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Abstract

Recently, representation learning for text and
speech has successfully improved many language
related tasks. However, all existing methods suf-
fer from two limitations: (a) they only learn from
one input modality, while a unified representation
for both speech and text is needed by tasks such
as end-to-end speech translation, and as a result,
(b) they can not exploit various large-scale text
and speech data and their performance is limited
by the scarcity of parallel speech translation data.
To address these problems, we propose a Fused
Acoustic and Text Masked Language Model (FAT-
MLM) which jointly learns a unified representa-
tion for both acoustic and text input from vari-
ous types of corpora including parallel data for
speech recognition and machine translation, and
even pure speech and text data. Within this cross-
modal representation learning framework, we fur-
ther present an end-to-end model for Fused Acous-
tic and Text Speech Translation (FAT-ST). Experi-
ments on three translation directions show that by
fine-tuning from FAT-MLM, our proposed speech
translation models substantially improve transla-
tion quality by up to +5.9 BLEU.

1. Introduction

In recent years, task-agnostic text representation learn-
ing (Peters et al., 2018; Devlin et al., 2019; Sun et al.,
2019) has attracted much attention in the NLP community
due to its strong performance to many downstream tasks.
More recently, unsupervised speech representation learning
(Baevski et al., 2020; Chen et al., 2020; Liu et al., 2020a)
also successfully improved many speech related tasks, such
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Figure 1. The quality of end-to-end speech translation models has
been limited by the scarcity of speech translation datasets. How-
ever, there is an abundance of datasets for speech, text, speech
recognition, and machine translation data that can be leveraged.

as speech recognition and speech translation.

However all these existing methods can only handle one
modality, either text or speech, while joint acoustic and text
representation is desired for many end-to-end spoken lan-
guage processing tasks, such as spoken question answering
(Chuang et al., 2019) and end-to-end speech-to-text trans-
lation (Liu et al., 2020b). For example, end-to-end speech
translation (ST) is desired due to its advantages over the
pipeline paradigm, such as low latency, alleviation of er-
ror propagation, and fewer parameters (Weiss et al., 2017;
Bérard et al., 2018; Jia et al., 2019; Sperber et al., 2017;
Zheng et al., 2020; Chen et al., 2021). However, its transla-
tion quality is limited by the scarcity of large-scale parallel
speech translation data while there exists sufficient data for
speech recognition and text machine translation (Fig. 1). It
would be helpful if source speech and bilingual text can be
encoded into a unified representation via abundant speech
recognition and text machine translation data. Liu et al.
(2020b) show that jointly training a multi-modal ST encoder
can largely improve the translation quality. However, their
proposed representation learning method is constrained to
the sequence-to-sequence framework and there is no experi-
ment showing whether their proposed method can benefit
from extra speech recognition and machine translation data.

Inspired by recent cross-lingual language model pre-training
work (Lample & Conneau, 2019) which shows the potential
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(b) Translation Language Model (TLM) for crosslingual text.
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(c) Masked Acoustic Model (MAM) for speech.

Figure 2. Previous work for speech or text monomodal representation learning.

to unify the representations of different languages into one
encoder, we propose a Fused Acoustic and Text Masked
Language Model (FAT-MLM). This model jointly learns a
unified representation for both acoustic and text input. In
this way, we extend the masked language model’s input from
only acoustic or text data to multimodal corpora containing
both acoustic and text data, such as speech recognition and
speech translation for the first time (Fig. 1).

We further extend this Fused Acoustic and Text encoder to a
sequence-to-sequence framework and present an end-to-end
Speech Translation model (FAT-ST). This enables the model
to be trained from both speech and text machine translation
data into one single encoder-decoder model. Meanwhile,
this model can also learn from speech recognition data using
an extra FAT-MLM loss. This resolves the limitation of ex-
isting single encoder and decoder speech translation models,
which can only learn from scarce parallel speech translation
data, but neglects much larger scale speech recognition and
text machine translation data (Fig. 1).

‘We make the following contributions:

* We propose the Fused Acoustic and Text Masked Lan-
guage Model (FAT-MLM), which can learn a unified
acoustic and text representation.

* Based on FAT-MLM, we propose the Fused Acoustic
and Text Speech Translation model (FAT-ST), which
can do speech recognition and machine translation in a
single encoder-decoder framework.

» Spontaneous speech translation experiments on three
language pairs show that by finetuning FAT-MLM, the
accuracy of FAT-ST improves end-to-end speech trans-
lation model by +4.65 BLEU in average and achieves

state-of-the-art. This is the first time that an end-to-end
speech translation model achieves similar performance
with the strong cascaded system in these three transla-
tion directions of this dataset, while still maintaining a
smaller model size and faster decoding time.

* We show that FAT-MLM trained with additional speech
recognition, machine translation, and monolingual text
data can improve FAT-ST by +1.25 BLEU. FAT-ST
can be further improved by using additional speech
recognition and machine translation data.

2. Previous Work
2.1. Masked Language Modeling

Radford et al. (2018), Howard & Ruder (2018) and Devlin
et al. (2019) investigate language modeling for pretraining
Transformer encoders. Unlike Radford et al. (2018) using
unidirectional language models for pretraining, Devlin et al.
(2019) proposes BERT which enables deep bidirectional
representation pretraining by a masked language modeling
(MLM) objective inspired by the Cloze task (Taylor, 1953)
which randomly masks some of the tokens from the input,
with an objective to recover the masked word based only on
its context. Their approaches lead to drastic improvements
on several natural language understanding tasks including
text classification (Wang et al., 2018),and question answer-
ing (Rajpurkar et al., 2016).

2.2. Translation Language Modeling

Lample & Conneau (2019) extend MLM to cross-lingual
pretraining by proposing two methods: one unsupervised
that only relies on monolingual data, and one supervised
that leverages parallel data with a new cross-lingual lan-
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Figure 3. Fused Acoustic and Text-Masked Language Model (FAT-MLM).

guage model objective which is called Translation Language
Model (TLM). As shown in Fig. 2(b), TLM encodes both
source and target sentences from a parallel data after mask-
ing several tokens with [MASK], and then learn to recover
the masked tokens. Experiments show that TLM achieves
state-of-the-art results on cross-lingual classification, unsu-
pervised and supervised machine translation.

2.3. Masked Acoustic Model

Recently, Chen et al. (2020) propose to learn a speech en-
coder in a self-supervised fashion on the speech side, which
can utilize speech data without transcription. This tech-
nique termed Masked Acoustic Modeling (MAM), can also
perform pretraining on any acoustic signals (including non-
speech ones) without annotation. Fig. 2(c) demonstrate the
architecture of MAM. Similar with MLM, MAM replaces
a span of speech spectrogram with mask tokens [MASK].
After a 2D Convolution layer and a Transformer Encoder,
MAM learns to recover the masked spectrogram via a 2D
De-convolution layer during training. Chen et al. (2020)
shows that MAM can improve end-to-end speech translation
as either an additional loss or a pretraining model. Paral-
lel to MAM, Baevski et al. (2020) proposes the wav2vec
2.0 pretraining model, which masks the speech input in the
latent space and pretrains the model via a contrastive task
defined over a quantization of the latent representations.

3. Fused Acoustic and Text Masked Language
Model (FAT-MLM)

Although existing pretraining models show a strong repre-
sentation learning ability and significantly improve upon
many down-streaming tasks, they all can only learn the rep-
resentation for either text or speech. However, a unified
speech and text multi-modal representation is useful for
many end-to-end spoken language processing tasks.

To address this problem, we propose the Fused Acoustic and
Text Masked Language Model (FAT-MLM), a multimodal
pretraining model which encodes acoustic, text into a unified
representation. The idea is similar with Lample & Conneau
(2019) who propose to learn a unified representation of
different languages. They first propose a method relying on
the shared sub-word vocabulary to align different languages’
representation. However this is unapplicable in our case
because of the modality difference. Thus we propose a
method similar to their second approach TLM which uses
parallel speech recognition data. In the following sections,
we first introduce the monolingual FAT-MLM and then show
how to extend it to translation scenario.

3.1. Monolingual FAT-MLM

The monolingual FAT-MLM takes speech and transcrip-
tion tuples as input, denotes as Dgx = {(s,x)}, where



Fused Acoustic and Text Encoding for Multimodal Bilingual Pretraining and Speech Translation

s = (51, ..., 8|5) is a sequence of acoustic features s; € R
which can be the spectrogram or mel-spectrogram of the
speech audio, and each s; represents the frame-level speech
feature, and x = (1,...,2)x) is the sequence of corre-
sponding transcription.

As shown in Fig. 3(c), we first randomly mask several spans
of s by a random masking function over the input s:

§ ~ MasKgpan (s, M) (H

where Maskgpan () replaces several random spans of s by
probability of A (30% in our work) with a random initialized
vector €5 € R%. Then we encode § with Convolutions
and a Transformer encoder for acoustic embeddings es.
Similarly, we randomly mask tokens in x by a random
masking function over the input s, x:

X ~ Maskoken (X, \) 2)

where Maskoen () replaces several tokens of x by probabil-
ity of A with a random initialized vector €yken € R%< . Then
we concatenate acoustic embeddings and source text embed-
dings [és; X], and obtain the latent representation f([es; X])
using another Transformer encoder, denoted as f. Same
with Lample & Conneau (2019), we reset the positional
embeddings for different types of input.

The training objective of monolingual FAT-MLM includes
a speech reconstruction loss ¢s(Ds x) and a text reconstruc-
tion loss ¢x(Ds x). For speech input s, we have the fol-
lowing training objective to reconstruct the original speech
signal with the surrounding context information':

ls(Ds x) = Z<S,X)ED5,X Is — g(f([esvi])H% 3)

where g is a reconstruction function (we use 2D deconvo-
lution in this work) which tries to recover the original sig-
nal from encoded representation f([es; X]). We use mean
squared error for measuring the difference between s and
the reconstructed spectrogram. For transcription input x,
following Devlin et al. (2019) we use cross entropy loss ,
denoted as

lx(Dsx) = — Z(s,x)GDs’x logp(x | [es;x]) (4

to reconstruct the masked token. The final loss for monolin-
gual FAT-MLM is:

learmim(Ds,x) = ls(Ds x) + €x(Ds x) )

3.2. Translation FAT-MLM

To support multimodal crosslingual tasks such as speech
translation, We propose Translation FAT-MLM which ex-
tends Monolingual FAT-MLM by using additional target

!Similar with previous work using masked language model
objective, this loss only takes the masked input into consideration.

language translation of the source language transcription
as input. Formally Translation FAT-MLM takes Ds x , =
{(s,x,y)} as input, where y = [y1,...,9),] denotes the
sequence of target language translation. This kind of triplet
input is very common in speech translation corpus.

As shown in Fig. 3(d), we incorporate source language em-
bedding e and target language embedding e for different
languages to show the language difference. Similar to Mono-
lingual FAT-MLM, Translation FAT-MLM randomly masks
the translation input y ~ Maskiken (¥, A) and concatenate
it with another two embeddings:

hs,x,y = [eé + €gc; X+ €y ¥ + etgt]

Then we reconstruct masked input from concatenated em-
beddings hg x y via a Transformer encoder. The reconstruc-
tion loss for different masked input is:

ls(Dsxy) = Z(s,x,y)eps,x,y lIs — g(f (hsxy)ll3

lx(Dsx,y) = — Z(s,x’y)eDs,x’y log p(x | hsxy)
ly(Dsxy) = — Z(s,x,y)eDs,x,y log p(y | hsxy)

We sum these loss functions for the final loss function of
Translation FAT-MLM:

gFAT—MLM(Ds,x,y) = és (Ds,x,y) + ex(Ds,x,y) + Ey (Ds,x,y)

To fully utilize the corpora for different tasks, FAT-MLM
can take any combination of speech, transcription, trans-
lation triplets Dysx.y} as input.> Specifically, these com-
binations include speech only data {s}, monolingual text
data, {x} or {y}, speech and transcription tuple {(s,x)}
for speech recognition, transcription and translation tuple
{(x,y)} for machine translation, speech and translation
tuple {(s, y)} for direct speech translation and speech tran-
scription translation triplets {(s, x,y)}. For different combi-
nations of input, FAT-MLM encodes the full concatenation
of their embeddings and recover the masked portion. The
loss function is:

Learmim(Datsxyt) = ls(Dsy) +€x(Dxx) 4y (Dyy) (6)

where Ds,, Dx,, Dy, means any input including speech,
source language text and target language text respectively.
Note that in this framework, we can denote MLM as ¢ (D),
TLM as x y(Dx y), MAM as lg(s).

3.3. Attention Visualization

To demonstrate FAT-MLM'’s ability to unify the represen-
tation of different modality and language, we show the
self-attention layers of a translation FAT-MLM in Fig. 4 and
5. The clear monotonic attention in Fig. 4 shows that our

29{82.¥} is the power set of {s, x,y} triplets.
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Figure 4. One speech self-attention head’s output at the first trans-
former layer in acoustic embedding module and its corresponding
spectrogram. This is a Translation FAT-MLM model trained with
Must-C En—De dataset.

proposed method can learn good representation for speech
(Chen et al., 2020). Fig. 5(a) shows that FAT-MLM can
learn a good crosslingual alignment between two languages,
such as and to Und and you to Sie. Fig. 5(b) shows that
FAT-MLM is able to learn a clear monotonic speech-to-text
crossmodal attention like many speech recognition models.

4. Fused Acoustic and Text Speech
Translation (FAT-ST)

In this section, we present how to adapt FAT-MLM to speech
translation and enable speech translation models to learn
from speech recognition and text machine translation.

4.1. From Text Translation to Speech Translation

Regardless of the particular design of different seq-to-seq
models, the text machine translation encoder always takes
the input sequence X = (z1, ..., ¥,,) where each z; € R%
is a word embedding of d, dimensions, and produces a new
sequence of hidden states h = f(x) = (hq, ..., hy,). On the
other hand, a decoder predicts the next output word y; given
the source sequence (actually its representation h) and previ-
ously generated words, denoted y <+ = (y1, ..., yt—1). The
decoder stops when it emits <eos>, and the final hypothesis
y = (y1, ..., <eos>) has probability

ply | %)nr = [TY, p(ye | %, y<i) 7

At training time, we maximize the conditional probability
of each ground-truth target sentence y* given input x over
the whole training data Dy y, or equivalently minimizing
the following loss:

fMT(Dx,y) = - Z(x,y)EDx,y logp(y ‘ X) (8)

Different from text machine translation, speech translation
takes speech features s = (s1, ..., 55|) as input. Same as the
speech input portion of FAT-MLM, these speech features
are converted from the speech signals (e.g. spectrogram).

£
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(a) This self-attention head shows bilingual alignment be-

tween “and’‘ and “Und”, “you’* and “Sie”, “what” and
“?2” in transcription and translation respectively.
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(b) Left side spectrogram shows gold speech-transcription
alignment. This self-attention head shows monotonic cross-
modal attention in red box. Meanwhile, the speech-to-
translation attention (in blue box) clearly show the align-
ment between “you’‘ and “Sie”, “know” and “wissen”
in speech and translation respectively. Note that in this speech,
the pronounciation of “and” is very weak.

Figure 5. Two self-attention heads’ output at the first layer of acous-
tic and text shared transformerfrom a Translation FAT-MLM model
trained with Must-C En—De dataset, annotated with correspond-
ing spectrogram, transcription (red) and translation (blue).

Formally, the decoding and training of speech translation
models can be defined as follows:

[yl

p(y Is)st =11 p(ye | s, y<t) )

lst(Dsyy) = — E(S’y)eps’y logp(y | s) (10)
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Figure 6. Fused Acoustic and Text-Speech Translation (FAT-ST).

4.2. FAT-ST

To boost the performance of end-to-end speech translation,
we propose to enable speech translation to encode both
acoustic and text features as input by simply adapting the
architecture of monolingual FAT-MLM to a Fused Acoustic
and Text Speech Translation model (FAT-ST).

FAT-ST’s encoder shares identical architecture with mono-
lingual FAT-MLM. In this way, we can simply encode either
acoustic or text features by this encoder and the FAT-ST
model can be optimized by speech translation loss fst, ma-
chine translation loss £yt and FAT-MLM loss fparmim. For
a speech translation dataset Dy x y, we decouple the triplets
into three part Ds y for fst, Ds x for fparmim and Dy  for
Iyt. The loss function of FAT-ST is:

‘gFAT—ST(DS,y U Ds,x U Dx,y) = EST(Ds,y) + ZMT(-Dx,y)
+erar-mim(Ds x)

Please note that the speech recognition and machine transla-
tion data can either be included in speech translation data
or additional datasets. Meanwhile, in practice, we find that
CTC loss (Graves et al., 2006) is useful to improve the trans-
lation quality so that we include it in all the experiments.

4.3. Finetuning FAT-ST from Translation FAT-MLM

Similar to Lample & Conneau (2019) we can further im-
prove FAT-ST by finetuning from FAT-MLM. Since the
FAT-ST decoder predicts text only, we initialize it from the
acoustic and text shared Transformer encoder. Although
Transformer decoder is unidirectional which is different
from bidirectional FAT-MLM, it can still benefit from FAT-
MLM in our experiments, This is also observed by Lample
& Conneau (2019) and Devlin et al. (2019).

S. Experiments

We conducted speech translation experiments in 3 directions:
English to German (En—De), English to Spanish (En—Es),
and English to Dutch (En—NI) to show the translation qual-
ity of baselines and our proposed methods.

5.1. Dataset
(a) Bilingual Dataset
Tyoe Name En — De En — Es En — NI
P Hours #Sent | Hours #Sent | Hours #Sent
D x,y | Must-C ST 408 226K | 504 262K | 442 245K
Dy y Europarl MT - 1.9M - 2.0M 2.0M
(b) Monolingual Dataset
T N En De Es N1
ype ame Hours #Sent | #Sent | #Sent | #Sent
Ds x Librispeech ASR 960 281K - - -
Dy Libri-light Speech 3,748 579K - - -
Dx/Dy Europarl / Wiki Text - 23M | 2.1M | 2.0M | 2.3M

Table 1. Statistics of all datasets used in our experiments. Note
that we use Europarl for En, De, Es monolingual text and Wiki
Text for N1 because there is no monolingual NI portion in Europarl.
#Sent means the number of sentences.

We use 5 corpora with different modalities and languages:
speech translation data Ds x , Must-C (Di Gangi et al.,
2019), speech recognition data Dy y Librispeech (Panayotov
et al., 2015), machine translation and monolingual text data
Dy y, Dy, Dy, Europarl V7 (Koehn, 2005), speech only data
Dg Libri-Light (medium version) (Kahn et al., 2020) and
monolingual text data Wiki Text (only for N1). The statistical
results of the dataset are shown in Table. 1. We evaluate
our models on Must-C dev and test set. Note that Must-C is
collected based on spontaneous speeches (TED) which are
very different from other audiobook speech dataset used in
our experiments. Spontaneous speeches are much harder for
speech translation than audiobook dataset such as Libri-trans
(Kocabiyikoglu et al., 2018). That is one of the reasons why
the translation accuracy of end-to-end speech translation is
much worse than cascaded systems on Must-C than other
speech translation corpus.

5.2. Training Detail

Raw audio files are processed by Kaldi (Povey et al., 2011)
to extract 80-dimensional log-Mel filterbanks stacked with
3-dimensional pitch features using a window size of 25 ms
and step size of 10 ms. We train sentencepiece (Kudo &
Richardson, 2018) models with a joint vocabulary size of
8K for text in each dataset. Training samples that have more
than 3000 frames have been ignored for GPU efficiency. Our
basic Transformer-based E2E-ST framework has similar
settings with ESPnet-ST(Inaguma et al., 2020). the speech
input is first down-sampled the speech input with 2 layers
of 2D convolution of size 3 with stride size of 2. Then there
is a standard 12-layers Transformer with feed-forward layer
of 2048 hidden size to bridge the source and target side. We
only use 4 attention heads on each side of the transformer
and each of them has a dimensionality of 256. We also
show the results of FAT-ST big model with 4096 hidden
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Pretrain Method Models En—De En—Es En—NI Avg. Model Size

ST 19.64 23.68 23.01 22.11 31.25M

ST + ASR 21.70 26.83 25.44  24.66 (+2.55) 44.82M

ST + ASR & MT 21.58 26.37 26.17  24.71 (+2.60) 56.81M

ST + MAM 20.78 25.34 2446  23.53 (+1.42) 33.15M

No ST + MAM + ASR 22.41 26.89 26.49 2526 (+3.15) 46.72M
Pretrainin Liu et al. (2020b) 22.55 - - - -

& Le et al. (2020) 23.63 28.12 27.55  26.43 (+4.32) 51.20M

Cascade® 23.65 28.68 2791  26.75 (+4.64) 83.79M

FAT-ST (base). 22.70 27.86 27.03  25.86 (+3.75) 39.34M

ASR & MT ST 21.95 26.83 26.03  24.94 (+2.83) 31.25M

ST + ASR & MT 22.05 26.95 26.15  25.05 (+2.94) 56.81M

MAM FAT-ST (base) 22.29 27.21 26.26  25.25 (+3.14) 39.34M

FAT-MLM FAT-ST (base) 23.68 28.61 27.84  26.71 (+4.60) 39.34M

FAT-ST (big) 23.64 29.00 27.64  26.76 (+4.65) 58.25M

Table 2. BLEU comparisons on Must-C test set between our proposed methods and other baselines over 3 translation directions using
MuST-C (Ds x,y) only (including pretraining methods). § are reported in Inaguma et al. (2020).

Pretrain Data Pretrain Method ‘ Train Data ‘ Models En—De En—Es En—NI Avg.
0 ST 19.64 23.68 23.01 22.11
Cascade? 23.65 28.68 2791  26.75 (+4.64)
ST 22.20 27.16 26.15  25.17 (+3.06)
ASR & MT
ST+ASR & MT  22.73 27.99 2712 2595 (+3.84
DaxyUDsyUDyy Dsxy (3.84)
FAT-ST (base) 23.98 28.95 28.08  27.00 (+4.89)
FATMLM FAT-ST (big) 24.34 29.41 28.86  27.54 (+5.43)
Dg xy UDgxUDyy FAT-MLM FAT-ST (base) 24.02 29.25 2828  27.18 (+5.07)
UDs U Dy U Dy FAT-ST (big) 24.58 30.10 29.36 28.01 (+5.90)
Ds xy UDgxUDy FAT-MLM Ds x.y FAT-ST (base) 2391 29.01 28.18  27.03 (+4.92)
UDs U Dy U Dy, Dg x U Dy, | FAT-ST (big) 25.47 30.75 30.08  28.77 (+6.66)
0 ‘ Dsxy+Djy ‘ Pino et al. (2020) 25.2 - - -

Table 3. BLEU comparisons on Must-C test set between our proposed methods using additional data. Ds x: Librispeech, Dy, y: Europarl
MT, Ds: libri-light, Dy, Dy: monolingual data from Europarl or Wiki Text. § are reported in Inaguma et al. (2020). Pino et al. (2020) use
extra Dy , which includes Librispeech (Ds x) and 35,217 hour version of Libri-light speech data (almost 10x of our Ds) paired with
their corresponding pseudo-translations generated by ASR and MT models. Their model size is 435.0M.

size for feed-forward layers of all transformer layer. For
speech reconstruction module, we simply linearly project
the outputs of the Transformer encoder to another latent
space, then upsample the latent representation with 2-layers
deconvolution to match the size of the original input signal.
We choose 30% for the random masking ratio A across all
the experiments including pre-training. During inference,
we do not perform any masking over the speech input. We
average the last 5 checkpoints for testing. For decoding, we
use a beam search with beam-size 5 and length penalty 0.6
for German, 0.0 for Spanish and 0.3 for Dutch.

5.3. Translation Quality Comparisons

We showcase the translation accuracy of FAT-ST comparing
against to the baselines in Table 2 and Table 3:

ST: this is the vanilla speech translation system which
does not use transcriptions.

ST + ASR MTL: ST model with an additional ASR
decoder and is trained with ASR multi-task learning
using the transcriptions.

ST + ASR & MT MTL: ST model with an additional
ASR decoder and a MT encoder. It is trained with ASR
and MT multi-task learning.

ST + MAM: ST trained with additional MAM
loss (Chen et al., 2020) which can be formalized as
ls(Ds) (See Fig. 2(c)).

ST + MAM + ASR MTL: ST trained with MAM loss
and ASR multi-task learning.

Liu et al. (2020b): An end-to-end ST system with a
multimodal encoder.
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Model # Parameters
MAM 23.69 M
FAT-MLM (base) 2576 M
FAT-MLM (big) 38.36 M

Table 4. Models sizes of different models.

¢ Le et al. (2020): The state-of-the-art end-to-end ST
model with an extra ASR decoder.

* Cascade: cascaded model which first transcribes the
speech into transcription then passes the results to a
machines translation system.

* ST + ASR & MT pretraining: the encoder of ST is
initialized by a pretrained ASR encoder and decoder
initialized by a pretrained MT decoder

* Pino et al. (2020): They propose to leverage additional
speech data by generating pseudo-translations using a
cascaded or an end-to-end speech translation model.

5.3.1. MODEL SIZE OF PRETRAINING MODELS

Table 4 shows the number of parameters of different pre-
training models. We can see that our FAT-MLM base model
is a little bit larger than the MAM pretraining model, and the
FAT-MLM big model is much larger than the base model.

5.3.2. TRAINING WITH D x y

In Table 2, with no pretraining, we can see that our proposed
FAT-ST base model achieves the best results except Le et al.
(2020) and the cascaded model. However, our base model
has much less parameters than both of them. Models with
ASR or MT MTL and Liu et al. (2020b) all use the transcrip-
tion data in Must-C dataset but show worse performance,
thus our model can use transcription data more efficiently.
Similar to other open source ST implementation results on
Must-C 3, our implementation of ST + ASR & MT MTL is
worse than ST + ASR.

We also compare the performance of models pretrained
from different pretraining models. With pretrained on Must-
C, FAT-ST (base) is improved by 0.85 BLEU by being
finetuned from FAT-MLM, while it’s performance drops by
finetuning from MAM. Meanwhile, our proposed methods
achieve much better performance compared with ASR &
MT pretraining baselines. We also note that our FAT-ST
base model for the first time achieves similar performances
compared with Cascade baselines in these three translation
directions of Must-C, while comparing with the cascaded
model, our our base model is much smaller in size and faster
in inference (see Fig. 7).

3ESPnet: https://github.com/espnet/espnet

Train Data Pretrain Data Models —De —Es —NI
No MT$ 2763 3261 32.08
pretraining FAT-ST (base) 24.41 30.81 29.18
FAT-ST (base) 27.24 3198 31.27

Ds xy
D. FAT-ST (big) 2692 3229 31.48

%,y

Dsxy FAT-ST (base) 2743 3238 3244
UDsx U Dy FAT-ST (big)  27.60 32.95 3237
DyxyUDsxUDy, FAT-ST (base) 27.63 3275 32.52
UDsUDxUDy  EATST (big) 2813 3339 32.72
Dsxy DyxyUDsxUDy, FAT-ST (base) 27.89 3296 3243
UDgx U Dy y UD, U Dy U Dy, FAT-ST (big) ~ 28.80 3428 34.22

Table 5. Comparisons of the auxiliary MT task between MT base-
lines and our proposed methods. ¢ are reported in Inaguma et al.
(2020).

5.3.3. PRETRAINING WITH ADDITIONAL DATA

Table 3 shows that FAT-MLM can further improve FAT-
ST by simply adding speech recognition data Ds x (Lib-
rispeech) text machine translation data Dy , (Europarl) and
even speech only data Dy (Libri-light) and monolingual text
data Dy U Dy. This shows good representation learning
ability of our proposed FAT-MLM models. We can see that
using larger data, the performance of our big model is in-
creased much faster than the base model. That’s because
the number of parameters of the base model is too limited
to learn from such big data.

5.3.4. FINETUNING WITH ADDITIONAL DATA

The last part of Table 2 show that FAT-ST can be improved
by learning from extra speech recognition and machine
translation data. This is promising because speech transla-
tion data is very limited compared with much more abundant
speech recognition and machine translation data. Different
from Pino et al. (2020) who propose to leverage additional
speech data by generating pseudo-translations, our method
doesn’t use any pseudo-labels. Our best model outperforms
their result on En—De by using much 7x smaller model
size and almost 10x smaller speech data.

Model En—De

FAT-ST with FAT-MLM (base) 23.68
- FAT-MLM decoder init. 23.20
- FAT-MLM encoder init. 22.70
- CTC loss 22.30
- Hierarchical Transformer 22.07
- FAT-MLM loss 20.64
- MT loss 19.64

Table 6. Ablation study. Here, hierarchical transformer means the
model only shares the 6 layers of the transformer encoder for
acoustic feature input and text feature input.
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Speech transcription

those are their expectations of who you are not yours

Target reference

A AT BTEER) () BT TANE IRE TR HE

that is they expected your appearance not

yourself expectation

Cascade-ASR

those are there expectations to do you are not yours

Cascade-Translation

ARLL R A HEI,

R AN ARE o

those are expect achievement you not yours

FAT-ST

X A R M, MAE R BIE -

these are they to yourexpectation not  your expectation

Table 7. English-to-Chinese speech translation example. The cascaded system is our implementation using the TED training data. The

errors of cascaded model is highlighted in red.

Models En—Zh
KD (Liu et al., 2019) 19.55
LUT (Dong et al., 2020) 20.84
COSTT (Dong et al., 2021) 21.12
Cascade (Dong et al., 2020) 21.36
ST* 22.07
FAT-ST 23.73
FAT-MLM + FAT-ST 25.49

Table 8. BLEU comparisons on English-to-Chinese speech transla-
tion. * is our implementation. Cascaded model is implemented by
Dong et al. (2020).

5.3.5. PERFORMANCE OF AUXILIARY MT TASK

Table 5 shows the translation quality of auxiliary MT task
of FAT-ST. Although our models trained with Must-C are
worse than the MT baseline, by using FAT-MLM trained
with more data, our proposed methods can easily outperform
the MT baseline. Note that these models’ parameters are
tuned to optimize speech translation task and MT is just an
auxiliary task.

5.3.6. ABLATION STUDY

Table 6 shows an ablation study of our proposed method.
we can see that all the components contribute to the final
performance.

5.3.7. ENGLISH—CHINESE SPEECH TRANSLATION

We also compare several models in TED English—Chinese
speech translation task (Liu et al., 2019) with 524 hours
speech in training set, 1.5 hours validation set (dev2010)
and 2.5 hours test set (tst2015). We follow our previous
experiments to preprocess the data. Same with previous
work, we evaluate the performance with character-level
BLEU. Table 8 shows that our proposed model can largely
outperform other baselines. Table 7 shows one example in
this dataset. The translation of the cascaded model is wrong
because of the errors in the its ASR (their—their, of who—
to do), while our FAT-ST produces the right translation.

167 —— FAT-ST (base)
FAT-ST (big)

—-—- ASR

—— Cascade

e~
o N &
L L L

Time (seconds)
©
|

0 20 40 60 80 100
Translation Lengths

Figure 7. Decoding time comparison between Cascaded model
(including its ASR) and FAT-ST.

5.3.8. DECODING SPEED

Fig. 7 shows the decoding speed comparison between the
Cascade model and our proposed FAT-ST. Our proposed
FAT-ST model is almost 2% faster than the Cascade system
which needs to wait for the speech recognition module to
finish before starting to translate. The decoding time of
FAT-ST (big) is almost the same as FAT-ST (base) because
we only increase the feedforward network in Transformers.

Conclusion

In this paper, we propose Fused Acoustic and Text Masked
Language Model (FAT-MLM) which learns a unified repre-
sentation for text and speech from any data that combines
speech and text. We further extend this framework to a
sequence-to-sequence speech translation model which en-
ables learning from speech recognition and text-based ma-
chine translation data at the first time. Our results show
significant improvement on three translation directions of
the Must-C dataset and outperform the cascaded baseline.
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