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Abstract

Even with a still image, humans can ratiocinate
various visual cause-and-effect descriptions be-
fore, at present, and after, as well as beyond the
given image. However, it is challenging for mod-
els to achieve such task–the visual event ratio-
cination, owing to the limitations of time and
space. To this end, we propose a novel multi-
modal model, Hypergraph-Enhanced Graph
Reasoning. First it represents the contents from
the same modality as a semantic graph and mines
the intra-modality relationship, therefore breaking
the limitations in the spatial domain. Then, we in-
troduce the Graph Self-Attention Enhancement.
On the one hand, this enables semantic graph
representations from different modalities to en-
hance each other and captures the inter-modality
relationship along the line. On the other hand,
it utilizes our built multi-modal hypergraphs in
different moments to boost individual semantic
graph representations, and breaks the limitations
in the temporal domain. Our method illustrates
the case of “two heads are better than one” in the
sense that semantic graph representations with
the help of the proposed enhancement mechanism
are more robust than those without. Finally, we
re-project these representations and leverage their
outcomes to generate textual cause-and-effect de-
scriptions. Experimental results show that our
model achieves significantly higher performance
in comparison with other state-of-the-arts.
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1. Introduction

Person1 Person2In a classroom

Event: Person2 is looking over at Person1 with a concerned look.

Past: Present: Future:

Hear Person1 was being bullied 
Hear Person1's parents were getting a divorce

Realize Person1 is up to no good  
Become suspicious of  Person1

Try to help Person1 
Ask Person1 what is going on

Contact his school 
Tell Person1 that not everything is perfect 
Lecture Person1 on what he's doing wrong 

Realize Person1 isn't listening

Visual 
Narrating

Visual Inference

(a)

Person1

In an outdoor square

Event: Person1 is walking by looking at the commotion.

Past: Present: Future:

Follow the voices to the crowd
Ask others what is going on

Go out for the night
Go to the plaza

Know what was going on
Be nosy

Write a story about tonight
Take a ton of photos

Wander about looking for the problem
Get into the middle of the fighting

Visual 
Narrating

Visual Inference

(b)

Figure 1. Illustration of The Visual Event Ratiocination. Given a
person in the image, the model is required to reason about À what
needed to happen before, Á intents of the people at present, and
Â what will happen next. Our model has the excellent abilities of
visual inference and visual narrating, detailed in Section 3.4 ∼ 3.5.

Visual Event Ratiocination is a novel challenging task
about a combination of language and vision. Given an
image and a description of the event in the image, it re-
quires models to predict events that happen before/after and
the present intents of the characters in the given image. In
VisualCOMET benchmark dataset (Park et al., 2020), we
show an example in Figure 1(a), given the image of the
woman looking over at the man with a converned look in a
classroom, the model can infer and generate/narrate three
kinds of event ratiocination (a.k.a., event’s cause-and-effect
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descriptions): À sometime in the past, she might uncon-
sciously say many things to him, and when coming back to
her senses, she might realize he looks panicked and become
suspicious of him; Á sometime at present, she might ask he
what is going on; Â sometime in the future, she might real-
ize he isn’t listening. Besides, the event’s cause-and-effect
descriptions (e.g., ‘ask what is going on’) in the current
moment of one image might be the same as these in the past
time of one another image (shown in Figure 1(b)).

“A picture is worth a thousand words”. The combination of
two modalities (i.e., language and vision) is commonplace,
so it is only natural to ask to what extent this combination
may help machines understand the meaning. Some conven-
tional tasks have been introduced for joint understanding
from two modalities, e.g., visual question answering (An-
tol et al., 2015), referring expression reasoning (Liu et al.,
2019). Different from these tasks, which only focus on
visual recognition and inference about the current content
of images, visual event ratiocination aims at reasoning the
time-varying situation captured in the image, and pays at-
tention to the model’s abilities of both visual inference and
visual narrating, as shown in Figure 1. Therefore, the study
of this task has scientific significance: it opens the door of
a significant leap from recognition-level understanding to
cognitive-level reasoning.

From the above observation, it is obvious that there are three
kinds of vital relationships here for generating event’s cause-
and-effect descriptions: À relationships within the same
modality, Á relationships between different modalities, and
Â spatio-temporal relationships among different images and
their event ratiocination. Therefore, how to capture these
three relationships from visual and semantic perspectives is
essential for the task of visual event ratiocination.

Nevertheless, there has been little work on visual event ra-
tiocination, while conventional visual-language tasks have
been explored to a large extent. Park et al. (2020) proposed
a dataset, VisualCOMET, which is the only one benchmark
for this task at present. They also employ the Transformer
(Vaswani et al., 2017) as a baseline model. Xing et al. (2021)
propose the improved BART (Lewis et al., 2020) that incor-
porates textual information into the multi-modal model. Yet,
these methods only look at conventional learning of visual
and textual information while ignoring the link between
modalities and among space-time. In short, current visual
event ratiocination approaches have two main deficiencies:

¬ The existing models pay no attention to relationships
from the same modality and different modalities.

­ The current models ignore the spatio-temporal relation-
ships from different samples with different moments.

To address the above two challenges, we propose a novel
model, Hypergraph-Enhanced Graph Reasoning, to ob-

tain a representation of the multi-modal contents in the task
of visual event ratiocination. As shown in Figure 2, ¬ we
construct semantic graphs for the same modality through
translating intra-modality relationships from the spatial do-
main to the graph domain; furthermore, we propose an
enhancement mechanism between these graphs to capture
relationships between different modalities; ­ we construct
hypergraphs from different modalities with different mo-
ments to capture spatio-temporal relationships, and make
these high-order semantic relations enhance the multi-modal
graph representations by the proposed enhancement mecha-
nism between graphs and the hypergraph.
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Mechanism

Semantic 
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Figure 2. The Key Idea of Our Paper. The visual feature and the
textual feature are projected into the semantic graphs that caputures
the intra-modality relationships. The enhancement mechanism be-
tween these graphs can capture the inter-relationships. Similarly,
different visual features and textual features are projected into
the semantic hypergraph that caputures the spatio-temporal re-
lationships. The enhancement mechanism between graphs and
hypergraph can enhance the semantic graph’s representations.

In summary, our main contributions are as follows:

☼ We propose a novel and effective hypergraph-enhanced
graph reasoning model for visual event ratiocination. Our
model captures intra- and inter- modality relationships as
well as spatio-temporal relationships via learning in the
graph domain. Experimental results show that our model has
strong robustness and outperforms existing similar methods.

☼ We explore how to enhance two semantic graphs with
each other as well as semantic graphs with hypergraphs, and
propose a novel graph self-attention enhancement. The qual-
itative experiment shows that this mechanism is effective.

☼ Our hypergraph-enhanced graph reasoning model has the
outstanding abilities of visual inference and visual narrating.
The qualitative discussion reveals that our model achieves
better performance than other state-of-the-art approaches on
the evaluation of both visual inference and visual narrating.

2. Hypergraph-Enhanced Graph Reasoning
In this section, we present the hypergraph-enhanced graph
reasoning model in detail, as shown in Figure 3. Specifi-



Hypergraph-Enhanced Graph Reasoning for Visual Event Ratiocination

Person2 is looking
over

with
at

a(1)
Person1

classroom

BERT

Mask 
R-CNN

1×1 Conv

1×1 Conv

Projection 
Matrix

Reduce 
Dimension

Reverse 
Projection Matrix

Residual Connection

1×1 Conv

1×1 Conv

Projection 
Matrix

Reduce 
Dimension

Reverse 
Projection Matrix

Residual Connection

tion Matrixxxxxxx

Text-Semantic Graph

Image-Semantic Graph

Hypergraph

G
ra

ph
 S

el
f-

A
tt

en
ti

on
 E

nh
an

ce
m

en
t

1-D Conv 1-D Conv

1-D Conv 1-D Conv

Reverse 
Projection Matrix

Residual 
Connection

Reverse 
Projection Matrix

Residual 
Connection

Graph & Hypergraph 
Convolution

Graph Self-
Attention 

Enhancement

 Graph Re-
Projection

Person1 Person2

concerned
look in

a(2)

Person2

Person1

Place
Events
Past

Present
FuturePlace

Events
Past

Present
Future

ePPPPPllllaaaaaccccceeeeee
Evvvvvvvents
PPPast
rreesent
Fuuture

Place
Events
Past

Present
Future

Pooling

1-
N

ea
re

st
 N

ei
gh

b
or

2
-N

ea
re

st
 N

ei
gh

b
or

3
-N

ea
re

st
 N

ei
gh

b
or

8
-N

ea
re

st
 N

ei
gh

b
or

BERT

Mask R-CNN

BERT

Mask R-CNN

BERT

Mask R-CNN

Global 
Average 
Pooling

1×1 Conv

1×1 Conv

1-D Conv

Reshape Reshape

<b
e
f
or
e
>

<i
nt
e
nt

>
<a
ft
e
r>

T
ok

en
 E

m
b

ed
d
in

g

<i
m
g
>

</
te
x
t>

<t
e
x
t>

</
im

g
>

E
nc

od
er

D
ec

od
er

B
ec

om
e 

su
sp

ic
io

us
 o

f 
 P
e
r
s
o
n
1
.

A
sk

 P
e
r
s
o
n
1

 w
ha

t 
is

 g
oi

ng
 o

n.
R

e
al

iz
e
 P
e
r
s
o
n
1

 i
sn

't
 l

is
te

ni
ng

.

The Generator of 
Event Ratiocination

Graph and Hypergraph RepresentationsGraph Projection and Hypergraph 
Construction

Multi-Modal Feature Embedding

Place : in a classroom
Events : Person2 is looking over 

at Person1 with a concerned look.

Figure 3. A Brief Illustration of the Proposed Framework, which can be concluded into four steps: Step 1. Multi-Modal Feature Embed-
ding: multi-modal features are obtained with pre-trained models, consisting of visual feature FV and textual feature FT; Step 2. Graph
Projection and Hypergraph Construction: multi-modal features are projected into two semantic graphs GV and GT, meanwhile
these features are utilized to build the hypergraph GHyper via the K-nearest neighbor function fKNN

K ; Step 3. Graph and Hypergraph
Representations: multi-modal semantic graphs perform with graph convolution to get the graph representations ZV and ZT, meanwhile
the semantic hypergraph performs with hypergraph convolution to get the hypergraph representations ZHyper , then perform the proposed
Graph Self-Attention Enhancement shown in Figure 5 to obtain reinforced graph representations ~ZV, ~ZT, and finally these representa-
tions re-project back into original spatial feature domain, resulting in refined sample features F̌V, F̌T; Step 4. The Generator of Event
Ratiocination: we employ the BART (Lewis et al., 2020) to build the generator fCEG(·) of event ratiocination and obtain the event’s
cause-and-effect descriptions in an autoregressive manner based on graph re-projected representations (i.e., refined sample features).

cally, we utilize Multi-Modal Feature Embedding to obtain
the features in the spatial domain and from two modali-
ties, and then we build semantic graphs and hypergraph
through Graph Projection and Hypergraph Construction.
Furthermore, we construct Graph and Hypergraph Repre-
sentations, including Graph Self-Attention Enhancement,
to capture the intra- & inter- modality relationships as well
as the spatio-temporal relationship among past, present, and
future samples. Finally, we employ The Generator of Event
Ratiocination to generate the cause-and-effect descriptions.

2.1. Multi-Modal Feature Embedding

In this subsection, we formalize the way with pre-trained
models to extract multi-modal features.

¶ Visual Features

Taking a given image as input, we detect the visual “person”
using the Mask R-CNN (He et al., 2017), which extracts
NV appearance features Va = {vai }N

V

i=1, and their corre-
sponding bounding-box Vb = {vbi }N

V

i=1, where we encode
the top-left position and the bottom-right position of the
i-th bounding box using the 4-dimensional (-D) vector, i.e.,
vbi = [xtopi , ytopi , xbtmi , ybtmi ]. To fuse image features, we
calculate the visual features: FV = {vi}N

V

i=1, vi ∈ RdNV ,
where vi = wavai +wbvbi , w

a and wb are learn-able param-
eters, dNV is the image feature dimension.

· Textual Features

Following the work of VisualCOMET (Park et al., 2020), a
given image corresponding NT-word textual descriptions,
including two kind of information (place, and events), is fed
into the pre-trained BERT model (Devlin et al., 2019) to
obtain the textual feature FT = {ti}N

T

i=1, where ti ∈ RdNT

is the embedding of the i-th word, and dNT is the dimension.

2.2. Graph Projection and Hypergraph Construction

In this subsection, in order to capture the intra-modality
relationship from an individual modality, we build a multi-
modal graph by the Graph Projection. Further, in order to
have a picture of the whole situation that different images
with descriptions of events at different moments, we con-
struct a hyper-graph through the Hypergraph Construction.

¶ Graph Projection

As shown in Figure 3, given an image and its correspond-
ing textual descriptions, we construct a multi-modal graph
composed of two sub-graphs, i.e., image-semantic graph
GV, and text-semantic graph GT for representing the in-
formation in two modalities. For simplicity, we uniformly
denote two semantic graphs as Gtag and original feature
embedding Ftag, tag ∈ {V,T}. We project the fea-
ture map Ftag from given training samples into the graph
Gtag ∈ RNtag×dNtag , where Ntag is the number of nodes
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(i.e., the number of instances in each modality) and dNtag

is the dimension of node features (i.e., the dimension of
sample features). The entire projected Gtag can be built as a
lightweight fully-connected graph. We use the project func-
tion f Gproj (·) that can be formulated as a linear combination
with learn-able weights for acquiring the Gtag:

Gtag = f Gproj (f Gred(Ftag; Wf Gred ))

= f Gwise(Ftag; Wf Gwise )× f Gred(Ftag; Wf Gred )
(1)

where f Gwise(·) and f Gred(·) are two convolution layers
(Chen et al., 2019b; Liang et al., 2018) for graph projection
and feature dimension reduction, respectively. Wf Gred is
weights of f Gred(·) and Wf Gwise is the weights of f Gwise(·).

· Hypergraph Construction

As shown in Figure 4, given NHyper images and their cor-
responding textual statements including events, places and
three event ratiocination from the training dataset, we con-
structe a hyper-graph GHyper that can be represented by
the incidence matrix HHyper. For each hyper-graph vertex
F
Hyper
i ∈ {FV

i }N
Hyper

i=1

⋃
{FT

i }N
Hyper

i=1 , where the visual
feature FV

i and textual feature FT
i are both from i-th im-

age. Note that FV
i is obtained by Mask-RCNN and image,

and FT
i is obtained by BERT and textual statements. We

find its K nearest neighbors (Chen et al., 2009), and then
utilize each element Hij(i, j = 1, · · · , 2×NHyper) of the
hyper-graph incidence matrix to connect these vertices:

Hij =

{
1 F

Hyper
j ∈ fKNN

K (FHyperi )

0 otherwise
(2)

where fKNN
K (·) is the nearest neighbor function resulting in

the neighborhood set containing the top-Kneighbors.

With the above equation, it is obvious that HHyper is de-
cided by fKNN

K (·), which is dictated by the parameter K.
Therefore, according to the different values of K, we can
get different hyper-graph incidence matrices and thus dif-
ferent hyper-graphs. For the sake of writing, we denote the
different incidence matrices as HHyper

K . In our model, we
adopt the average as the final incidence matrix:

H̄Hyper =
1

K

K∑
k=1

H
Hyper
k (3)

2.3. Graph and Hypergraph Representations

In this subsection, in order to capture semantic relations, we
update the node representation of semantic graphs by the
Graph Convolution. Similarly, we update the hyper-graph
representation through the Hypergraph Convolution to auto-
matically capture high-order semantic relations. Since the
images and their statements are from different modalities
and different moments, we want to analyze the relationship

among these samples to enrich the graph representation
from the individual modalities. To this end, we propose the
Graph Self-Attention Enhancement, consisting of Graph-
Graph Attention Unit and Graph-HyperGraph Attention
Unit for the inter-modality relationship between two modal-
ities as well as the spatio-temporal relationship among past,
present, and future samples. Further, we employ the Graph
Re-Project to transfer the reinforced graph representations
into refined sample features.

¶ Graph Convolution

Based on the obtained graph Gtag, we make use of Graph
Convolution (Kipf & Welling, 2017) to further propagate
information and aims at correlations between the feature of
the relative nodes by learning edge weights. In particular,
a single graph convolution with its parameter Wf Gconv ∈
RdNtag×dNtag is defined as:

Ztag = f Gconv (AtagFtagWf Gconv )

= ((Itag −Atag)Ftag)Wf Gconv

(4)

where Atag is the Ntag ×Ntag adjacency matrix of graph
Gtag for cross-nodes diffusion, Itag ∈ RNtag×Ntag

is the
identity matrix. A Laplacian smoothing operator (Li et al.,
2018) is performed to propagate the node features over the
graph. Considering its own representation of each node,
the adjacency matrix is added with self-connection. The
graph convolution is implemented by two convolution layers
along with channel-wise and node-wise directions as shown
in Figure 3. The identity matrix Itag is also a residual
connection for every node. The adjacency matrix and its
parameter Wf Gconv can be optimized by gradient descent.

· Hypergraph Convolution

To capture high-order semantic relations automatically, we
use the Hypergraph Convolution (Feng et al., 2019) with
the hyper-graph to propagate hypergraph information and
update hypergraph embeddings, as illustrated in Figure 3:

ZHyper = fΨ(H̄Hyper; WfΨ)� fΛ(H̄Hyper; WfΛ)

�fΨ((H̄Hyper)T ; WfΨ)� fΩ(H̄Hyper; WfΩ)
(5)

where fΨ(·) is the 1× 1 convolution with its weights WfΨ

followed by a non-linear activation function (in our case
ReLU function (Goodfellow et al., 2016)); fΛ(·) with its
weights WfΛ is channel-wise global average pooling (GAP)
(Goodfellow et al., 2016) followed by a 1× 1 convolution
similar to (Hu et al., 2018), and it plays a role in a diagonal
matrix, which helps in learning a better distance metric
among the nodes for the incidence matrix H̄Hyper; fΩ(·)
with its weights WfΩ is a single-layer convolution (Lin
et al., 2014a) that is used to capture the global relationship
of the features to develop better hyper-edges (Wu et al.,
2020); (·)T means the matrix transpose operation; � means
the matrix dot product calculation operation.
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Become 
suspicious 

of  Person1.

Lecture Person1 on 
what he's doing wrong.

Contact 
his school. 

Tell Person1 that not 
everything is perfect.

Realize Person1 
on isn't listening.

Person1 Person2 Person3

Outside on the street

Person1 is 
standing next to 
Person2 grinning 
at Person3 slyly.

Past Present

Future

Show Person3 that 
he is in agreement 

with Person2.

Watch as Person3 
is being bullied 
and threatened.

Get confronted 
by Person3.

Attend a party.

Notice Person3.

Stand next 
to Person2.

Diffuse the 
situation.

Continue 
the party.

Move closer 
to  Person3.

Tell Person2 to 
put the gun away.

In a classroom

Person1 is looking 
backward with a 
calm expression.

Person1

Past Present

Future

Sit down at 
the table.

Get distracted 
by something.

Enter the room.
Sit down at 
the desk.

Remain 
calm.

Show that she 
is not surprised.

See what 
others are 
looking at.

See what 
is going on.

Get up from 
the table.

Get up from 
the desk.

Leave 
the room.

At a hospital

Person1 is eating an 
ice cream cone while 
looking at Person2 

say something.

Person1 Person2

Past

Present
Future

Follow Person2  
across the room.

Buy an ice 
cream cone.

Approach 
Person2. Stop in front of 

Person2 to get 
his attention.

Listen to 
Person2. 

Enjoy a 
treat.

Respond to 
what Person2 

is saying.

Finish eating 
the ice cream.

Turn and walk away 
from Person2 because 

he isn't listening.

Watch as 
Person2 turns 
to walk away.

In a room

Person3 is looking 
over at Person2 
with a concerned 
look on her face.

Person3

Person2

Past

Present

Future

Notice Person2 doing 
something wrong.

Meet up with 
everyone in this room.

Notice Person2 
standing there.

Be suspicious of 
Person2's actions.

Find out some 
information.

Ask Person2 
why she is here.

Have Person2 
explain themselves.

Not drink 
the tea.

Ask Person2 to stop 
what they are doing.

Question Person2 
about motives.

In a classroom

Person1 is handing 
papers back to 
the students.

Past

Present
Future

Person1

Walk up to 
the children.

Get all the 
students together.

Grade the 
papers.

Lead the class.

Hand out scripts 
for the play.
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Figure 4. Snapshot of Our Built HyperGraphs. Images and their statements with different moments are connected by the same semantics.
This way can capture spatio-temporal relationships.

¸ Graph Self-Attention Enhancement

Through the graph convolution process, we get two graph
embeddings from two modalities: ZV, and ZT. Then, by
the hyper-graph convolution process, we get the hyper-graph
embedding from obtained hyper-graphs: ZHyper. We want
to ¬ use each graph embedding of the two modalities to
enhance the graph representation of each individually, ­
use the hyper-graph embedding to enhance the graph rep-
resentation of each modality. To this end, we propose the
cascaded multi-modal structure of stacked attention layers,
each of which contains our Graph Self-Attention Enhance-
ment, consisting of two kinds of self-attentions, as shown
in Figure 5. At the last, we get final output ~ZV and ~ZT.

We propose the graph self-attention enhancements that is an
extension of multi-head attention consisting of some parallel
heads, in which we replace original scaled dot product atten-
tion in classical multi-head attention (Vaswani et al., 2017)
with the non-local attention block (Wang et al., 2018b; Zhu
et al., 2019; Dong Zhang & Sun, 2020; Yin et al., 2020; Zhu
et al., 2020) in each head. Our non-local attention block con-
tains two kinds of attention units: ¬ Graph-Graph Attention

Unit and ­ Graph-HyperGraph Attention Unit.

¬ Graph-Graph Attention Unit

The graph-graph attention unit focuses on enriching the
graph embedding of one modality with the graph embedding
of the other modality. In particular, for len-th layer, suppose
there are two sliced graph embeddings from two modalities
as the input of our non-local attention block: Zm1

len and
Zm2

len , where m1,m2 ∈ {V,T}. The graph-graph attention
unit can be represented as:

Qum1

len = querym1

len(Zm1

len),

Km2

len = keym2

len(Zm2

len), Vlm2

len = valuem2

len(Zm2

len);

Vcm1m2

len = softmax((Qum1

len)T ×Km2

len )× (Vlm2

len)T ,

Zm1m2

len = cat((Vcm1m2

len )T ,Qum1

len; Wcat).
(6)

where querym1

len(·), keym2

len(·), and valuem2

len(·) are three lin-
ear transformations; we use the softmax function (Good-
fellow et al., 2016) to get the embeddings Vcm1m2

len ; by
referring to the design of the non-local block (Wang et al.,
2018b), cat(·) is implemented by a 1× 1 convolution, with
Wcat that acts as a weighting parameter to adjust the impor-
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Figure 5. Illustration of Graph Self-Attention Enhancement. It consists of two attention units: Graph-Graph Attention Unit and
Graph-HyperGraph Attention Unit. There are two kinds of attention layers with the stack fashion. The graph-graph attention
unit focuses on aggregating the graph embedding of one modality and the graph embedding of the other modality. Similarly, the
graph-hypergraph attention unit aims at the aggregation of hypergraph embedding and the results of the former unit.

tance of non-local operation (Zhu et al., 2020; Srinivas et al.,
2021). Zm1m2

len is the fusion vector of Zm1

len and Zm2

len .

­ Graph-HyperGraph Attention Unit

Similarly, the graph-hypergraph attention unit aims at im-
proving the graph embedding of each modality with hyper-
graph embedding from the obtained hyper-graph, under the
condition of the previous step in the graph-graph attention
unit. In particular, for len-th layer, we employ another non-
local attention block to process the result Zm1m2

len of in the
graph-graph attention unit and the sliced hyper-graph em-
beddings ZHyper

len from obtained hyper-graphs, as follows:

Vc
m1m2Hyper
len = softmax((Qum1m2

len )T ×K
Hyper
len )

×(Vl
Hyper
len )T ;

Z
m1m2Hyper
len = fζ(cat((Vc

m1m2Hyper
len )T ,

Qum1m2

len ; Wcat)).
(7)

where Qum1m2

len is from Zm1m2

len ; KHyper
len and Vl

Hyper
len

is from Z
Hyper
len . For rich contextual information, we use

the strip pooling fζ(·) (Hou et al., 2020) to enhance models.

At the last layer, we use the proposed graph self-attention
enhancements for the vectors ZTVHyper and ZVTHyper.
It can keep the inputted size of the query in the graph-graph
attention unit consistent with the final output of graph self-
attention enhancements for the next in graph re-projection.
Therefore, we re-denote these vectors as ~ZT and ~ZV.

¹ Graph Re-Projection

We use the results of f Gwise(·) (i.e., the projection matrix
from FV and FT, correspondingly), which is obtained in

previous graph projection (mentioned in Sec.2.2), to achieve
the Graph Re-Projection. Similar to the work of Chen et al.
(2019b), f Gwise(·) can re-project the final fusion vector
~ZV and ~ZT into original spatial feature domain, leading
to new feature maps F̂V and F̂T. In the end, these new
feature maps are added with a residual connection of original
features as final refined features F̌V and F̌T.

2.4. The Generator of Event Ratiocination

We develop a cause-and-effect generator (CEG) as shown in
Figure 3, based on Lewis et al. (2020)’s work and with the
refined features F̌V and F̌T in the sequence-to-sequence
task (Bao et al., 2020) to transfer into the predicted output
Õ. Formally, CEG fCEG(·) with its parameter WfCEG is:

Õ= fCEG(F̌V, F̌T; WfCEG) (8)

¶ Encoder

Following the BART (Lewis et al., 2020) and its variant
(Xing et al., 2021), the encoder of CEG is based on a
multi-layer bidirectional Transformer (Dai et al., 2019), as
shown in Figure 3. We use < before >, < after >, or
< intent > as the starting special token. To inform the
model of different modalities of input, we add two sets of
special tokens: for images, we use< img > and< /img >
to indicate the start and the end of refined visual feature F̌V,
respectively. To inform the model textual inputs, we use
< text > and < /text > for refined linguistic feature F̌T.

· Decoder

The decoder of our model is also a multi-layer Transformer,
similar to Wang et al. (2019b). Different from the encoder,
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which is bidirectional, the decoder is unidirectional as it is
supposed to be autoregressive when generating texts. The
decoder does not take as inputs the visual embeddings.

¸ Pre-Training

We pre-train a CEG model with 12 layers in each of the
encoder and decoder, and a hidden size of 1024. Follow-
ing RoBERTa (Liu et al., 2019), we use a batch size of
8000, and train the model for 500, 000 steps. Documents
are tokenized with the same byte-pair encoding as GPT-2
(Radford et al., 2019). To pretrain our model, we use three
image-text datasets: Conceptual Captions Dataset (Sharma
et al., 2018), Im2Text Dataset (Ordonez et al., 2011) and
Microsoft COCO Dataset (Lin et al., 2014b). We pre-train
the encoder in two steps, in both cases back-propagating
the cross-entropy loss (Goodfellow et al., 2016; Weiss et al.,
2015) from the output of the CEG model. In the first step, we
freeze the parameter WfCEG and only update the randomly
initialized encoder, and the self-attention input projection
matrix of encoder first layer. In the second step, we pre-train
all CEG model parameters for a small number of iterations.

3. Experiments and Results
In this section, we experimentally evaluate the proposed
model on the benchmark datasets and compare its perfor-
mance with other state-of-the-arts.

3.1. Benchmark Dataset Description

VisualCOMET dataset (Park et al., 2020) consists of over
1.4 million textual statements of visual event ratiocination
carefully annotated over a diverse set of 59, 000 images,
each paired with short video summaries of before and after.

3.2. Experimental Setup

In this subsection, we outline the used evaluation metrics
and implementation details.

¦ Evaluation Metrics

VisualCOMET dataset includes 1174K training examples
and 146K validation examples. Some examples in the
dataset share the same images or events, but with differ-
ent ratiocination for events before/after or intents at present.
Following Park et al. (2020), we report three metrics: BLEU-
2 (Papineni et al., 2002), METEOR (Denkowski & Lavie,
2014), and CIDEr (Vedantam et al., 2015). Following the
work of Xing et al. (2021), we report our model performance
on the validation set as the test set is not available yet.

¨ Implementation Details

In our training process, Adam optimizer (Kingma & Ba,
2015) is used with momentum parameters setting β1 and
β2 to 0.9 and 0.999. The learning rate is initially set to

0.0001. The training batch size is set to 64. For our built
hypergraph, we set the K to 8. For our graph self-attention
enhancements, the number of head in multi-head attention
is 8. We set the number of the stacked graph-graph attention
unit and graph-hypergraph attention unit to 2.

3.3. Comparison with State-of-The-Arts

We compare the state-of-the-art methods with our model on
the VisualCOMET benchmark.

Effect of Graph Reasoning. From Table 1, #1 is better
than Vision&Lang Transformer and KM-BART. This sug-
gests that the generator of event ratiocination is effective.
Compared to #1, ours and other variants (i.e., #2∼#5) have
better performance. Graph reasoning can help the model
capture the intra-modality relationship, and the model with
graph reasoning is better than without this process. This
implies that the design of graph reasoning is effective.

Effect of Graph-Graph Attention Unit. The graph-graph
attention unit strives to reinforce the graph embedding of
one modality with the graph embedding of the other modal-
ity. In essence, the graph embedding as the query’s input
exploits this unit with the information of another modality
to enhance itself. In this way, the model can capture the
inter-modality relationship. From Table 1, it is clear that
the method (i.e., #5 ) with the graph-graph attention unit
is better than without this unit (i.e., #2∼#4) . It shows the
proposed graph-graph attention unit effectively improves
the task of visual event ratiocination.

Table 1. Comparison Results on the VisualCOMET dataset. “VGE”
stands for Visual Graph Embedding. “LGE” stands for Linguistic
Graph Embedding. “G-G” stands for Graph-Graph Attention Unit.
“G-HG” stands for Graph-HyperGraph Attention Unit. Í stands
for the RESERVED component; ë means the REMOVED com-
ponent; ê means the component that REPLACES with original
feature embedding. Best is pointed in bold.

Method BLEU-2 METEOR CIDEr

Vision&Lang Transformer (Park et al., 2020) 13.50 11.55 18.27
KM-BART (Xing et al., 2021) 23.47 15.02 39.76

Our Variants

# VGE LGE G-G G-HG 23.73 15.38 40.04
1 ê ê ë ë 24.19 16.00 40.26
2 Í ê ë ë 25.42 18.22 41.36
3 ê Í ë ë 26.48 19.48 42.48
4 Í Í ë ë 29.31 20.46 43.11
5 Í Í Í ë 31.77 23.02 47.39

Ours 32.97 23.99 49.19

Effect of Graph-HyperGraph Attention Unit. Similarly,
the graph-hypergraph attention unit is the extension of the
graph-graph attention unit and integrates the graph embed-
ding from two modalities with the hypergraph. In other
words, the graph embedding from the hypergraph is em-
ployed with the graph-hypergraph attention to strengthen the
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Figure 6. The Comparison Results of Visual Inference. (a) Results
on The VIOLIN Dataset; (b) Results on The VLEP Dataset.

graph embedding from the two modalities. In this way, the
model can capture the spatio-temporal relationship among
past, present, and future samples. From Table 1, Ours is
better than #5. From above, our graph-hypergraph attention
unit is effective for the task of visual event ratiocination.

Effect of Graph Self-Attention Enhancement. Graph self-
attention enhancement consists of two kinds of attention
units: graph-graph attention unit and graph-hypergraph at-
tention unit. Therefore, from the above analysis, it is clear
that our graph self-attention enhancement is effective.

Effect of Our Approach. Our model can capture the intra-
and inter- relationships from two modalities as well as the
spatio-temporal relationship among past, present, and future
samples. From Table 1, Ours is better than others. It shows
that our model is more robust than other state-of-the-art
approaches on the VisualCOMET dataset.

:::::::::
Summary. From these above analyses, our approach shows
the case of “two heads are better than one” in the sense that
semantic graph representations with the graph self-attention
enhancement are more robust than those without.

3.4. Discussion on The Ability of Visual Inference

The visual inference is one of the key to the task of visual
event ratiocination, and requires the model that devotes it-
self to the judgment of the temporal event’s ratiocination
for a given image. In order to further evaluate the per-
formance of the proposed model, we perform two tasks:
video-and-language inference (Liu et al., 2020) and video-
and-language future event prediction (Lei et al., 2020).

¶ Video-and-Language Inference

Video-and-language inference aims at the joint understand-
ing of video and text. Given a video clip with aligned
subtitles as the premise, paired with a natural language hy-
pothesis, a model needs to infer whether the hypothesis is
entailed or contradicted by the given video clip. To fit this
task, for our model, we replace the textual descriptions in
our original task (i.e., visual event ratiocination) with sub-
titles and statements, split the given video clip into frames.
We compare the ratiocination generated by our model with
the candidates to obtain the final results. Specifically, we

input the generated ratiocination and the candidate ones to
the Bi-LSTM (Huang et al., 2015; Liu et al., 2020) to make
the prediction. We use accuracy as evaluation metric.

Dataset. VIOLIN benchmark dataset (Liu et al., 2020) con-
sists of 95, 322 video hypothesis pairs from 15, 887 video
clips, spanning over 582 hours of video. These video clips
contain rich content with event shifts, and interaction.

Performance of Different Methods. From Figure 6(a),
Ours is better than LXMERT (Tan & Bansal, 2019; Liu
et al., 2020), HERO (Li et al., 2020). This suggests that our
model has better performance than other state-of-the-art
approaches for the task of video-and-language inference.

· Video-and-Language Future Event Prediction

Video-and-language event prediction focuses on future event
prediction from videos. In particular, given a video with
dialogue, and two possible future events, the model is re-
quired to understand both visual and language semantics
from this video, and choose the more likely event from two
provided possible future events. Similarly, to fit this task,
for our model, we split the given video clip into frames,
and compare the ratiocination generated by our model with
the candidates to obtain the final results by the Bi-LSTM
(Huang et al., 2015). We use accuracy as evaluation metric.

Dataset. VLEP benchmark dataset (Lei et al., 2020) con-
tains 28, 726 examples from 10, 234 short video clips. Each
example consists of a short video clip with its dialogue and
text summary, and two potential future event ratiocination.

Performance of Different Methods. From Figure 6(b),
Ours is better than RoBERTa (Liu et al., 2019; Lei et al.,
2020). As a results, our model has state-of-the-art perfor-
mance for the task of video-and-language event prediction.

3.5. Discussion on The Ability of Visual Narrating

Visual narrating is another key for the task of visual event
ratiocination and focuses on generating semantic descrip-
tions from images or videos, e.g., video captioning (Shetty
& Laaksonen, 2016) and visual storytelling (Huang et al.,
2016). To further evaluate our model, we perform these two
tasks in this subsection. To fit these two tasks, for our model,
we split the given video clip into frames and fix the starting
special token as < intent >. We use BLEU-4 (Papineni
et al., 2002), METEOR, and CIDEr as evaluation metrics.

¶ Video Captioning

The goal of video captioning is to generate a sentence to
describe video content accurately. Here, we introduce the
used dataset followed by the comparison analysis.

Dataset. MSVD (Chen & Dolan, 2011) contains 1, 970
video clips with multiple descriptions for each video clip.
Following the work of Venugopalan et al. (2015), we use
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Table 2. Comparison Results on The Task of Video Captioning. Best is pointed in bold.
Method BLEU-4 METEOR CIDEr Method BLEU-4 METEOR CIDEr

S2VT (Venugopalan et al., 2015) 42.1 30.00 58.80 STAT (Tu et al., 2017) 51.1 32.7 67.5
MP-LSTM (Venugopalan et al., 2015) 50.40 32.50 71.00 M3 (Wang et al., 2018) 51.78 32.49 -

LSTM-E (Pan et al., 2016) 45.30 31.00 - VRE (Shi et al., 2019) 51.7 34.3 86.7
p-RNN (Yu et al., 2016) 47.40 30.30 53.60 RecNet (Wang et al., 2018b) 52.3 34.1 80.3

Tempor-attention (Yao et al., 2015) 41.92 29.60 51.67 Xgating (Wang et al., 2019a) 52.5 34.1 88.7
Bi-GRU-RCN (Ballas et al., 2016) 48.42 31.70 65.38 MGSA (Chen & Jiang, 2019) 53.4 35.0 86.7

hLSTMat (Song et al., 2017) 48.50 31.90 - PMI-CAP (Chen et al., 2020) 54.68 36.4 95.17
MAMRNN (Li et al., 2017) 41.40 32.20 53.90 OA-BTG (Zhang & Peng, 2019) 56.9 36.2 90.6
PickNet (Chen et al., 2018) 46.10 33.10 76.00 ELTI (Wei et al., 2020) 46.8 34.4 85.7

MCF (Wu & Han, 2018) 46.46 33.72 75.46 TTA (Tu et al., 2021) 51.8 35.5 87.7
RecNet (Wang et al., 2018a) 52.30 34.10 80.30 FCVC-CF-IA (Fang et al., 2019) 53.1 34.8 79.8

GRU-EVE (Aafaq et al., 2019) 45.60 33.70 74.20 S2VT+RL+DRPN (Xu et al., 2020) 49.2 32.6 86.4
Middle-out+self (Mehri & Sigal, 2018) 47.00 34.10 79.50 hLSTMat + DRPN (Xu et al., 2020) 57.3 34.2 78.3

TDConvED (Chen et al., 2019a) 48.30 32.90 72.30 Latest guiding DenseLSTM (Zhu & Jiang, 2019) 50.4 32.9 72.6
MemNet (Wu et al., 2020) 51.62 34.85 84.27 Ours 57.67 38.38 97.13

Table 3. Comparison Results on The Task of Visual Storytelling. Best is pointed in bold.
Method BLEU-4 ROUGE METEOR CIDEr Method BLEU-4 ROUGE METEOR CIDEr

HSRL (Huang et al., 2019) 13.4 35.2 30.8 - StoryAnchor (Zhang et al., 2020) 14.0 35.5 30.0 9.9
hattn-rank (Yu et al., 2017) - 34.1 29.5 7.5 SGVST (Wang et al., 2020b) 14.7 29.9 35.8 9.8

CIDEr-RL (Wang et al., 2018a) 13.8 34.9 29.7 8.1 K-Storyteller (Yang et al., 2019) 12.8 29.9 35.2 12.1
GAN (Wang et al., 2018a) 14.0 35.0 29.5 9.0 TAVST (Wang et al., 2020a) 14.6 31.0 35.7 9.2
VSCMR (Li et al., 2019) 14.3 35.5 30.2 9.0 INet (Jung et al., 2020) 14.7 35.6 29.7 10.0

ARLE-IRL (Wang et al., 2018a) 14.1 35.0 29.5 9.4 SGEmb (Hong et al., 2020) 14.8 35.6 30.2 8.6
MemNet (Wu et al., 2020) 14.1 35.5 29.5 9.2 Ours 16.7 37.4 37.8 14.1

1, 200 video clips for training, 100 video clips for validation,
and 670 video clips for testing.

Performance of Different Methods. On the MSVD
dataset, we compare ours with 29 state-of-the-arts. From
Table 2, the proposed model significantly outperforms exist-
ing state-of-the-arts. From above, our model is more robust
than other state-of-the-arts on the task of video captioning.

· Visual Storytelling

Visual storytelling requires the model to understand the
event flow in these photos deeply. Here, we introduce the
used dataset followed by the comparison analysis.

Dataset. The VIST dataset (Huang et al., 2016) is used for
solving visual storytelling, which includes 10, 117 Flickr
albums with 210, 819 unique images. After filtering the
broken images, there are 40, 098 training, 4, 988 validation,
and 5, 050 testing samples.

Performance of Different Methods. On the VIST dataset,
we compare ours with 13 state-of-the-arts. From Table 3,
the proposed model significantly outperforms existing state-
of-the-arts. From above, our model is more robust than
other state-of-the-arts on the task of visual storytelling.

0 Summary of Discussions

It is the key to solving the task of visual event ratiocination
that visual inference and visual narrating. We utilize 4 tasks

(i.e., video-and-language inference, video-and-language fu-
ture event prediction, video captioning, and visual story-
telling) to investigate these two key points. From Section 3.4
∼ 3.5, our model has the ability of not only visual inference
but also visual narrating, and state-of-the-art performance.

4. Conclusion and Future Work
In this paper, we present a novel multi-modal model
Hypergraph-Enhanced Graph Reasoning for the task of
visual event ratiocination. The model firstly represents the
image with multi-modal contents as two semantic graphs,
where each graph represents one modality. Then, the pro-
posed Graph Self-Attention Enhancement in our model,
rises up each graph representations with the help of our
built hypergraph, followed by re-projecting back into the
original spatial feature domain. Finally, we obtain the cause-
and-effect descriptions with these finer representations of
elements about the image. Experimental results show that
our model achieves state-of-the-art performance. Moving
forward, we will take rich structured information especially
effective knowledge graphs as the guidance for our model.
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