching baselines. We compare the ERNN model
with six state-of-the-art graph matching algorithms, Group-
Sort, and BCOP. FINAL (Zhang & Tong, 2016) leverages
both node and edge attributes to solve the attributed net-
work alignment problem. Its supervised version with prior
alignment preference matrix is used for the evaluation. RE-
GAL (Heimann et al., 2018) is an unsupervised network
alignment framework that infers soft alignments by compar-
ing joint node embeddings across graphs. and by com-
puting pairwise node similarity scores across networks.
MOANA (Zhang et al., 2019) is a supervised coarsening-
alignment-interpolation multilevel network alignment algo-
rithm with the supervision of a prior node similarity ma-
trix. Deep graph matching consensus (DGMC) (Fey et al.,
2020) is a supervised graph matching method that reaches
a data-driven neighborhood consensus between matched
node pairs. CONE-Align (Chen et al., 2020) models intra-
network proximity with node embeddings and uses them
to match nodes across networks in an unsupervised man-
ner. G-CREWE (Qin et al., 2020) is a rapid unsupervised
network alignment method via both graph compression and
embedding in different coarsened networks. To our best
knowledge, there are no other open-source defense base-
lines on graph matching available.

Attack models. We validate the robustness with four rep-
resentative graph attack models. Random attack (RND)
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Table 1: Experiment Datasets

Dataset AS CAIDA DBLP
Graph G1 G1 G1 G2 2013 2014

#Nodes 10,900 11,113 16,493 16,301 28,478 26,455
#Edges 31,180 31,434 33,372 32,955 128,073 114,588

#Matched Nodes 7,943 7,884 4,000
Dataset #Graphs #Avg. Nodes #Avg. Edges #Classes

BZR 405 35.75 38.36 2
BZR MD 306 21.30 225.06 2
MUTAG 188 17.93 19.79 2

Table 2: Graph classification with 5% perturbed edges

Dataset BZR MD MUTAG BZR
Metric Acc. RMSE Acc. RMSE Acc. RMSE
PAN 0.541 0.680 0.681 0.570 0.779 0.471
Pro-GNN 0.631 0.610 0.643 0.601 0.738 0.512
GRAND 0.532 0.684 0.633 0.610 0.759 0.492
GCN-SVD 0.648 0.594 0.653 0.593 0.767 0.484
RoboGraph 0.667 0.579 0.644 0.601 0.790 0.458
GraphCL 0.652 0.593 0.545 0.680 0.808 0.439
GroupSort 0.547 0.676 0.606 0.636 0.756 0.494
BCOP 0.582 0.648 0.570 0.656 0.741 0.509
ERNN 0.691 0.540 0.788 0.461 0.820 0.425

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Perturbed edges (%)

H
it
s
@

1
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
ERNN

(a) RND Attack

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Perturbed edges (%)

H
it
s
@

1
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
ERNN

(b) NEA Attack

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Perturbed edges (%)

H
it
s
@

1
 (

%
)

 

 

FINAL
REGAL
MOANA
DGMC

 

 

CONE−Align
G−CREWE
GroupSort
BCOP
ERNN

(c) GMA Attack

Figure 1: Matching on AS with varying perturbed edges
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Figure 2: Matching on CAIDA with varying perturbed edges

randomly adds and removes edges to generate perturbed
graphs. NEA (Bojchevski & Günnemann, 2019) is an ef-
ficient adversarial attack method that poison the network
structure against both network embedding and node classifi-
cation. GMA (Zhang et al., 2020) is the only attack model
on graph matching by pushing them to dense regions in
two graphs to generate imperceptible and effective attacks.
RL-S2V (Dai et al., 2018; Zhu et al., 2019) generates adver-
sarial attacks on graph data based on reinforcement learning,
which is used to attack both node classification and graph
classification models.

Variants of ERNN model. We evaluate four variants to
show the strengths of different components. ERNN-1 uti-
lizes a fixed Kl = 1 in our 1-Lipschitz neural network.
ERNN-R employs the ReLU as the activation. ERNN-
N only uses the regular fully-connected neural network.
ERNN operates with the full support of graph-adaptive Kl,
Weibull activation, and 1-Lipschitz neural network.

Evaluation metrics. We employ two measures to evalu-
ation the quality of graph classification: Accuracy (Jin
et al., 2020b; Entezari et al., 2020; Jin et al., 2020a; You
et al., 2020) and root-mean-square error (RMSE). A higher
Accuracy or a smallerRMSE shows a better classification.
In addition, we use Hits@K (Yasar & Çatalyürek, 2018;
Fey et al., 2020) to verify the quality of graph matching. A
larger Hits@K value indicates a better graph matching.

Defense performance on graph classification. Table 2
exhibits the Accuracy and RMSE scores of nine graph

classification algorithms under RL-S2V attacks over three
groups of datasets. We randomly sample 30% of labeled
graphs as training data and the rest as test data. The number
of perturbed edges is fixed to 5% in these experiments. It
is observed that among nine graph classification methods
the ERNN method achieve the highest Accuracy and the
smallest RMSE on perturbed graphs in all experiments,
showing the robustness of ERNN against adversarial attacks.
Compared to the graph classification results by other models,
ERNN, on average, achieves 15.2% Accuracy boost and
18.6% RMSE improvement on three groups of datasets.
In addition, the promising performance of ERNN over all
three datasets implies that ERNN has great potential as a
general robust graph classification solution to other datasets,
which is desirable in practice.

Defense performance on graph matching with varying
perturbation edges. Figures 1-3 present the graph match-
ing quality under three attack models by varying the ratios
of perturbed edges from 0% to 25%. We choose 30% of
matched node pairs as training data. It is obvious that the
quality by each matching algorithm decreases with increas-
ing perturbed edges. This phenomenon indicates that current
graph matching methods are sensitive to adversarial attacks.
However, ERNN still achieves the highest Hits@1 values
(> 0.249), which are better than other eight methods in most
tests. Especially, when the perturbation ratio is larger than
10%, the Hits@1 drop by ERNN becomes slowly.
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Figure 3: Matching on DBLP with varying perturbed edges
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Figure 4: Matching on AS with varying training ratios
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Figure 5: Hits@1 (%) of ERNN variants with 5% perturbed edges
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Figure 6: Hits@1 (%) with varying parameters

Impact of training data ratios. Figure 4 shows the quality
of nine graph matching algorithms on AS under three attack
models by varying the ratio of training data from 5% to
25%. Here, the number of perturbed edges is fixed to 30%.
We make the following observations on the performances
by nine graph matching algorithms. (1) The performance
curves keep increasing when the training data ratio increases.
(2) ERNN outperforms other methods in most experiments
with the highest Hits@1 scores: > 5.01% . When there are
appropriate training data available (≥ 10%), the quality im-
provement by ERNN is obvious. A reasonable explanation
is that more training data makes ERNN be more resilient to
poisoning attacks under a small perturbation budget.

Ablation study. Figure 5 presents the Hits@1 scores of
graph matching on three datasets with four variants of our
ERNN model. We observe the complete ERNN achieves
the highest Hits@1 (> 24.9%) on AS, (> 35.2%) over
CAIDA, and (> 17.5%) on DBLP, which are obviously bet-
ter than other versions. Compared with ERNN-R, ERNN-1
performs well in most experiments. A reasonable explana-
tion is that ReLU must trade nonlinear processing for gra-
dient norm preservation, leading to less expressive neural
networks. In addition, ERNN-R achieves the better perfor-
mance than ERNN-N. A rational guess is that Lipschitz-
bounded neural architecture is able to restrict the perturba-
tion propagation on the neural networks, achieving remark-
able robustness. These results illustrate all of graph-adaptive
Kl, Weibull activation, and Lipschitz-bounded neural net-
work are important in producing robust graph matching.

Impact of Kl. Figure 6 (a) shows the impact of Kl in
our ERNN model under three attack methods over three
groups of datasets. The performance curves initially raise
when Kl increases. As shown in the theoretical analysis,
Kl = 1 is not the optimal solution and a large Kl can make
the 1-Lipschitz neural network more robust. Later on, the
performance curves keep relatively stable or even decreasing
when Kl continuously increases. A reasonable explanation
is that the too large Kl makes the norm-constrained weight
matrices very small, such that it may hinder the feedforward
of the neural network. Thus, it is important to choose the
appropriate Kl for robust training.

Impact of activation function. Figure 6 (b) measures the
effect of different activation functions in the ERNN model
for the graph matching by using different activation func-
tions. It is observed that among five activation functions,
the Hits@1 values of our Kl-Lipschitz Weibull activation
function outperforms all other competitors. This demon-
strates that our Weibull activation is able to better maintain
nonlinearity in Lipschitz-bounded neural networks. In ad-
dition, ReLU and Leaky ReLU achieve better performance
than Sigmoid and tanh. This is consistent with the fact that
non-saturating nonlinear activation functions often achieve
faster training than saturating ones.

Validation of adversarial robustness on generic learning
tasks. We conduct the experiments to validate the adver-
sarial robustness of ERNN on two generic learning tasks:
image classification and Wasserstein Distance estimation,
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Table 3: Accuracy on image classification

Dataset MNIST CIFAR-10
#Network Depth 3 5 3 5
GroupSort 0.91 0.91 0.48 0.50
BCOP 0.94 0.94 0.45 0.47
ERNN 0.97 0.97 0.55 0.56

Table 4: Wasserstein Distance estimation

Dataset MNIST CIFAR-10
#Network Depth 3 5 3 5
GroupSort 2.31 2.55 2.23 2.74
BCOP 5.82 6.04 5.34 6.03
ERNN 7.19 8.03 7.26 7.88

Table 5: Lipschitz constant on graph matching

Dataset AS CAIDA DBLP
Unbounded Networks 2880 1530 1260
ERNN 0.910 0.968 0.955

by following similar setting in Table 2 in the GroupSort
paper, as shown in Tables 3 and 4. We utilize two stan-
dard image datasets: MNIST (Deng, 2012) and CIFAR-
10 (Krizhevsky, 2009). Our ERNN model with Weibull
activation still achieves the best performance in all tests.

Lipschitz constant estimate. The GroupSort and our
ERNN models focus on designing 1-Lipschitz neural net-
works with enforcing each layer and entire network to be
1-Lipschitz. Table 5 shows the computed Lipschitz con-
stants by ERNN and unbounded neural network on graph
matching. The former is close to 1 and much smaller than
the latter. This demonstrates that ERNN is able to success-
fully constrain the Lipschitz constant to 1.

5. Related Work
Lipschitz-bounded neural networks. Enforcing Lipschitz
constraints in the training of neural networks is useful for
ensuring adversarial robustness against adversarial attacks.
Existing research activities can be classified into three broad
categories: (1) Regularization techniques penalize or bound
the Jacobian of the neural network, constraining the Lip-
schitz constant locally (Drucker & LeCun, 1992; Sokolic
et al., 2017; Gulrajani et al., 2017; Krishnan et al., 2020).
It is easy to train networks under the gradient penalties,
but these methods cannot enforce the Lipschitz constraint
globally; (2) Architecture constraint-based methods con-
strain the operator norm of each layer’s weights, such as the
matrix spectral norm (Cissé et al., 2017; Yoshida & Miy-
ato, 2017; Miyato et al., 2018). These approaches enforce
the Lipschitz constraint but come at a cost in expressive
power; and (3) Gradient norm preserving architectures en-
force both weight norm and gradient norm as 1 to constraint
1-Lipschitz neural networks globally, which improves the
expressive power to a certain degree (Anil et al., 2019; Li
et al., 2019b; Cohen et al., 2019). However, simply limit-
ing the above two norms to 1 still sacrifices the expressive
power, in comparison with regular neural networks without
constrained weight and gradient.

Adversarial defenses on multiple graph learning. Graph
data analysis have attracted active research in the last

decade (Cheng et al., 2009; Zhou et al., 2009; 2010; Cheng
et al., 2011; Zhou & Liu, 2011; Cheng et al., 2012; Lee et al.,
2013; Su et al., 2013; Zhou et al., 2013; Zhou & Liu, 2013;
Palanisamy et al., 2014; Zhou et al., 2014; Zhou & Liu,
2014; Su et al., 2015; Zhou et al., 2015b; Bao et al., 2015;
Zhou et al., 2015d; Zhou & Liu, 2015; Zhou et al., 2015a;c;
Lee et al., 2015; Zhou et al., 2016; Zhou, 2017; Palanisamy
et al., 2018; Zhou et al., 2018c;b; Ren et al., 2019; Zhou
et al., 2019c;b;d; Zhou & Liu, 2019; Goswami et al., 2020;
Wu et al., 2020a; 2021a; Zhou et al., 2020a;b; Zhang et al.,
2020; Zhou et al., 2020c; 2021; Jin et al., 2021; Wu et al.,
2021b; Zhang et al., 2021). The majority of existing tech-
niques focus on tackling vulnerability and improving ro-
bustness on single graph learning tasks under adversarial
attacks. Recently, researchers have demonstrated that multi-
ple graph learning models, especially deep learning-based
models, are highly sensitive to adversarial attacks, including
graph classification (Dai et al., 2018; Tang et al., 2020a;
Xi et al., 2020) and graph matching (Zhang et al., 2020).
Several adversarial defense models have been developed to
improve the robustness of multiple graph learning models
in graph classification (Zhang & Lu, 2020; You et al., 2020;
Jin et al., 2020a; Gao et al., 2020), graph matching (Yu
et al., 2021), and multiple network embedding (Zhou et al.,
2020b). RGM is a robust graph matching model against
visual noise, including image deformations, rotations, and
outliers for image matching, but it fails to defend adversar-
ial attacks on graph topology (Yu et al., 2021). A common
characteristics of the above techniques is that they often
defend specific attacks on particular learning tasks, rather
than attack-agnostic defense models.

6. Conclusions
In this work, we proposed an expressive 1-Lipschitz neural
network to improve the robustness of multiple graph learn-
ing. First, the theoretical analysis is conducted to derive
lower and upper bounds of feasibleKl under the 1-Lipschitz
constraint. Second, aKl-Lipschitz nonlinear activation func-
tion is designed to enforce the gradient norm as Kl at each
layer. Finally, the nearest matrix orthogonalization and po-
lar decomposition techniques are utilized to constraint the
weight norm as 1/Kl.
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attacks on neural networks for graph data. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2018,
London, UK, August 19-23, 2018, pp. 2847–2856, 2018.


