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Abstract

While deep neural networks provide good per-
formance for a range of challenging tasks, cal-
ibration and uncertainty estimation remain ma-
jor challenges, especially under distribution shift.
In this paper, we propose the amortized condi-
tional normalized maximum likelihood (ACNML)
method as a scalable general-purpose approach
for uncertainty estimation, calibration, and out-of-
distribution robustness with deep networks. Our
algorithm builds on the conditional normalized
maximum likelihood (CNML) coding scheme,
which has minimax optimal properties accord-
ing to the minimum description length principle,
but is computationally intractable to evaluate ex-
actly for all but the simplest of model classes. We
propose to use approximate Bayesian inference
techngiues to produce a tractable approximation
to the CNML distribution. Our approach can be
combined with any approximate inference algo-
rithm that provides tractable posterior densities
over model parameters. We demonstrate that AC-
NML compares favorably to a number of prior
techniques for uncertainty estimation in terms of
calibration when faced with distribution shift.

1. Introduction

Current machine learning methods provide unprecedented
accuracy across a range of domains, from computer vision to
natural language processing. However, in many high-stakes
applications, such as medical diagnosis or autonomous driv-
ing, rare mistakes can be extremely costly. Thus, effective
deployment of learned models requires not only high accu-
racy, but also a way to measure the certainty in a model’s
predictions in order to assess risk and allow the model to
abstain from making decisions when there is low confidence
in the prediction. While deep networks offer excellent pre-
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diction accuracy, they generally do not provide the means
to accurately quantify their uncertainty. This is especially
true on out-of-distribution inputs, where deep networks tend
to make overconfident incorrect predictions (Ovadia et al.,
2019). In this paper, we tackle the problem of obtaining
reliable uncertainty estimates under distribution shift, with
the aim of producing models that can reliably report their
uncertainty even when presented with unexpected inputs.

Most prior work approaches the problem of uncertainty es-
timation from the standpoint of Bayesian inference. By
treating parameters as random variables with some prior
distribution, Bayesian inference can compute posterior dis-
tributions that capture a notion of epistemic uncertainty and
allow us to quantitatively reason about uncertainty in model
predictions. However, computing accurate posterior distri-
butions becomes intractable as we use very complex models
like deep neural nets, and current approaches require highly
approximate inference methods that fall short of the promise
of full Bayesian modeling in practice.

Bayesian methods also have a deep connection with the
minimum description length (MDL) principle, a formal-
ization of Occam’s razor that casts learning as performing
efficient data compression and has been widely used as a
motivation for model selection techniques. Codes corre-
sponding to maximum-a-posteriori estimators and Bayes
marginalization have been commonly used within the MDL
framework. However, other coding schemes have been pro-
posed in MDL centered around achieving different notions
of minimax optimality. Interpreting coding schemes as
predictive distributions, such methods can directly inspire
prediction strategies that give conservative predictions and
do not suffer from excessive overconfidence due to their
minimax formulation.

One such predictive distribution is the conditional normal-
ized maximum likelihood (CNML) (Griinwald, 2007; Rissa-
nen and Roos, 2007; Roos et al., 2008) model, also known
as sequential NML or predictive NML (Fogel and Feder,
2018b). To make a prediction on a new input, CNML con-
siders every possible label and finds the model that best
explains that label for the query point together with the
training set. It then uses that corresponding model to as-
sign probabilities for each input and normalizes to obtain a



Amortized Conditional Normalized Maximum Likelihood

valid probability distribution. We will argue that the CNML
prediction strategy can be useful for providing reliable un-
certainty estimates on out-of-distribution inputs. Intuitively,
instead of relying on a learned model to extrapolate from the
training set to the new (potentially out-of-distribution) input,
CNML can obtain more reasonable predictive distributions
by explicitly updating a model for each potential label of
the particular test input and then asking “given the training
data, which labels would make sense for this input?”

While CNML provides compelling minimax regret guaran-
tees, practical instantiations have been exceptionally diffi-
cult, because computing predictions for a test point requires
retraining the model on the test point concatenated with the
entire training set. With large models like deep neural net-
works, this can require hours of training for every prediction,
rendering naive CNML schemes infeasible for practical use.

In this paper, we argue that prediction strategies inspired
by CNML, which output conservative predictions that de-
pend on models explicitly trained on the test input, can
provide reasonable uncertainty estimates even when faced
with out-of-distribution data. To instantiate such a strat-
egy tractably, we propose amortized CNML (ACNML), a
practical algorithm for approximating CNML utilizing ap-
proximate Bayesian inference. ACNML avoids the need
to optimize over large datasets during inference by using
an approximate posterior in place of the training set. We
show that our proposed approach is compares favorably to
number of prior techniques for uncertainty estimation on
out-of-distribution inputs, and is substantially more feasible
and computationally efficient than prior techniques for using
CNML predictions with deep neural networks.

2. Conditional Normalized Maximum
Likelihood

ACNML is motivated from the minimum description length
(MDL) principle, which states that any regularities in a
dataset can be exploited to compress it, and so learning is
reformulated as encoding the data as efficiently as possible.
(Rissanen, 1989; Griinwald, 2007). While MDL is typically
described in terms of code lengths, we can associate codes
with probability distributions, with the code length of an ob-
ject corresponding to the negative log-likelihood under that
probability distribution. MDL was originally formulated in
a generative setting where the goal is to code arbitrary data,
we focus here on a supervised learning setting, where we
assume the inputs are already known and our goal is to only
encode/predict the labels.

Normalized Maximum Likelihood. Suppose we have a
model class ©, where each § € © corresponds to a con-
ditional distribution pg(y|z). Let 0(y1.n|21.,,) denote the
maximum likelihood estimator for a sequence of labels y;.,

corresponding to inputs x;.,, over all § € ©. Given a se-
quence of inputs x1.,, and labels y;.,, we can define a regret
for a distribution over labels ¢ as

def
R(Q7 Y1:n, Tl:n, @) = 1ogpg(y1m|x1m)(y1:n|$1:n)
_IOgQ(ylzn)~ (1)

In relation to the MDL principle, this regret corresponds to
the excess number of bits ¢ uses to encode the labels y;.,
compared to the best distribution in the model class ©. For
any fixed input sequence, we can then define the normalized
maximum likelihood distribution (NML) as

NM pé(ylmlarl:n)(ylzn\xl:n)

P L(yl:n|$1:n) -

DG meyn Pé(giy.n|21.m) (G1ml1:n)”

(2
The NML distribution can be shown to achieve minimax
regret (Shtarkov, 1987; Rissanen, 1996) as it achieves the
same regret for all label sequences.

pNML = argmin max R(qv Y1:n, T1:n, 9) (3)
q Y1:n €EY™

This corresponds, in a sense, to an optimal coding scheme
for sequences of labels of known fixed length n.

Conditional NML. Instead of making predictions across
entire sequences of labels at once, NML can be adapted to
the setting where we make predictions about only the next
label based on the previously seen data, resulting in condi-
tional NML (CNML) (Rissanen and Roos, 2007; Griinwald,
2007; Fogel and Feder, 2018a). While several variations on
CNML exist, we consider the following:

P (Y |n; T1n—1, Y1i0-1) X Dy ey UnlTn),
“)
which solves the minimax problem
p“™L — argmin max 108 Pg 4y 121m) (Yn|2n) —1og q(yn).
q n
&)

We note that the inner maximization is only over the next
label y,, that we are predicting, rather than the full sequence
as before. This prediction strategy is now amenable to our
typical supervised learning setting, where (1.,,—1,Y1:n—1)
is our training set, and we want to output a predictive distri-
bution over labels y,, for a new test input x,,.

CNML provides conservative predictions. Here we mo-
tivate why CNML can provide reasonable uncertainty esti-
mates for out-of-distribution inputs. For each query point,
CNML considers each potential label and finds the model
that would be most consistent with that label and with the
training set. If that model assigns high probability to the la-
bel, then minimizing the worst-case regret forces CNML to
assign relatively high probability to it. Compared to simply
letting a model trained only on the training set extrapolate
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Figure 2. Given the labeled training set (blue and orange dots), we
want to predict the label at the query input (shown in pink in the left
image), which the training set MLE Oreain confidently classifies as
the blue class. However, CNML assigns a near-uniform prediction
on the query point, as it computes new MLEs 6o and 6, (center
and right images) by assigning different labels to the query point,
and finds both labels are consistent with the training data.

to OOD inputs, we expect CNML to give more conserva-
tive predictions on OOD inputs, since it explicitly considers
what would have happened if the new data point had been
labeled with each possible label.

We use a 2D logistic regres-
sion example to illustrate
CNML’s conservative pre-
dictions, showing a heatmap
of CNML probabilities in
Figure 1. CNML provides
uniform predictions on most
of the input space away from
the training samples. In
Figure 2, we illustrate how
CNML arrives at these pre-
dictions, showing the predic-
tions for the parameters bo
and 0y, corresponding to la-
beling the test point (shown
in pink in Figure 2, left) with
either label O or 1.

However, CNML may be

too conservative when the model class © is very expres-
sive. Naively applying CNML with large model classes
can result in the per-label models fitting their labels for the
query point arbitrarily well, such that CNML gives unhelp-
ful uniform predictions even on inputs we would hope to
reasonably extrapolate on. We see this in the 2D logistic
regression example in Figure 1. Thus, the model class ©
would need to be restricted in some form, for example by
only considering parameters within a certain distance from
the training set solution as a hard constraint.

Figure 1. CNML probabili-
ties with a logistic regression
model. CNML expresses high
uncertainty and provides uni-
form predictions (indicated by
the white color) on most of
the input space away from the
training set (shown in blue
and orange dots).

Another approach for controlling the expressivity of the
model class is to generalize CNML to use regularized esti-
mators instead of maximum likelihood, resulting in normal-
ized maximum a posteriori (NMAP) (Kakade et al., 2006)
codes. Instead of using maximum likelihood parameters,
NMAP selects 6s to be the parameter that maximizes both
data likelihood and a regularization term, or prior, over

parameters, and we can define slightly altered notions of
regret using these MAP estimators in all the previous equa-
tions to get a conditional normalized maximum a posteriori
distribution instead. See Appendix D for completeness.

Going back to the logistic regression example, we plot
heatmaps of CNMAP predictions in Figure 3, adding differ-
ent amounts of L2 regularization to the logistic regression
weights. As we add more regularization, the model class
becomes effectively less expressive, and the CNMAP pre-
dictions become less conservative.

(@A=0.1 b)yrx=1 ©A=10

Figure 3. CNMAP probabilities with different levels of L2 regular-
ization A Hw||§ Predictions are less conservative as A increases.

Computational costs of CNML. While we have argued
that CNML can provide an appealing approach for uncer-
tainty estimation for out-of-distribution inputs, it can be
exceptionally impractical to instantiate, particularly with
large models like neural networks, due to the prohibitive
computational costs of computing the maximum likelihood
estimators for each new input and label. To evaluate the
distribution on a new test point, one must solve a noncon-
vex optimization problem for each possible label, with each
problem involving the entire training dataset along with the
new test point. This direct evaluation of CNML therefore
becomes computationally infeasible with large datasets and
high-capacity models, and further requires that the model
carry around the entire training set even when it is deployed.
In settings where critical decisions must be made in real
time, even running a single epoch of additional training
would be infeasible. For this reason, NML-based methods
have not gained much traction as a practical tool for improv-
ing the predictive performance of high-capacity models.

3. Amortized CNML

In this section, we derive our method, amortized condi-
tional normalized maximum likelihood (ACNML), which
provides a tractable approximation for CNML and CNMAP
via approximate Bayesian inference. Instead of directly
computing maximum likelihood parameters over the query
point and training set, our method uses an approximate pos-
terior distribution over parameters to capture the necessary
information about the training set, reducing the maximiza-
tion to only the single new point. The computational cost at
test-time therefore does not increase with training set size.
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Algorithm 1 Amortized CNML (ACNML)

Input: Model class O, Training Data (1.,—1, Y1.:n—1)>
Test Point: x,,, Classes (1, ..., k)
Output: Predictive distribution p(y|z,,)
Training: Run approximate inference algorithm on train-
ing data (21.,—1,Y1.n—1) to get posterior density ¢(6)
for all possible labels ¢ € (1,...,k) do

Compute 6; = argmax, log py(i|z,) + log ¢(6)
end for

pgy (U|$n)

Return p(y|z,) = S pg, (ilon)

3.1. Algorithm Derivation

Incorporating an exact posterior into CNML. Given a
prior distribution p(#), the Bayesian posterior likelihood
conditioned on the training data is given by

p(9|$1:n717 yl:nfl) X p(e)pa(yl:nfl ‘xlznfl)- (6)

‘We can write the MAP estimators in the CNMAP distribu-
tion for a fixed query input x,, as

éy = argmax Ingg (yl:n—l |Jf'1:n—1) + Ing(a)
()

log p(0]T1:n—1,Y1:n—1)
+ log py (y|zn) (7)

We can thus replace the training data log-likelihood
Po(Y1:n—1]T1.:n—1) with the Bayesian posterior density
log p(0|x1.n—1, Y1.n—1) When computing éy We can also
recover CNML as a special case of CNMAP by using a uni-
form prior, but as discussed previously, CNML with highly
expressive model classes can lead to overly conservative
predictions, so we will opt to use non-uniform priors that
help control model complexity instead. For example, we
may use a zero-mean Gaussian prior p(6) over our weights,
corresponding to L2 regularization.

ACNML with an approximate posterior. Of course, the
exact Bayesian likelihood is no easier to compute than the
original training log likelihood. However, we can derive
a tractable approximation by replacing the exact posterior
p(0]21.n—1, y1.n—1) With an approximate posterior ¢(6) in-
stead. We can obtain an approximate posteriors via standard
approximate Bayesian techniques such as variational infer-
ence or Laplace approximations. We focus on Gaussian
posterior approximations for computational efficiency, and
discuss in Section 3.2 why this class of distributions pro-
vides a reasonable approximation for large datasets.

For practical purposes, we expect the approximate posterior
log-likelihood to ensure the optimal éy selected for each la-
bel retains good performance on the training set. By replac-
ing the likelihood over the training data with the probability
under an approximate posterior, it becomes unnecessary to

retain the training data at test time, only the parameters of
the approximate distribution. Optimization also becomes
much simpler, as it no longer requires stochastic gradients,
and the Gaussian posterior log density log g(6) serves as a
strongly convex regularizer.

ACNML algorithm summary A summary of the ACNML
algorithm is presented in Algorithm 1. The training pro-
cess for obtaining ¢(6) only needs to be performed once
on the training set, whereas the inference step is performed
for each test point. However, this inference step only re-
quires optimizing the model on a single data point with a
regularizer provided by log ¢(6).

3.2. Analysis of ACNML with Gaussian Posteriors

In this section, we argue that using a Gaussian approximate
posterior in ACNML, which correspond to second-order
approximations to the training set log-likelihood, suffices
for accurately computing the CNML distributions when the
training set is large. The intuition is that for large training
sets, the combined likelihoods of all the training points
dominate over the single new test point, so the perturbed
MLEs Qy remains close to the original training set MLE 0,
letting us rely on local approximations to the training loss.

Under simplifying assumptions of convexity and smooth-
ness of the training losses, we can formalize this using the
concept of influence functions, which measure how the MLE
(and more general M -estimators) for a dataset changes as
the dataset were perturbed by reweighting inputs an infinites-
imal amount. Recall that the maximum likelihood estimator
for a dataset with n datapoints (21.,,, y1.,) is given by

. 1 &
6 = argmax > " log py(yila:)- ®)
=1

Influence functions analyze how 6 relates to the MLE of a
perturbed dataset

Oy, = argmax (6 log po (y|x) + Zlogpa yzlxz)> :
©))

where érye is the new MLE if we perturb the training set

by adding a datapoint (z,y) with a weight e. A classical

result (Cook and Weisberg, 1982) shows that édfyg is dif-

ferentiable (under appropriate regularity conditions) with

respect to € with derivative given by the influence function
df

T,y,¢

o le=o=—Hy 'Vologp;(ylz),  (10)

where 6 is the MLE for the original dataset and H); the
Hessian of the mean training set log-likelihood evaluated at
6. CNML computes the MLE after adding datapoint (z, y)
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with equal weight as points in the training set, which is
precisely éx,y,e evaluated at ¢ = 1/n. Thus, for sufficiently
large n, a first order Taylor expansion around 6 should be
accurate and the new parameter can be estimated by

~ ~ 1.
00y =0 — —H; ' Vglogpy(yl), (1)

which is equivalent to solving

N 1 A
Op,y = argglaxﬁ(G — Q)TVG log pg(y|x)

+ %(9 —0O)TH;60—6). (12

This suggests that, with large training datasets, the perturbed
MLE parameters éy in Equation 7 can be approximated ac-
curately using a quadratic approximation to the training log-
likelihood, corresponding to a Gaussian posterior obtained
via a Laplace approximation. We can explicitly quantify the
accuracy of this approximation in the theorem below, which
is based on Theorem 1 from Giordano et al. (2019), with
full details and proof in Appendix E.

Theorem 3.1. (Adapted from Giordano et al. (2019)) Con-
sider a training set with n datapoints and an additional dat-
apoint (z,y). Assume assumptions 1-5 hold with constants
Cop, Ciy, As as defined in Appendix E. Let émy denote the
exact MLE if we had appended (x,y) to the training set,
and 0, ,, the parameter obtained via the approximation in
Equation 11. Let

5:
n+2

(13)
If§ < Ay, then

102,y — Ouyll2 < 2C2 Cpyo*. (14)

Given such a bound on how accurately we estimate new
parameters, we can explicitly quantify the accuracy of the
CNML approximation, with proof in Appendix E.

Proposition 3.2. Let éx,y and 0, ,, be the exact and ap-
proximate MLEs respectively, after appending the datapoint
(z,y) to the training set, and assume || ,, — 0y, || < 8 for
all y. Further suppose log pg(y|z) is L-Lipschitz in 6.

Let penmi(y) o Pa,., (ylz) and pacnme(y) Pg,., (y|z) de-
note the exact CNML and approximate CNML distributions

respectively. We then have

sup [log penme (y) — 1og pacnmr (v)| < 2L4. (15)
y

Theorem 3.1 and Proposition 3.2 suggest the approximation
given by ACNML will be increasingly close to the exact

supgeo max {[|Vglogpo(yl2)|l; . [| V3 log pa(ylz) ||, }

CNML distribution as the training set size n grows. How-
ever, this formal theoretical result only holds for sufficiently
large datasets and requires assumptions including smooth-
ness and convexity of the training loss (for example, the
constant Cy,, int he bound depends on how strongly convex
the loss is at é), so does not necessarily hold in practical
settings with deep neural networks due to nonconvexity.

To interpret how different training points influence the pre-
dictions of neural networks, Koh and Liang showed that
influence function approximations were able to provide use-
ful predictions for estimating leave-one-out retraining with
deep convolutional neural networks. This closely resembles
the conditions we encounter when computing parameters
for each label of the query point with ACNML, with the key
difference being that ACNML adds a datapoint while leave-
one-out retraining removes one. Their empirical results
suggest these second-order approximations to the training
loss, corresponding to Gaussian approximations in ACNML,
may suffice to yield useful predictions about how parame-
ters change when the query point is added, despite lacking
formal guarantees with deep neural networks.

4. Related Work

Minimum description length has been used to motivate
neural network methods dating back to Hinton and van
Camp (1993), who treat description length as a regularizer
to mitigate overfitting. The idea of preferring flat minima
(Hochreiter and Schmidhuber, 1997) also has its origins in
the MDL framework, as it allows a coarser discretization of
the weights (and thus fewer bits needed).

Bayesian methods average the predictions of different mod-
els sampled from the posterior distribution and typically
serve as the starting point for uncertainty estimation in deep
networks. A common approach is to use simple tractable
distributions to approximate the true posterior (Hoffman
et al., 2013; Blundell et al., 2015; Ritter et al., 2018). Re-
cent work (Maddox et al., 2019; Dusenberry et al., 2020) has
shown simple Gaussian posterior approximations are able
to achieve well-calibrated predictions with marginalization.
ACNML utilizes these approximate posterior methods, but
in contrast to the Bayesian methods, where the posterior is
used to efficiently sample models for Bayesian model aver-
aging, ACNML uses the posterior density to enable efficient
optimization without needing to retain the training data.

Ovadia et al. (2019) evaluate various proposed methods
for uncertainty estimates in deep learning under different
types of distribution shift, finding that good calibration on
in-distribution points did not necessarily indicate good cal-
ibration under distribution shift, and that methods relying
on marginalizing predictions over multiple models (Lak-
shminarayanan et al., 2016; Srivastava et al., 2014) gave
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better uncertainty estimates under distribution shift than
other techniques. In our experiments, we show that our
method ACNML maintains much better calibration under
distribution shift than prior methods.

Similarly to ACNML, Test Time Training (TTT) (Sun et al.,
2020) updates the model on test inputs to improve out-of-
distribution performance. One key differences is that TTT
relies on an auxiliary self-supervised task to solve on the
new test point, and so requires domain knowledge to specify
a nontrivial task that is useful for predictions. Additionally,
the goal of TTT was to enable more accurate prediction
under distribution shift, whereas our goal with ACNML was
to provide more reliable uncertainty estimates.

Perhaps most closely related to our work, Fogel and Feder
(2018b) advocate for the use of the CNML distribution in
the context of supervised learning (under the name predic-
tive NML), citing its minimax properties. Bibas et al. (2019)
estimate the CNML distribution with deep networks by fine-
tuning the last layers of the network on every test input and
label combination appended to the training set. Since this
finetuning procedure trains for several epochs, it is very com-
putationally intensive at test-time and requires continued
access to the entire training set when evaluating. In con-
trast, our method amortizes this procedure by condensing
the information in the training data into a distribution over
parameters, allowing for much faster test-time inference
without needing the training data.

In the analysis for our approximation, we draw connec-
tions to influence functions (Cook and Weisberg, 1982),
which have been studied as asymptotic approximations to
how M -estimators change when perturbing a dataset. In
deep learning, Koh and Liang advocated for using influence
functions to interpret neural nets, generate adversarial ex-
amples, and diagnose errors in datasets. We use a theorem
from Giordano et al. (2019), which broadened the necessary
assumptions for these infinitisemal approximations to be ac-
curate and provides explicit guarantees for specific datasets
rather than simply asymptotic results.

For out-of-distribution detection, Xiao et al. (2020) propose
an approach that updates a generative model to maximize
the likelihood of the test input and uses the amount of im-
provement in log likelihood as a statistic for OOD detection.
Our work differs in that we tackle model calibration for
shifted input distributions and only use discriminative mod-
els, while their goal is OOD detection and utilize generative
models of the data. Nonetheless, we believe this work com-
plements ours and lends additional support to the idea that
optimizing models on test points can be valuable for esti-
mating uncertainty under distribution shift.

5. Experiments

Our experiments aim to evaluate how trustworthy the uncer-
tainty estimates provided by ACNML are under different
levels of distribution shift. Following Ovadia et al. (2019),
we compare uncertainty estimation across different meth-
ods using Brier score and expected calibration error (ECE)
(Naeini et al., 2015). Brier score is a proper scoring rule,
which captures both how accurate and how calibrated the
predictions are, while ECE assesses calibration by directly
measuring how closely the predicted confidence corresponds
to empirical accuracy. We show that our method is able to to
significantly outperform prior works in terms of calibration
when distribution shifts became more extreme. While severe
distribution shifts mean all methods test perform poorly in
terms of accuracy, ACNML is at least able to more reliably
indicate when the predictions may be incorrect.

In principle, any method for computing a tractable poste-
rior over parameters can be used with ACNML, and we
demonstrate this flexibility by implementing ACNML on
top of several different approximate posteriors. By using
the exact same posteriors, we can directly compare how
uncertainty estimates given by ACNML relate to those of
the corresponding Bayesian method.

For each model, we report results across 3 seeds. as well
as showing reliability diagrams (Guo et al., 2017) to further
qualitatively assess calibration. For reliability diagrams, we
sort data points by confidence and divide them into twenty
equal sized buckets, plotting the mean accuracy against
the mean confidence for each bucket. This allows to see
qualitatively see how well the confidence of the prediction
relates to the actual accuracy, as well as showing how the
confidences are distributed for each method.

Rotated MNIST. We first consider the rotated MNIST task,
where out-of-distribution inputs are generated by rotating
images from the MNIST test set, with higher levels rotation
corresponding to more distribution shift. Here, ACNML is
implemented on top of Bayes-by-backprop (Blundell et al.,
2015), and we compare to the MAP estimate and Bayes
model averaging with the same posterior.

We see in Figure 4 that for higher levels of rotation, corre-
sponding to more out-of-distribution inputs, that ACNML
exhibits substantial improvements in calibration as mea-
sured by the ECE metric, as well as improved Brier scores.
However, on the in-distribution test set and the lowest lev-
els of rotation where the models still predict accurately,
ACNML’s predictions are overly conservative, leading to
underconfident predictions and worse calibration than other
methods. In general, this agrees with what we expect
from ACNML.: the predictions are more conservative across
the board, which does not necessarily improve results in-
distribution, particularly for easy domains like MNIST, but



Amortized Conditional Normalized Maximum Likelihood

0.6 4 .--"--_.\
L e
0.5 P 4 “SeEsagm=ae
o
0.4 A L T
! ¢ ,o" ‘.“‘-..
w o Ve SEEEg===e
B 034 ! o ——
r’ / /' o\
¥ ’ L
] 4 / —__
0.2 4 PR e ey
/.\‘0' s
014 * ’ o,_‘_'_‘h
P L |
ISl
o T _g =
0.0 -

Brier

4 P N
e S,
1.2 & —— R
"o‘ . AP :‘__.___—-“-. — i SR
10 // P i -
s
0.8 ", y
/
0.6 1 /
d Method
0.4 /® -®@- Bayes Model Averaging
/e -®- MAP
0.2 P Naive CNML
0.0 o —&— ACNML (ours)

T T T T
Test 15 30 45 60 75 90
Rotation

(a) Rotated MNIST ECEs (lower is better)

T T T T T T
105 120 135 150 165 180

T T T T T T T
Test 15 30 45 60 75 90
Rotation

(b) Rotated MNIST Brier Scores (lower is better)

T T T T T T
105 120 135 150 165 180

Figure 4. ACNML compared against its Bayesian counterpart, the deterministic MAP baseline, and naive CNML on rotated MNIST. We
plot means and standard deviations across 3 seeds. We see that ACNML (blue, solid lines) achieves lower ECE as the distribution shift
becomes more severe and accuracy decreases, as well as better Brier scores than other methods.
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Figure 5. Reliability diagrams plotting confidence vs. accuracy for CIFAR10 in-distribution and OOD data, with a dotted reference line
indicating perfect calibration. ACNML provides more conservative predictions than other methods, resulting in better calibration on OOD
inputs. For OOD tasks, we show results for the Gaussian blur corruption at levels 3 and 5, with level 5 corresponding to a higher amount
of corruption. Each point shows the mean confidence and accuracy within a bucket, so the spread of points along the x-axis shows that
ACNML makes more low confidence predictions than other methods.

offer considerable improvements in calibration for out-of-
distribution inputs where errors are prevalent.

We additionally compare to a much more computationally
expensive instantiation of CNML used by Bibas et al. (2019)
(denoted naive CNML in Figure 4), which directly finetunes
for several epochs using the training set to obtain the opti-
mal parameters for each query point and label, rather than
using the approximate posterior like ACNML does. This
direct instantiation of CNML improves over the MAP so-
lution in terms of Brier score and calibration on the OOD
inputs. However, it is computationally prohibitive, to the
point where we were unable to evaluate it on the more
complex datasets. On MNIST, each prediction with naive
CNML was hundreds of times slower than with ACNML,
as shown in Table 1. We also find ACNML is overall more
conservative when using this particular posterior approxi-
mation, resulting in better calibration on more OOD inputs
(see Appendix C for more detailed comparisons between
ACNML and naive CNML).

CIFAR Corruptions. We use CIFAR10 (Krizhevsky,
2012) for training and in-distribution testing, and eval-
uate uncertainty estimates under distribution shift using
the CIFAR10-Corrupted (Hendrycks and Dietterich, 2019)
datasets, which apply different severities of 15 common
corruptions to the test set images. We can thus assess cali-
bration over a wide variety of distribution shifts, as well as
how calibration degrades as distribution shift increases.

We show results here using the VGG16 (Simonyan and
Zisserman, 2014) architecture. To compute approximate
posteriors, we use Stochastic Weight Averaging - Gaussian
(SWAG) (Maddox et al., 2019), and KFAC-Laplace (Rit-
ter et al., 2018). SWAG computes a posterior by fitting a
Gaussian distribution to the trajectory of SGD iterates. For
simplicity and computational efficiency, we instantiate AC-
NML with the SWAG-D variant, which uses a Gaussian with
diagonal covariance. KFAC-Laplace uses a Gaussian poste-
rior approximation with the MAP solution as the mean and
the inverse Hessian of the loss as covariance, approximating
the Hessian using KFAC (Martens and Grosse, 2015).
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Figure 6. ACNML compared against corresponding Bayesian methods, the deterministic MAP baseline (SWA), and deep ensembles
(SWA Ensemble) on out-of-distribution CIFAR10-Corrupted datsets. We plot medians and 95% confidence intervals across all corruptions.
We see that ACNML methods (solid lines) achieve much lower ECE at higher corruption values, as well as better Brier scores than other

methods.

Focusing on the most direct comparisons, we compare
against the MAP solution for the given posterior, which is
equivalent to Stochastic Weight Averaging (SWA) (Izmailov
et al., 2018), and Bayes model averaging with SWAGD and
KFAC-Laplace, which provide apples-to-apples compar-
isons to the two versions of our method that directly utilize
the same posteriors from these prior approaches. We ad-
ditionally compare to deep ensembles (Lakshminarayanan
et al., 2016), which Ovadia et al. (2019) found to provide
strong performance in uncertainty estimation under distribu-
tion shift, but also takes significantly longer to train due to
the need to train independent models.

Examining the reliability diagrams in Figure 5, we can qual-
itatively see that ACNML provides more conservative (less
confident) predictions than other methods across different
levels of corruption. On out-of-distribution inputs, where
accuracy degrades, we see that ACNML’s conservative pre-
dictions lead to many better calibrated low-confidence pre-
dictions, while other methods drastically overestimate confi-
dence. Thus, ACNML’s confidence estimates are still able
reliably indicate when predictions are likely to be incorrect
even on OOD inputs. ACNML is however slightly under-
confident on the in-distribution CIFARI10 test set, while
other methods err on the side of being overconfident.

In Figure 6, we can quantitatively compare the calibration of
different methods for different levels of corruption. ACNML
variants provide much better calibration on the more se-
vere corruptions than other methods while also performing
slightly better in terms of Brier score. All methods perform
similarly in terms of accuracy in all domains, and we find
that ACNML’s more conservative estimates also perform
competitively with Bayesian methods in Brier score, and

ECE on the in-distribution test set as well (see Table 2 in
Appendix B). We include additional comparisons across
other methods and architectures in Appendix B.

MNIST MLP | VGG16 | WRN28x10
ACNML (ours) 0.08s 0.37s 1.1s
naive CNML (per epoch) 13.83s 102.0s 359.1s
feedforward inference 0.0001s 0.0013s 0.004s

Table 1. Inference time per input (in seconds).

Timing Comparison vs. standard CNML. In Table 1,
we examine the computational costs of our method. We
compare against a naive implementation of CNML that
fine-tunes for IV epochs on each test point and label, as in
Bibas et al. (2019). In total, predicting a single input with
k possible labels involves running kN epochs of training.
While ACNML is over two orders of magnitude faster than
naive CNML even with just a single epoch of training (our
experiments with naive CNML on MNIST used 5 epochs),
it is still slower than standard inference. The computational
requirements of our method also scale linearly with the
number of classes, but are constant with respect to dataset
size. Timing experiments are run using a single NVIDIA
1080Ti, using MNIST for the MNIST MLP timing results
and using CIFARI10 for VGG16 and WideResNet28x10,
with no parallelization over data points.

6. Discussion

In this paper, we present amortized CNML (ACNML) as an
alternative to Bayesian marginalization for obtaining reli-
able uncertainty estimates and calibrated predictions under
distribution shift. The CNML distribution is a theoretically
well-motivated strategy derived from the MDL principle
with strong minimax optimality properties, but actually eval-
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uating this distribution is computationally daunting. AC-
NML utilizes approximate Bayesian posteriors to tractably
approximate it, can be instantiated on top of a wide range of
approximate Bayesian methods, and provides much better
calibrated predictions than other methods as the inputs be-
come more out-of-distribution. We view ACNML as a step
towards practical uncertainty aware predictions that would
be essential for real-world decision making. Future work
could further expand on our proposed method, for example
by combining ACNML with more complex and expressive
posterior approximations. In particular, training losses are
highly non-convex and have many local minima, so incorpo-
rating local approximations around multiple diverse minima
could allow for even more reliable uncertainty estimation.
More broadly, tractable algorithms inspired by ACNML
could in the future provide for substantial improvement in
our ability to produce accurate and reliable confidence esti-
mates on out-of-distribution inputs, improving the reliability
and safety of learning systems.
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