
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Appendices for Towards Defending against Adversarial
Examples via Attack-Invariant Features

A. Attack implementation
In this section, we present supplementary information on
attack implementation. We use Advertorch Toolbox1 to
implement the projected gradient descent method (PGD),
the decoupling direction and norm method (DDN), the Car-
lini and Wagner method (CW), the Jacobian-based saliency
map attack method (JSMA) and the spatial transform attack
method (STA). The autoattack method (AA)2, the faster
wasserstein attac method (FWA)3 and the robust physical
perturbation method (RP2)4 are implemented from their
open source codes. On MNIST, the main parameters of
attacks are as follows:

• PGD: We use the L∞ norm PGD method to craft ad-
versarial examples. The default perturbation budget is
set to 0.3. The default number of iterations is set to 40.
The attack step size is set to 0.01.

• DDN: The number of iterations is set to 100. The
factor to modify the norm at each iteration is set to
0.05. The number of quantization levels is set to 256.

• CW: We use the L2 norm CW method to craft adver-
sarial examples. The maximum number of iterations
is set to 1000. The confidence of the adversarial exam-
ples is set to 1. The initial value of the constant is set
to 1.

• JSMA: The highest percentage of pixels can be modi-
fied is set to 1.0. The perturb length is set to 1.0.

• STA: The maximum number of iterations is set to 500.
The number of search times to find the optimum is set
to 20.

• AA: The default perturbation budget is set to 0.3. The
default number of iterations is set to 100.

• FWA: The wasserstein adversarial examples are
crafted by exploiting PGD. The default perturbation
budget is set to 0.3. The number of iterations is set to
40. The learning rate is set to 0.1.

On CIFAR-10, the main parameters of attacks are as follows:

1https://github.com/codeaudit/advertorch
2https://github.com/fra31/auto-attack
3https://github.com/watml/

fast-wasserstein-adversarial
4https://github.com/tongwu2020/phattacks/

tree/master/sign/experiment

AP1 AP2 AP3 AP4 AP5

Figure 1. A visual illustration of five masks used to craft adversar-
ial patches (AP).

• PGD: We use the L∞ norm PGD method to craft ad-
versarial examples. The default perturbation budget is
set to 8/255. The default number of iterations is set to
40. The attack step size is set to 0.01.

• DDN: The number of iterations is set to 100. The
factor to modify the norm at each iteration is set to
0.05. The number of quantization levels is set to 256.

• CW: We use the L2 norm CW method to craft adver-
sarial examples. The maximum number of iterations is
set to 500. The confidence of the adversarial examples
is set to 1. The initial value of the constant is set to 1.

• JSMA: The highest percentage of pixels can be modi-
fied is set to 1.0. The perturb length is set to 1.0.

• STA: The maximum number of iterations is set to 200.
The number of search times to find the optimum is set
to 20.

• AA: The default perturbation budget is set to 8/255.
The default number of iterations is set to 100.

• FWA: The wasserstein adversarial examples are
crafted by exploiting PGD. The default perturbation
budget is set to 8/255. The number of iterations is set
to 40. The learning rate is set to 0.01.

On LISA, we use five different masks to implement RP2

for crafting adversarial examples. The masks are shown in
Figure 1. The number of iterations of RP2 is set to 300 and
the learning rate is set to 0.01.

B. Defense results
In this section, we present supplementary information on
defense results. We use two different combinations of seen
types of attacks to train our ARN model: (i) the targeted

https://github.com/codeaudit/advertorch
https://github.com/fra31/auto-attack
https://github.com/watml/fast-wasserstein-adversarial
https://github.com/watml/fast-wasserstein-adversarial
https://github.com/tongwu2020/phattacks/tree/master/sign/experiment
https://github.com/tongwu2020/phattacks/tree/master/sign/experiment


055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

PGD and the non-targeted PGD (“ARNPP ”). (ii) the non-
targeted DDN and the non-targeted PGD (“ARNDP ”). Fig-
ure 2, 3 shows examples which are restored by our adversar-
ial noise removing network (ARN) against pixel-constrained
attacks on MNIST and CIFAR-10. These attacks include
non-targeted L∞ norm PGD (PGDN ), targeted L∞ norm
PGD (PGDT ), non-targeted DDN (DDNN ), non-targeted
L2 norm CW (CWN ), targeted JSMA (JSMAT ) and non-
targeted AA (AAN ). Figure 4 shows examples which are
restored by our ARN against spatial-constrained attacks.
These attacks include non-targeted STA (STAN ), targeted
STA (STAT ), non-targeted FWA (FWAN ) and non-targeted
RP2 (RPN ). Figure 5 and 6 show adversarial examples and
restored examples on LISA. Five types of adversarial patches
(AP) are crafted by RP2 and are added to natural examples
to generate adversarial examples. We use adversarial exam-
ples with two types of adversarial patches (AP1 and AP2)
as training data to train our ARN model. The categories
corresponding to the class labels in CIFAR-10 are as follows:

0) airplane, 1) car, 2) bird, 3) cat, 4) deer, 5) dog, 6) frog, 7)
horse, 8) boat and 9) truck.

C. Leaked defenses
In this section, we present supplementary information on de-
fending under difficult scenarios where defenses are leaked.
We use ARNPP , APE-GPP and HGDPP as the leaked
defense models to craft adversarial examples by distinct
attacks. Figure 7 shows defense results of our ARN against
BPDA. The adversarial examples are crafted by jointly us-
ing PGDN and BPDA against our ARN. Figure 8, 9 and
10 show defense results of our ARN against white-box and
gray-box adaptive attacks. To be specific, the leaked defense
in Figure 8 is our ARNPP and the attack is PGDT . The
leaked defense in Figure 9 is APEPP and the attacks are
PGDT , CWN and CWT . The leaked defense in Figure 10
is HGDPP and the attacks are PGDT , DDNN and DDNT .

Ori

ARNPP

ARNDP

PGDN

ARNPP

ARNDP

PGDT

ARNPP

ARNDP

CWN

ARNPP

ARNDP

DDNN

ARNPP

ARNDP

JSMAT

ARNPP

ARNDP

AAN

ARNPP

ARNDP

9 0 6 1 5 7 6 7 0 9 5 2

4 9 0 8 3 3 2 9 2 1 4 3

3 3 3 3 3 3 3 3 3 3 3 3

7 9 0 8 3 3 2 9 2 1 4 3

7 9 0 8 3 3 2 9 2 1 4 3

3 3 3 3 3 3 3 3 3 3 3 3

4 9 8 8 3 3 2 9 2 1 4 3

Figure 2. A visual illustration of adversarial examples and their restored examples. These adversarial examples are crafted by pixel-
constrained attacks.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Ori

ARNPP

ARNDP

PGDN

ARNPP

ARNDP

PGDT

ARNPP

ARNDP

CWN

ARNPP

ARNDP

DDNN

ARNPP

ARNDP

JSMAT

ARNPP

ARNDP

AAN

ARNPP

ARNDP

9 0 6 1 5 7 6 7 0 9 5 2

4 9 0 8 3 3 2 9 2 1 4 3

3 3 3 3 3 3 3 3 3 3 3 3

7 9 0 8 3 3 2 9 2 1 4 3

7 9 0 8 3 3 2 9 2 1 4 3

3 3 3 3 3 3 3 3 3 3 3 3

4 9 8 8 3 3 2 9 2 1 4 3

Figure 3. A visual illustration of adversarial examples and their restored examples. These adversarial examples are crafted by pixel-
constrained attacks.

ARNPP

ARNDP

STAT

ARNPP

ARNDP

FWAT

ARNPP

ARNDP

STAN

Ori

5 3 2 0 8 7 0 5 8 7 5 9

3 7 3 9 2 3 6 7 0 6 3 7

3 1 3 3 3 3 9 3 3 3 3 3

9 7 0 6 2 3 3 3 6 1 3 7

Figure 4. A visual illustration of adversarial examples and their restored examples. These adversarial examples are crafted by spatially-
constrained attacks.



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

8 10 15 13 14 2 4 14 10

11 10 6 13 0 11 4 0 10

8 13 4 13 14 4 4 14 13

8 13 4 13 12 4 4 14 10

11 10 6 13 0 11 10 0 10

8 8 2 13 15 14 14 14 13

Ori

AP1

AP2

AP3

AP4

AP5

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

Ori

AP1

AP2

AP3

AP4

AP5

Figure 5. A visual illustration of adversarial examples on LISA. Five types of adversarial patches (AP) are crafted by RP2 and are added to
natural examples to generate adversarial examples.

8 10 15 13 14 2 4 14 10

11 10 6 13 0 11 4 0 10

8 13 4 13 14 4 4 14 13

8 13 4 13 12 4 4 14 10

11 10 6 13 0 11 10 0 10

8 8 2 13 15 14 14 14 13

Ori

AP1

AP2

AP3

AP4

AP5

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

8 10 15 13 14 2 4 14 10

Ori

AP1

AP2

AP3

AP4

AP5

Figure 6. A visual illustration of restored examples on LISA. Five types of adversarial patches (AP) are crafted by RP2 and are added to
natural examples to generate adversarial examples.

Ori Iteration: 15 Iteration: 20ARNPP (15) ARNPP (20)

Figure 7. A visual illustration of adversarial examples and their restored examples against BPDA. The adversarial examples are crafted by
jointly using BPDA and PGDN against our ARN. The number of iterations of PGDN is 15 and 20 respectively.



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Ori

PGDT

ARNPP

7 0 3 3 6 6

9 7 0 2 5 4 6

Figure 8. A visual illustration of defense results of our ARN against the white-box adaptive attack.

Ori

PGDT

ARNPP

CWN

ARNPP

CWT

ARNPP

7 4 0 1 3 2

3 3 3 3 1 3

3 3 3 3 1 3

9 9 3 8 9 8

Figure 9. A visual illustration of defense results of our ARN against the gray-box adaptive attack. The local defense model is APEPP .

Ori

PGDT

ARNPP

DDNN

ARNPP

DDNT

ARNPP

4 6 7 0 5 8

3 3 3 3 3 3

3 3 3 3 3 3

8 8 4 9 9 3

Figure 10. A visual illustration of defense results of our ARN against the gray-box adaptive attack. The local defense model is HGDPP .


