Appendices for Towards Defending against Adversarial
Examples via Attack-Invariant Features

A. Attack implementation

In this section, we present supplementary information on
attack implementation. We use Advertorch Toolbox' to
implement the projected gradient descent method (PGD),
the decoupling direction and norm method (DDN), the Car-
lini and Wagner method (CW), the Jacobian-based saliency
map attack method (JSMA) and the spatial transform attack
method (STA). The autoattack method (AA)?, the faster
wasserstein attac method (FWA)® and the robust physical
perturbation method (RP;)* are implemented from their
open source codes. On MNIST, the main parameters of
attacks are as follows:

¢ PGD: We use the L., norm PGD method to craft ad-
versarial examples. The default perturbation budget is
set to 0.3. The default number of iterations is set to 40.
The attack step size is set to 0.01.

* DDN: The number of iterations is set to 100. The
factor to modify the norm at each iteration is set to
0.05. The number of quantization levels is set to 256.

e CW: We use the Ly norm CW method to craft adver-
sarial examples. The maximum number of iterations
is set to 1000. The confidence of the adversarial exam-
ples is set to 1. The initial value of the constant is set
to 1.

* JSMA: The highest percentage of pixels can be modi-
fied is set to 1.0. The perturb length is set to 1.0.

¢ STA: The maximum number of iterations is set to 500.
The number of search times to find the optimum is set
to 20.

* AA: The default perturbation budget is set to 0.3. The
default number of iterations is set to 100.

e FWA: The wasserstein adversarial examples are
crafted by exploiting PGD. The default perturbation
budget is set to 0.3. The number of iterations is set to
40. The learning rate is set to 0.1.

On CIFAR- 10, the main parameters of attacks are as follows:
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Figure 1. A visual illustration of five masks used to craft adversar-
ial patches (AP).

e PGD: We use the L., norm PGD method to craft ad-
versarial examples. The default perturbation budget is
set to 8/255. The default number of iterations is set to
40. The attack step size is set to 0.01.

* DDN: The number of iterations is set to 100. The
factor to modify the norm at each iteration is set to
0.05. The number of quantization levels is set to 256.

¢ CW: We use the L, norm CW method to craft adver-
sarial examples. The maximum number of iterations is
set to 500. The confidence of the adversarial examples
is set to 1. The initial value of the constant is set to 1.

¢ JSMA: The highest percentage of pixels can be modi-
fied is set to 1.0. The perturb length is set to 1.0.

¢ STA: The maximum number of iterations is set to 200.
The number of search times to find the optimum is set
to 20.

e AA: The default perturbation budget is set to 8/255.
The default number of iterations is set to 100.

e FWA: The wasserstein adversarial examples are
crafted by exploiting PGD. The default perturbation
budget is set to 8/255. The number of iterations is set
to 40. The learning rate is set to 0.01.

On LISA, we use five different masks to implement RPy
for crafting adversarial examples. The masks are shown in
Figure 1. The number of iterations of RPj is set to 300 and
the learning rate is set to 0.01.

B. Defense results

In this section, we present supplementary information on
defense results. We use two different combinations of seen
types of attacks to train our ARN model: (i) the targeted
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PGD and the non-targeted PGD (“ARNpp”). (ii) the non-
targeted DDN and the non-targeted PGD (“ARNpp”). Fig-
ure 2, 3 shows examples which are restored by our adversar-
ial noise removing network (ARN) against pixel-constrained
attacks on MNIST and CIFAR-10. These attacks include
non-targeted L., norm PGD (PGDy), targeted L., norm
PGD (PGDr7), non-targeted DDN (DDN ), non-targeted
Lo norm CW (CW ), targeted JISMA (JSMA7) and non-
targeted AA (AAy). Figure 4 shows examples which are
restored by our ARN against spatial-constrained attacks.
These attacks include non-targeted STA (STA ), targeted
STA (STAr), non-targeted FWA (FWA ) and non-targeted
RP; (RPy). Figure 5 and 6 show adversarial examples and
restored examples on LISA. Five types of adversarial patches
(AP) are crafted by RP» and are added to natural examples
to generate adversarial examples. We use adversarial exam-
ples with two types of adversarial patches (AP; and AP»)
as training data to train our ARN model. The categories
corresponding to the class labels in CIFAR-10 are as follows:
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0) airplane, 1) car, 2) bird, 3) cat, 4) deer, 5) dog, 6) frog, 7)
horse, 8) boat and 9) truck.

C. Leaked defenses

In this section, we present supplementary information on de-
fending under difficult scenarios where defenses are leaked.
We use ARNpp, APE-Gpp and HGDpp as the leaked
defense models to craft adversarial examples by distinct
attacks. Figure 7 shows defense results of our ARN against
BPDA. The adversarial examples are crafted by jointly us-
ing PGDy and BPDA against our ARN. Figure 8, 9 and
10 show defense results of our ARN against white-box and
gray-box adaptive attacks. To be specific, the leaked defense
in Figure 8 is our ARNpp and the attack is PGDy. The
leaked defense in Figure 9 is APEpp and the attacks are
PGD7, CWy and CWr. The leaked defense in Figure 10
is HGD pp and the attacks are PGD7, DDN and DDN.
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Figure 2. A visual illustration of adversarial examples and their restored examples. These adversarial examples are crafted by pixel-

constrained attacks.
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Figure 3. A visual illustration of adversarial examples and their restored examples. These adversarial examples rafted by pixel-

constrained attacks.
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Figure 4. A visual illustration of adversarial examples and their restored examples. These adversarial examples rafted by spatially-
constrained attacks.
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Figure 5. A visual illustration of adversarial examples on LISA. Five types of adversarial patches (AP) are crafted by RP2 and are added to
natural examples to generate adversarial examples.
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Figure 6. A visual illustration of restored examples on LISA. Five types of adversarial patches (AP) are crafted by RP2 and are added to
natural examples to generate adversarial examples.

Iteration: 15 ARNp; (15) Iteration: 20 ARNp; (20)

Figure 7. A visual illustration of adversarial examples and their restored examples against BPDA. The adversarial examples are crafted by
jointly using BPDA and PGD y against our ARN. The number of iterations of PGD y is 15 and 20 respectively.
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Figure 8. A visual illustration of defense results of our ARN against the white-box adaptive attack.

Figure 10. A visual illustration of defense results of our ARN against the gray-box adaptive attack. The local defense model is HGDpp.



