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Abstract
We consider a best arm identification (BAI)
problem for stochastic bandits with adversar-
ial corruptions in the fixed-budget setting of T
steps. We design a novel randomized algorithm,
PROBABILISTIC SEQUENTIAL SHRINKING(u)
(PSS(u)), which is agnostic to the amount of cor-
ruptions. When the amount of corruptions per
step (CPS) is below a threshold, PSS(u) identi-
fies the best arm or item with probability tending
to 1 as T →∞. Otherwise, the optimality gap of
the identified item degrades gracefully with the
CPS. We argue that such a bifurcation is necessary.
In PSS(u), the parameter u serves to balance be-
tween the optimality gap and success probability.
The injection of randomization is shown to be
essential to mitigate the impact of corruptions.
To demonstrate this, we design two attack strate-
gies that are applicable to any algorithm. We
apply one of them to a deterministic analogue of
PSS(u) known as SUCCESSIVE HALVING (SH)
by Karnin et al. (2013). The attack strategy results
in a high failure probability for SH, but PSS(u)
remains robust. In the absence of corruptions,
PSS(2)’s performance guarantee matches SH’s.
We show that when the CPS is sufficiently large,
no algorithm can achieve a BAI probability tend-
ing to 1 as T → ∞. Numerical experiments
corroborate our theoretical findings.

1. Introduction
Consider a drug company D1 that wants to design a vaccine
for a certain illness, say COVID-19. It has a certain number
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of options, say L = 10, to design a near-optimal vaccine.
Because D1 has a limited budget, it can only test vaccines for
a fixed number of times, say T = 1000. Using the limited
number of tests, it wants to find the option that will lead
to the “best” outcome, e.g., the shortest average recovery
time of certain model organisms. However, vaccine trials
usually assume that every test subject satisfies a certain
set of criteria, such as having no prior related illnesses. If
a subject who violated the criteria is tested, the observed
recovery time would be corrupted. We assume the total
corruption budget is bounded as a function of the number
of tests. How can D1 find a near-optimal drug design in the
presence of the corruptions and uncertainty of the efficacy
of the drugs? We will show that the utilization of a suitably
randomized algorithm is assumed to be key.

To solve D1’s problem, we study the Best Arm Identifica-
tion (BAI) problem for stochastic bandits with adversarial
corruptions. We note that the effect and mitigation of cor-
ruptions were studied for the Regret Minimization problem
by Lykouris et al. (2018) and others. While most existing
works study the BAI problem for stochastic bandits without
corruptions (Auer et al., 2002; Audibert & Bubeck, 2010;
Carpentier & Locatelli, 2016), Altschuler et al. (2019) con-
siders a variation of the classical BAI problem and aims
to identify an item with high median reward, while Shen
(2019) assumes that the amount of corruption per step (CPS)
diminishes as time progresses. Therefore, these studies are
not directly applicable to D1 as we are interested in obtain-
ing a near-optimal item in terms of the mean and we assume
that the CPS does not diminish with time. Our setting dove-
tails neatly with company D1’s problem and D1 can utilize
our algorithm to sequentially and adaptively select different
design options to test the vaccines and to eventually choose
a near-optimal design that results in a short recovery time
even in the presence of adversarial corruptions.

Beyond any specific applications, we believe that this prob-
lem is of fundamental theoretical importance in the broad
context of BAI in multi-armed bandits (MAB) and adver-
sarial machine learning. In particular, Gupta et al. (2019)
advanced the theory of regret minimization in MAB; this
work complements Gupta’s work in the BAI setting.

Main Contributions. In stochastic bandits with adversarial
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corruptions, there are L items with different rewards distri-
butions. At each time step, a random reward is generated
from each item’s distribution; this reward is observed and
arbitrarily corrupted by the adversary. The learning agent
selects an item based on corrupted observations in previ-
ous steps, and only observes the pulled items’ corrupted
rewards. Given T ∈ N, the agent aims to identify a near-
optimal item with high probability over T time steps. Our
first main contribution is the PROBABILISTIC SEQUENTIAL
SHRINKING(u) (PSS(u)) algorithm. PSS(u) is agnostic to
the amount of adversarial corruption. The parameter u can
be adjusted to trade-off between the optimality gap of the
identified item and the success probability.

The key challenge lies in mitigating the impact of corrup-
tions. For this purpose, upon observing pulled items’ cor-
rupted rewards in previous time steps, PSS(u) pulls subse-
quent items probabilistically. By comparing PSS(u) to the
state-of-the art for BAI with fixed horizon, namely SUCCES-
SIVE HALVING (SH) by Karnin et al. (2013), we argue that
randomization is beneficial, and indeed necessary, for BAI
under adversarial corruption. On one hand, PSS(2)’s failure
probability in BAI (at least in the exponent) matches that
of SH when there is no corruption. On the other hand, the
largest possible CPS under which PSS(2) succeeds in BAI
with probability 1−exp(−Θ(T )) is a factor of L larger than
that for SH. En route, we identify a term in the exponent
of the failure probability of PSS(u) that generalizes the
ubiquitous H2 term for BAI under the fixed-budget setting.
Finally, when CPS is so large that BAI is impossible, the
sub-optimality gap of the identified item degrades grace-
fully with the CPS. In complement, we provide lower bound
examples to show that BAI is impossible when CPS is suf-
ficiently large. The examples involve judiciously chosen
attack strategies, which corroborate the tightness of our per-
formance guarantee for PSS(u). Numerical experiments on
various settings further corroborate our theoretical findings.

Novelty. (i) We identify randomization as a key tool in
mitigate corruption in BAI, and identify an achievable sub-
optimality gap for PSS(u). (ii) The analysis of PSS(u)
shows how our designed randomization “confuses the ad-
versary”, which results in the improvement over SH, and
yields (suboptimality gap and failure probability exponent)
results that are almost tight with respect to the lower bounds.
(iii) The design of the attack strategies, which involves a
randomized adversary, and their analysis are novel.

Literature review. The BAI problem has been studied
extensively for both stochastic bandits (Audibert & Bubeck,
2010) and bandits with adversarial corruptions (Shen, 2019).
There are two complementary settings for BAI: (i) Given
T ∈ N, the agent aims to maximize the probability of
finding a near-optimal item in at most T steps; (ii) Given
δ > 0, the agent aims to find a near-optimal item with the

probability of at least 1− δ in the smallest number of steps.
These settings are respectively known as the fixed-budget
and fixed-confidence settings. Another line of studies aims
to prevent the agent from achieving the above desiderata and
thus to design strategies to attack the rewards efficiently (Jun
et al., 2018; Liu & Lai, 2020). We now review some works.

First, we review related work in stochastic bandits. Both
the fixed-budget setting (Audibert & Bubeck, 2010; Karnin
et al., 2013; Jun et al., 2016) and the fixed-confidence set-
ting (Audibert & Bubeck, 2010; Chen et al., 2014; Rejwan
& Mansour, 2020; Zhong et al., 2020) have been extensively
studied. However, as previously motivated, we need to be
cognizant that the agent may encounter corrupted rewards
and thus must design appropriate strategies to nullify or
minimize the effects of these corruptions.

Regret minimization on stochastic bandits with corruptions
was first studied by Lykouris et al. (2018), and has attracted
extensive interest recently (Zimmert & Seldin, 2019; Li
et al., 2019; Gupta et al., 2019; Lykouris et al., 2020; Liu
& Lai, 2020; Krishnamurthy et al., 2020; Bogunovic et al.,
2020). Pertaining to the BAI problem in the presence of
corruptions, Altschuler et al. (2019) studies a variation of
the classical fixed-confidence setting and aims to find an
item with a high median reward. In contrast, Shen (2019)
proposes an algorithm under the fixed-budget setting, whose
theoretical guarantee requires a number of stringent condi-
tions. In particular, Shen (2019) assumes that CPS dimin-
ishes as time progresses. However, it may be hard to verify
in practice whether these conditions are satisfied. In spite of
the many existing works, the classical BAI problem has not
been analyzed when the rewards suffer from general corrup-
tions. Our work fills in this gap in the literature by proposing
and analyzing the PSS(u) algorithm under the fixed-budget
setting. The randomized design of our algorithm is crucial
in mitigating the impact of corruptions.

Another concern is how an adversary can corrupt the rewards
to prevent the agent from obtaining sufficient information
from the corrupted observations. Many studies aim at attack-
ing certain algorithms, such as UCB, ε-greedy or Thompson
sampling, using an adaptive strategy (Jun et al., 2018; Zuo,
2020). Liu & Shroff (2019) design offline strategies to at-
tack a particular algorithm and also an adaptive strategy
against any algorithm. All these strategies aim to corrupt
the rewards such that the agent can only receive a small
cumulative reward in expectation. The design and analysis
of attack strategies pertaining to the BAI problem have been
unexplored. Our analysis fills in this gap by proposing two
offline strategies for Bernoulli instances and proving that
when the total corruption budget is sufficiently large (i.e.,
of the order1 Ω(T )), any algorithm will fail to identify any

1A (non-negative) function f(T ) = O(T ) if there exists a
constant 0 < c < ∞ (dependent on w but not T ) such that
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near-optimal item with constant probability.

2. Problem Setup
For brevity, for any n ∈ N, we denote the set {1, . . . , n}
as [n]. Let there be L ∈ N ground items, contained in [L].
Each item i ∈ [L] is associated with a reward distribution
ν(i) supported in [0, 1] with mean w(i). The distributions
{ν(i)}i∈[L] and means {w(i)}i∈[L] are not known to the
agent. Over time, the agent is required to identify the best or
close-to-best ground item by adaptively pulling items. The
agent aims to identify an optimal item, which is an item of
the highest mean reward, after a fixed time budget of T ∈ N
time steps, whenever possible in the presence of corruptions.
More precisely, at each time step t ∈ [T ],

(i) A stochastic reward Wt(i) ∈ [0, 1] is drawn for each
item i from ν(i).

(ii) The adversary observes {Wt(i)}i∈[L], and corrupts
eachWt(i) by an additive amount ct(i) ∈ [−1, 1], lead-
ing to the corrupted reward W̃t(i) = Wt(i) + ct(i) ∈
[0, 1] for each i ∈ [L].

(iii) The agent pulls an item it ∈ [L] and observes the
corrupted reward W̃t(it).

For each i ∈ [L], the random variables in {Wt(i)}Tt=1

are i.i.d. When determining {ct(i)}i∈[L] at time step
t, the adversary cannot observe the item it going to be
pulled, but he can utilize the current observations consisting
of {Wq(1), . . . ,Wq(L)}tq=1, {cq(1), . . . , cq(L)}t−1

q=1, and
{iq}t−1

q=1. We assume that the total amount of adversarial
corruptions during the horizon is bounded:

T∑
t=1

max
i∈[L]

|ct(i)| ≤ C.

The corruption budget C is not known to the agent.

We focus on instances with a unique item of the highest
mean reward, and assume that w(1) > w(2) ≥ . . . ≥ w(L),
so that item 1 is the unique optimal item. To be clear, the
items can, in general, be arranged in any order; the ordering
that w(i) ≥ w(j) for i < j is just to ease our discussion.
We denote ∆1,i = w(1) − w(i) as the optimality gap of
item i. An item i is ε-optimal (ε ≥ 0) if ∆1,i ≤ ε.

The agent uses an online algorithm π to decide the item
iπt to pull at each time step t, and the item iπ,Tout to output
as the identified item eventually. More formally, an online
algorithm consists of a tuple π := ((πt)

T
t=1, φ

π,T ), where

• the sampling rule πt determines, based on the observation
history, the item iπt to pull at time step t. That is, the

f(T ) ≤ cT for sufficiently large T . Similarly f(T ) = Ω(T ) if
there exists c > 0 such that f(T ) ≥ cT for sufficiently large T .
Finally, f(T ) = Θ(T ) if f(T ) = O(T ) and f(T ) = Ω(T ).

random variable iπt is Ft−1-measurable, where Ft :=
σ(iπ1 , W̃1(iπ1 ), . . . , iπt , W̃t(i

π
t ));

• the recommendation rule φπ,T chooses an item iπ,Tout , that
is, by definition, FT -measurable.

We denote the probability law of the process {W̃t =
(W̃t(1), . . . , W̃t(L))}Tt=1 by P. This probability law de-
pends on the agent’s online algorithm π, which influences
the adversarial corruptions.

For fixed εC , δ ∈ (0, 1), an algorithm π is said to be (εC , δ)-
PAC (probably approximately correct) if

P
[
∆1,iπ,Tout

> εC
]
≤ δ.

Our overarching goal is to design an (εC , δ)-PAC algorithm
π such that both εC and δ are small. In particular, when
εC < ∆1,2, an (εC , δ)-PAC algorithm π identifies the op-
timal item with probability at least 1 − δ. For BAI with
no corruption, existing works (Audibert & Bubeck, 2010;
Karnin et al., 2013) provide (0, exp[−Θ(T )])-PAC algo-
rithms. In the presence of corruptions, unfortunately it is
impossible to achieve a (0, exp[−Θ(T )])-PAC performance
guarantee, as we discuss in the forthcoming Section 4.2. We
investigate the trade-off between εC and δ, and focus on
constructing (εC , exp[−Θ(T )])-PAC algorithms with εC as
small as possible. We abbreviate iπt as it and iπ,Tout as iout

when there is no ambiguity.

Finally, in anticipation of our main results, we remark that
given a failure probability δ, the smallest possible εC is, in
general, a function of the corruption per step (CPS) C/T
and possibly the total number of items L.

3. Algorithm
Our algorithm PROBABILISTIC SEQUENTIAL SHRINKING
(u) (PSS(u)) is presented in Algorithm 1. The algorithm
involves randomization in order to mitigate the impact of
adversarial corruptions.

The agent partitions the whole horizon into dlogu Le phases
of equal length. During each phase, PSS(u) classifies an
item as active or inactive based on the empirical averages of
the corrupted rewards. Initially, all ground items are active
and belong to the active set A0. Over phases, the active sets
Am shrink, and an item may be eliminated from Am and
consequently it may become inactive.

During phase m:

(i) at each time step, the agent chooses an active item
uniformly at random and pulls it;

(ii) at the end, the agent finds ŵm(i), the corrupted empiri-
cal mean during phase m for each active item i;

(iii) the agent utilizes the ŵm(i)’s of active items i ∈ Am−1

to shrink the active set.
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Algorithm 1 PROBABILISTIC SEQUENTIAL SHRINKING

1: Input: time budget T , size of ground set of items L,
parameter u ∈ (1, L].

2: Set M = d logu Le, N = bT/Mc, T0 = 0, A0 = [L].
3: for phase m = 1, 2, . . . ,M do
4: Set Tm=Tm−1 +N, qm= 1/|Am−1|, nm= qmN .
5: for t = Tm−1 + 1, . . . , Tm do
6: Choose item i ∈ Am−1 with probability qm, pull

it and observe corrupted reward W̃t(i).
7: end for
8: For all i ∈ Am−1, set

Sm(i) =

Tm∑
t=Tm−1+1

W̃t(it) · I{it = i}, ŵm(i) =
Sm(i)

nm
.

9: Let Am contain the dL/ume items with the highest
empirical means ŵm(i)’s in Am−1.

10: end for
11: Output the single item iout ∈ AM .

By the end of the last phase M , we show that |AM | = 1
(see Lemma 5.1 in Section 5), and the agent outputs the
single active item.

The effectiveness of Algorithm 1 is manifested in four dif-
ferent aspects: (i) the agent only utilizes information from
the current phase to shrink the active set, which ensures
that any corruption has a limited impact on her decision;
(ii) the injection of randomization by the agent to decide
on which item to pull nullifies the ability of the adversary
from corrupting rewards of specific items; (iii) the agent
can handle the adversarial attacks even though she does
not know the total corruption budget C; (iv) the agent can
choose any u ∈ (1, L] to trade off between εC and δ in its
(εC , δ)-PAC performance guarantee. A smaller εC leads to
a higher failure probability δ. We would like to emphasize
that though the agent can choose any u ∈ (1, L], this param-
eter is a fixed constant and cannot vary with the horizon T
after PSS(u) is initialized.

When u = L, PSS(L) regards the horizon T as a single
phase. Each item is pulled with probability 1/L at each
step, and is expected to be pulled for T/L times in T steps.
We can regard PSS(L) as a randomized version of the naı̈ve
UNIFORM PULL (UP) algorithm, which pulls each item for
bT/Lc times according to a deterministic schedule.

When u = 2, PSS(2) is a randomized analogue to the SE-
QUENTIAL HALVING (SH) algorithm proposed in Karnin
et al. (2013). Both PSS(2) and SH divide the whole hori-
zon into dlog2 Le phases and halve the active set during
each phase, i.e., Am = dL/2me. However, the differences
between them are as follows:

• at each time step of phase m, PSS(2) chooses item i ∈
Am−1 with probability 1/|Am−1| and pulls it (Line 6 of

Algorithm 1);

• during phase m, SH pulls each item in Am−1 for exactly
bT/(dlog2 Le · |Am−1|)c times according to a determin-
istic schedule.

Therefore, though PSS(2) and SH pull each active item
for about an equal number of times in expectation, PSS(2)
involves more randomness in the pulls.

4. Main Results
4.1. Upper Bound

Theorem 4.1. For any u ∈ (1, L], the PROBABILISTIC
SEQUENTIAL SHRINKING(u) algorithm, as presented in
Algorithm 1, outputs an item iout satisfying

P
[
∆1,iout >

8Cdlogu Le
T

]
≤4dlogu Le(L−1) exp

[
− 1

192H̃2(w,L, u)
·
⌊ T

dlogu Le

⌋]
=O

(
L(logu L) exp

[
− T

192H̃2(w,L, u)logu L

])
, (4.1)

where

H̃2(w,L, u) = max
i 6=1

min{u · i, L}
∆2

1,i

. (4.2)

Theorem 4.1 shows that PSS(u) is (εC , δ)-PAC for any
u ∈ (1, L], where

εC = O

(
C logL

T

)
and δ = exp[−Θ(T )].

We remark that only εC , but not δ, depends on C. The de-
pendence of εC on the CPS C/T is, in general, unavoidable
in view of our lower bounds (see Section 4.2).

The upper bound on the failure probability δ involves the
parameter H̃2(w,L, u), which quantifies the difficulty of
identifying the best item in the instance. The parameter
H̃2(w,L, u) generalizes its analogue

H2(w) = max
i 6=1

i

∆2
1,i

proposed by Audibert & Bubeck (2010), in the sense that

lim
u→1+

H̃2(w,L, u) = H2(w), ∀w ∈ [0, 1]L.

We propose to consider the more general version
H̃2(w,L, u) in order to analyze the randomized versions of
SH and UP under one unified framework.

Function of parameter u. Theorem 4.1 implies that when
u increases, the upper bound εC on ∆1,iout decreases. How-
ever, the quantity H̃2(w,L, u) increases, which leads to a
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larger upper bound on the failure probability. Specifically,

H̃2(w,L, u2) ≥ u2

u1
H̃2(w,L, u1), ∀ 1 < u1 ≤ u2 ≤ L.

Meanwhile, as presented in Algorithm 1, PSS(u) with a
larger u separates the whole horizon into fewer phases
and shrinks the active set faster. (i) The fewer number
of phases leads to a longer duration of each phase, which
is beneficial for bounding the impact of corruptions (see
Lemma 5.2). (ii) Besides, the faster the active sets shrink,
the larger H̃2(w,L, u) is. See Section C.4 for details.

Altogether, Theorem 1 provides a bound on learning an
εC-optimal item and implies that PSS(u) allows the agent
to trade off between the bound on ∆1,iout

and the failure
probability by adjusting u. When the CPS is so low that

C

T
<

∆1,2

8dlogu Le
, (4.3)

Theorem 4.1 implies that PSS(u) identify the optimal item
with probability at least 1− δ, where δ = exp(−Θ(T )) is
as shown in (4.1). When the CPS is so large such that

C

T
≥ ∆1,L

8dlogu Le
, (4.4)

Theorem 4.1 is vacuous, since all the items are ∆1,L-
optimal. In the extreme case in which

C

T
≥ sup
u∈(1,L]

∆1,L

8dlogu Le
=

∆1,L

8
,

Theorem 4.1 is vacuous for all u ∈ (1, L]. Indeed, we show
in Section 4.2 that this bifurcation on the learnability holds
true not only to our algorithms. No algorithm can achieve
BAI when C/T is above a certain threshold. In passing, our
characterization of the threshold is tight up to log factors.

BAI on stochastic setting without corruptions. In the set-
ting without adversarial corruptions, i.e., C = 0, Theorem 1
upper bounds the probability that PSS(u) outputs iout with
∆1,iout

> 0. We compare Theorem 4.1 on PSS(2) with the
performance guarantee of SH by Karnin et al. (2013):

P[∆1,iout > 0] = O

(
(log2 L) exp

[
− T

8H2(w) log2 L

])
.

Disregarding constants, the bound on P[∆1,iout > 0] of
PSS(2) is worse than that of SH by a factor of L, which is
a multiplicative factor we incur due to the impact of cor-
ruptions. Apart from that, our bound involves H̃2(w,L, 2)
while Karnin et al. (2013) involves H2(w), and notice that

H̃2(w,L, 2) ≤ 2H2(w).

As a result, our exponent matches that by Karnin et al. (2013)
up to an absolute constant (which is 48).

Table 1. Comparison of PSS(u) to Other Algorithms

Algorithm Order of εC Order of δ

PSS(u)
C logu L

T
L(logu L) exp

[
− T

192H̃2(w,L, u) logu L

]

PSS(2)
C log2 L

T
L(log2 L) exp

[
− T

192H̃2(w,L, 2) log2 L

]
SH

CL log2 L

T
L(log2 L) exp

[
− T

192H̃2(w,L, 2) log2 L

]
PSS(L)

C

T
L exp

(
− T

192L/∆2
1,2

)
UP

CL

T
L exp

(
− T

192L/∆2
1,2

)

Next, we compare Theorem 4.1 on PSS(L) with the per-
formance guarantee of UP, which is folklore. We use the
following in Section 33.3 of Lattimore & Szepesvári (2020):

Pr[∆1,out > 0] ≤
L∑
i=2

exp

[
−
bT/Lc ·∆2

1,i

4

]

≤ (L− 1) exp

[
−
bT/Lc ·∆2

1,2

4

]
, (4.5)

where (4.5) is tight when ∆1,2 = ∆1,i for all i 6= 1. For
PSS(L), H̃2(w,L,L) = L/∆2

1,2, and the failure probabil-
ity bound in (4.1) specializes to

O

(
L exp

[
− T ·

∆2
1,2

192 · L

])
,

which matches (4.5) up to multiplicative factors in the expo-
nent and the O(·) notation.

Comparisons in the corrupted setting. Though the SH
and the UP algorithms can be directly applied to the setting
with corruptions, we propose PSS(u) to inject randomness
in order to mitigate the impact of corruptions. Intuitively,
for an adversary with the knowledge of the algorithm, the
fact that a deterministic algorithm such as SH or UP pulls
each active item according to a deterministic schedule fixed
at the start of a phase allows the adversary to corrupt re-
wards of the items to be pulled. However, PSS(u) pulls
items probabilistically, which prevents the adversary from
identifying the items to be pulled even when the semantics
of the algorithm are known to the adversary.

We analyse SH and UP using a similar analysis to our proof
of Theorem 4.1, and we tabulate the (εC , δ)-PAC perfor-
mance guarantee in Table 1. While SH and UP have similar
performance guarantees on δ compared to their random-
ized counterparts, namely PSS(u), the upper bounds on εC
for SH and UP are larger than their randomized counter-
parts by a multiplicative factor of L. Consequently, the
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randomization in PSS(u) allows us to mitigate the adversar-
ial corruptions and leads to a better performance guarantee
on εC compared to its deterministic counterparts.

4.2. Lower bounds

In the previous section, we observed that the performance
guarantee of PSS(u) on εC deteriorates as the CPS increases.
Interestingly, the deterioration is, in fact, fundamental to
any online algorithm. Here, we demonstrate that no online
algorithm is able to identify the optimal item with vanishing
failure probability when C/T is above a certain threshold.
In fact, one attack strategy we design is shown to cause
SH to fail miserably; in contrast, PSS(2) remains robust
to it. The impossibility result is further generalized to the
identification of an ε-optimal item for any ε ∈ [0,∆1,L).

Bernoulli instance. We focus on instances where each item
i ∈ [L] follows Bern(w(i)), and 1>w(1)>w(2)≥w(3)≥
. . .≥ w(L)> 0. For any ε ∈ (0, 1), we use Lε := |{i ∈
[L] : ∆1,i ≤ ε}| to count the number of items with mean
reward at most ε worse than that of the optimal item.

Corruption strategy against general BAI algorithms.
Abbreviate ∆1,2 as ∆. Assume that w(2) − ∆ > w(3).
In this strategy, essentially, the adversary solely corrupts the
reward of item 1, so that W̃t(1) ∼ Bern(w(2)−∆), differ-
ent from Wt(1) ∼ Bern(w(1)), as long as there is enough
corruption budget (Figure 1). We describe the corruption
strategy in full in Appendix C.5.

Figure 1. W̃t(1) ∼ Bern(w(2)−∆)

For a BAI with adversarial corruptions instance, we say that
the instance has an optimality gap ∆ > 0 if ∆ = ∆1,2 > 0.

Theorem 4.2. Fix λ ∈ (0, 1) and ∆ ∈ (0, 1/2). For any on-
line algorithm, there is a BAI with an adversarial corruption
instance in T steps, corruption budgetC = 1+(1+λ)2∆T ,
and optimality gap ∆, such that

P[∆1,iout > 0] = P[∆1,iout ≥ ∆] = P[iout 6= 1]

≥ 1

2
·
[
1− exp

(
− 2λ2∆T

3

)]
.

In particular, Theorem 4.2 implies that, if the CPS satisfies

C/T > 2∆1,2, (4.6)

then it is impossible to identify the best item with prob-
ability 1 − exp[−Θ(T )]. The upper bound in (4.3) and

the lower bound in (4.6) differ by a multiplicative factor
of 16blogu Lc. Consequently, the upper bound in (4.3) is
within a factor of O(logu L) away from the largest possible
upper bound on CPSC/T , under which it is possible to iden-
tify the best item with probability at least 1− exp[−Θ(T )].

Robustness of PSS(2) with respect to SH. Consider The-
orem 4.2’s attack strategy (see Figure 1 and Appendix C.5),
but applied to SH only in phase 1. We can show that SH will
fail to identify the best item with probability at least 1/2.

Theorem 4.3. FixL > 1, λ ∈ (0, 1) and ∆ ∈ (0, 1/4). For
the SH algorithm, there is a BAI with adversarial corruption
instance with T time steps, corruption budget C = (1 +
λ)2∆T/(L log2 L), and optimality gap ∆, such that if T is
sufficiently large,

P[∆1,iout > 0] = P[∆1,iout ≥ ∆] = P[iout 6= 1] ≥ 1/2.

Consequently, if C/T ≥ ∆1,2/(L log2 L), SH fails to iden-
tify the best item with probability at least 1/2 for large T . In
contrast, PSS(2) identifies the best item with probability at
least 1− exp(−Θ(T )) as long as C/T = O(∆1,2/ log2 L)
(see (4.3)). Lastly, according to Table 1, SH would suc-
ceed with high probability if C/T ≤ O(∆1,L/(L log2 L)).
Hence, the upper and lower bounds of the CPS for SH are
tight, even up to log factors in L.

The failure of SH is due to the fact that according to the
observation history, the adversary knows the item to pull at
each time step. In contrast, for PSS(2), when determining
{ct(i)}i∈[L], the adversary only knows {Wt(i)}i∈[L], but
does not know it. Rather, he only knows the distribution of
it. This uniform distribution facilitates exploration, while
minimizing the leakage of the identity of it to the adversary;
this leads to an improvement by a factor of Õ(L) on εC .

Corruption strategy against identifying an ε-optimal
item. We extend the previous strategy in order to impede the
identification of an εC -optimal item for any εC ∈ [0,∆1,L).
Consider the following two offline strategies:

(I) at each time step, if the random reward is 1, the ad-
versary shifts it to 0 until the corruption amount is
depleted (see Figure 2);

Figure 2. Shift Wt(it) to 0 When Wt(it) = 1

(II) at each time step, if the random reward is 0, the ad-
versary shifts it to 1 until the corruption amount is
depleted.

The design of either strategy aims to make the agent obtain
the same random reward at all time steps. As a result, the
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agent fails to get any information from the observations. In
this case, the best thing she can do is to output any item with
a uniform probability of 1/L after T time steps.

Theorem 4.4. Fix any λ, ε ∈ (0, 1). If C ≥ L · {1− (1−
λ)[1− w(1)]} · T , Strategy (I)’s attack results in

P[∆1,iout > ε] ≥ 1− Lε
L
− exp

[
− λ2TL[1− w(1)]

2

]
.

If instead C ≥ L · [1 − (1 − λ)w(L)] · T , Strategy (II)’s
attack results in

P[∆1,iout > ε] ≥ 1− Lε
L
− exp

[
− λ2TLw(L)

2

]
.

When ε < ∆1,2 so that Lε = 1, Theorem 4.4 provides lower
bounds for the probability of identifying the optimal item
under corruption strategies (I) and (II) respectively. In this
case, when T →∞, the failure probability is asymptotically
lower bounded by 1− 1/L.

Although the adversary can use adaptive strategies to attack
random rewards, i.e., design a strategy to add corruptions
according to past observations, Theorem 4.4 shows that
when the corruption is sufficiently large, even an offline
strategy, i.e., one that is fixed before the algorithm runs,
prevents the agent from identifying a satisfactory item with
high probability. Thus, if C = Ω(T ), any algorithm will
fail to identify a near-optimal item with high probability.
Therefore, PSS(u) is tight up to a factor that differs from
logu L in Theorem 4.1 to L in Theorem 4.4.

5. Proof Sketch of Theorem 4.1
We provide the proof sketch for Theorem 4.1. The detailed
proof and those of Theorem 4.2–4.4 are deferred to the
supplementary material.

Feasibility. We first show that our algorithm is feasible in
the sense that the M phases proceed within T steps, and
AM is a singleton.

Lemma 5.1. It holds that NM ≤ T and |AM | = 1.

Lemma 5.1 ensures that iout is well-defined. Moreover, it
implies that {1 6= iout}={1 /∈ AM}.

Concentration. At the end of phase m (1 ≤ m ≤M), the
agent shrinks the active set Am−1 according to the ŵm(i)’s,
the corrupted empirical means of the active items. Intu-
itively, we expect that if ŵm(i) and w(i) are sufficiently
close, we can identify item i with small ∆1,i. To this end,
we define the amount of corruptions during phase m as

Cm :=

Tm∑
t=Tm−1+1

max
i∈[L]

|ct(i)|.

To estimate the gap between ŵm(i) and w(i), we define a
class of “nice events” for all i ∈ Am−1 and a ∈ (0, 1):

E(U)
m,i (a) :=

{
ŵm(i) < w(i) +

2Cm
N

+ 2a
}
,

E(L)
m,i(a) :=

{
ŵm(i) > w(i)− 2Cm

N
− 2a

}
.

We utilize Theorem B.1 and B.2 to show that all these events
hold with high probability. In particular, Theorem B.2 al-
lows us to bound the impact of corruptions.
Lemma 5.2. Let E denote the complement of any event E .
For any fixed m, i ∈ Am−1 and a ∈ (0, 1),

P
[
E(U)
m,i (a)

]
≤2 exp

[
− a2·nm

3

]
, P
[
E(L)
m,i(a)

]
≤2 exp

[
− a2·nm

3

]
.

Note that nm is the expected number of pulls of each active
item i ∈ Am−1 during phase m. Lemma 5.2 implies that
we are able to bound the gap between ŵm(i) and w(i) for
each active item i ∈ Am−1 with high probability.

Technique. In light of the importance of randomization
for the regret minimization problem (Lykouris et al., 2018;
Gupta et al., 2019; Zimmert & Seldin, 2019), we inject ran-
domness in PSS(u) and derive Lemma 5.2, which explains
the necessity of Line 6 in Algorithm 1 in order to mitigate
the impact of adversarial corruptions. While an active item
is pulled probabilistically in PSS(u), it is pulled for a fixed
number of times in SH. Though the expected number of
pulls of one active item is of the same order for PSS(2)
and SH, the absence of randomization in SH does not allow
Theorem B.2 to bound the gap between ŵm(i) and w(i) in
the same way as for PSS(2). For SH, we can only show that

P
[
ŵm(i)<w(i) +

Cm|Am−1|
N

+ a
]
≤ exp

[
− a2 · nm

3

]
,

and similarly for the upper tail. Disregarding constants, the
difference between these bounds and those for PSS(2) in
Lemma 5.2 is that the term involving Cm is worse by a
factor of |Am−1| for SH. As a result, the bound on ∆1,iout

for SH turns out to be O(CL log2 L/T ), which is worse
than that for PSS(2) by a factor of L (see Table 1). A simi-
lar explanation is also applicable to explain the difference
between the bounds for UP and PSS(L).

Elimination of the optimal item. When the agent fails to
output item 1 (the optimal item), i.e.,1 6= iout, item 1 is
inactive by the end of the last phase of the algorithm. Let
m1 := min{m ∈ [M ] : 1 /∈ Am}, where min ∅ = ∞.
Since 1 6= iout, we have m1 ≤ M. The index m1 labels
the phase during which item 1 turns from active to inactive.
Next, any item i that belongs to the active set Am1

satisfies
w(i) < w(1) and ŵm1

(i) ≥ ŵm1
(1). Conditioning on

E(L)
m1,1

(a) and E(U)
m1,i

(a), we have

(−∞, w(i) + 2Cm
N + 2a] ∩ [w(1)− 2Cm

N − 2a,+∞) 6= ∅.
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To facilitate our analysis, we set ai := ∆1,i/8 for all 2 ≤
i ≤ L. We let j1 be the item in Am1 with the smallest mean
reward, i.e., j1 := arg mini∈Am1

w(i). Lemma 5.2 implies
that with probability 1−4 exp(−∆2

1,j1
·nm1/192), we have

∆1,j1 ≤ 8Cm1/N . Since iout ∈ Am1 , we have w(j1) ≤
w(iout). This allows us to bound ∆1,iout

as follows:

∆1,iout ≤ ∆1,j1 ≤
8Cm1

N
≤ 8C

N
.

Note that m1, j1 are random variables that depend on the
dynamics of the algorithm. For any realization of m1, j1,
we formulate the observation above in Lemma 5.3. The
complete proof of Lemma 5.3 is postponed to Section C.3.

Lemma 5.3. Conditioned on E(L)
m,1(ai) and E(U)

m,i (ai), where
ai = ∆1,i/8 for each 2 ≤ i ≤ L, we have

{1 ∈ Am−1, 1 /∈ Am, i ∈ Am} ⊂
{

∆1,i ≤
8Cm
N

}
.

Bounds. When E(L)
m1,1

(aj1) and E(U)
m1,j1

(aj1) hold, we can
apply Lemma 5.3 to bound ∆1,iout

with the total corruption
budget C, i.e., for any realization of m1, j1,

P
[
∆1,iout

>
8C

N

]
≤ P

[
E(L)
m1,1

(aj1)
⋂
E(U)
m1,j1

(aj1)
]
.

In addition, the definitions of j1 and Am indicate that

j1 ≥ |Am1
| =

⌈
L

um1

⌉
≥
⌈

L
um1−1

⌉
u

=
|Am1−1|

u
,

and |Am1−1| ≤ L. These inequalities, along with
Lemma 5.2, the definitions of ai, Nm and H̃2(w,L, u),
imply that for all 1 ≤ m ≤M and 2 ≤ i ≤ L,

P
[(
E(L)
m1,1

(aj1)
⋂
E(U)
m1,j1

(aj1)
)⋂
{m1 = m, j1 = i}

]
≤ 4 exp

[
− N

192H̃2(w,L, u)

]
.

Altogether,

P
[
∆1,iout

>
8C

N

]
≤

M∑
m=1

L∑
i=2

P
[{

∆1,iout
>

8C

N

}⋂
{m1 = m, j1 = i}

]
≤ 4M(L− 1) exp

[
− N

192H̃2(w,L, u)

]
.

We complete the proof of Theorem 4.1 with N = bT/Mc,
M = dlogu Le. We elaborate on the details in Section C.4.

(a) λ = 0.5 (b) λ = 0.9

(c) Effect of L (T = 2× 103) (d) Effect of T (L = 32)

Figure 3. Percentage of correct BAI of PSS(2), SH and UP. We
fix T = 2× 103, L = 32 and vary w∗, w′ in (a) and (b). We fix
λ = 0.5, w∗ = 0.4, w′ = 0.2 in (c) and (d).

6. Numerical Experiments and Conclusion
We compare the performances of PSS(2), SH and UP under
the corruption strategy considered in Theorem 4.2. In the
experiments, we set the mean of the optimal item to bew∗ ∈
{0.4, 0.5}, the mean of L− 2 suboptimal items to be w′ =
0.2. We set ∆ = (w∗−w′)/3 and the mean of the remaining
item to be w∗−∆. The CPS C/T = (1+λ)2∆/(L log2 L)
(cf. Theorem 4.3). For each algorithm and instance, we ran
100 independent trials and report the percentage of trials
each algorithm succeeds in identifying the optimal item.
Further experiments are provided in Appendix D. The codes
to reproduce all the experiments can be found at https:
//github.com/zixinzh/2021-ICML.git.

Overall, Figure 3 implies that PSS(2) always outperforms
SH and UP for a BAI problem that is attacked by the strategy
of Theorem 4.2, underscoring the importance of random-
ization. Next, we observe from Figures 3(a)-3(b) that a
larger ∆ means that the difference between the optimal and
suboptimal items is more pronounced, resulting in better per-
formances across all algorithms, even if the CPS increases.
Since the CPS increases with λ, each algorithm identifies
the best item less often when λ increases (see Table A.1).
Figure 3(c) shows that the agent identifies the best item less
often when L increases. This implies that even if we let the
CPS decrease with L (per Theorem 4.3), the larger size of
the ground set still makes the instance more difficult. Lastly,
Figure 3(d) shows that when the CPS is fixed, a larger T
increases the success probabilities of PSS(2) and SH.

Summary and Future Work. This paper has deepened
our understanding the fundamental performance limits of
BAI algorithms in their ability to cope with adversarial
corruptions that are added on to the random rewards. We
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designed PSS(u), an algorithm that can be regarded as a
robustification of the SH algorithm by Karnin et al. (2013).
Due to PSS(u)’s inherent randomized nature, it can suc-
cessfully mitigate the adversarial corruptions. Furthermore,
we showed by way of constructing several adversarial cor-
ruption strategies that the optimality gap of PSS(u) is
O(logL)-competitive vis-à-vis any corruption-tolerant al-
gorithm. These attack strategies are shown to break SH but
PSS(u) remains robust to the corruptions.

Inspired by Liu & Shroff (2019), Jun et al. (2018), and Zuo
(2020), it would be fruitful to devise optimal corruption
strategies for algorithm-specific and algorithm-independent
settings to uncover whether the dependence of the smallest
optimality gap εC on logL is fundamental. We conjecture
that the smallest εC does not depend on L. More ambi-
tiously, we would like to close the gap between the upper
and lower bounds in (4.3) and (4.6).
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