Asymmetric Loss Functions for Learning with Noisy Labels:
Supplementary Materials

A. More Analysis about Clean Labels Domination Assumption

For robust training, we assume that samples in the training dataset have bigger probability of keeping their true semantic
label than wrong class labels, which is referred to as clean labels domination assumption. In the following, we provide more
intuitive analysis about this assumption to show its reasonability.
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Figure 1. Illustration of label noise model under clean-labels-dominate and -non-dominate settings.

In Figure 1, label noise models under clean-labels-dominate and -non-dominate setting are shown, from which an intuitive
understanding about the clean labels domination assumption can be derived. Figure 1(a) and 1(b) exhibit noise transmission
matrices, which denote the probability of flipping the class of columns to the class of rows. In Figure 1(a), cats have a 20%
probability of keeping the true label, while having smaller probability of wrongly flipping to labels of any other classes. For
example, they have a 19% probability to be annotated as owls. In this case, we call cats clean-labels-dominant, since images
with true cats labels dominate in the cats class, a classifier can be learned to correctly separate cats from other classes by
classifying a sample to the dominant class . In Figure 1(b), the situation is reversed, where cats have bigger probability
of flipping to owls than keeping the true label, which is denoted as the case of clean-labels-non-dominate. It means that
owls account for the largest proportion in cats class, which sounds ridiculous. On the other hand, without the help of prior
knowledge, even if there exists a learned classifier that works well in a clean-labels-non-dominant dataset, it would produce
wrong results on a clean-labels-dominant dataset since it tends to classify a sample into a non-dominant class rather than the
corresponding dominant class (i.e., the true class).

B. Classification-calibration and Excess Risk Bound

In the binary classification problem with label set {0, 1} which is different from {—1, 1}, we need to slightly modified the
definition of classification-calibration in (Tong, 2003; Bartlett et al., 2006).
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Let f(x) denote the predictive result of p(y = 1|x), and R,(f) denote the risk of a classifier f based on a loss function £ or
the (-risk, i.e., Re(f) = E4(f(x),y). And the risk of a global minimizer is R} = inf; Re(f).

For the zero-one loss {y_1, we have Ry, _, (f) = E[I(sign(f(x) — 1/2) # sign(y — 1/2))]. R* denote the Bayes risk, i.e.,

Rj,. (f) = inf By, (f) n

Given a loss function £(t) (eg., exponential loss, cross entropy loss, or unhinged loss), where t = y f(x) + (1 —y) (1 — f(x))
is the predictive probability of data point (x, y), the conditional {—risk is defined as

Cone (f(3),0) = By [y f (x) + (1 =) (1 = f(x))] = nl(f (%)) + (1 = 1) £(1 = f (%)) 2)
where 75 = p(y = 1|x). Similarly, we define the “optimal ¢-risk™ as
R = inf Re(f) = it Elpe(F(x)) + (1~ (1~ ()] @
When / is the zero-one loss, we obtain the Bayes-optimal classifier I(ny > %)

The excess risk for a classifier f is given by Ry, _, (f) — Rj,_ , and the “excess (-risk” is R¢(f) — ;.

For a fixed value of x, the minimum of the expectation is given by

Hy(n) = inf (nl(a) + (1 —n)(1—a)), (4)
a€l0,1]
SO we write
Ry =E[H,(nx)]- ©))

For a good classifier, we want sign(f(x) — 1) = sign(a — ) = sign(n — 1), i.e., (@ — 2)(n — 3) > 0. So we define a

quantity similar to Eq. 4 but optimized only where « is not a good classifier:

H; (1) in (nf(a) + (1 —n)t(1 - ). ©)

T {ai(a—1)(n—1)<0,a€00,1]}

We define a loss function £ to be “classification-calibrated” if H, (1) > Hy(n) for all n # 1. Intuitively, this means that the
loss function strictly penalizes a classifier f for not classifying in accordance with 7).
B.1. Classification-calibration

Theorem 1. Completely asymmetric loss functions are classification-calibrated.

Proof. For any weights w1, wy and wy # ws, we define a completely asymmetric loss function ¢ as follows

arg min wy£(u) + wel(1 — u) = [wy > wa, (7
u€[0,1]

ie., wil(u) + wol(l —u) > Twy > wo] - [w1l(1) + w2l(0)] + I[wy < wa] - [w1€(0) + w2£(1)], and the equality holds
if and only if u = I(w; > w2). In other words, the conditional risk minimizer of ¢ can be expressed as I(nx > 1 — 1x),
which is equivalent to the Bayes-optimal classifier I(nx > 3).

Then if £ is asymmetric on 7, 1 — 7, where 1 £ %, we have

. _ n£(1)+(1—77)f(0), n> 1
Hy(n) = aé?of,ll(w(a) +(1=—n)l(l-a)= {nz(o) F (1 -ned), n< g (8)
and
_ oy Jinfocaca(ml(a) + (1 =n)l(1—a)), n> 1
Hy (n) = {jnfé<a<1(n€(a) F1-nl1-a), n< % . )
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Because £ is asymmetric on 1), 1 — 7, then for all > %, we have

int (né(a) + (L= n)(1 = ) > né(1) + (1= )(0), (10)
Sax 5
and forall < 2,
inf (nf(er) + (1 =n)l(1 = a)) > nl(0) + (1 = n)t(1). (11)
5<a<ll
so it follows that H, (n) > Hy(n) for all n # %, so asymmetric loss functions are classification-calibrated. O

B.2. Excess Risk Bound

Theorem 2. An excess risk bound of a strictly and completely asymmetric loss function L(u, 1) = £(u;) can be expressed as

2(Re(f) — Ry

_ R <
Reo—l(f) Rfo,l = 6(0) — é(l) ) (12)
where Rj = infy Ry, ,(g) and R} = inf, Re(g).
Proof. Consider a loss function ¢, the transform 15 : [-1,1] — R4 from (Bartlett et al., 2006) is defined as
~ _ (1486 1446
5(60) = H; (2) 1, ( ! ) (13
For 0 € (0, 1], we have
~ _ {1496 1+0
V(o) =H, (2> He( 3 )
— inf [1+0€( )—&—1_96(1—@)} _ F”mw L= %) (14)
0<a<i 2 2 2
1 0
= 5[20(1/2) = £(0) = ()] + 5 [€(0) — £(1)]
where 220(a) + 1520(1 — o) > H20(1/2) + 1524(1/2), for o € [0, 1/2], since £ is strictly asymmetric.
For § € [—1,0), we have
1+6 1+46
do = (457) - m (50
— i [H%( )+10€(1—a)} _ [1+9£(0)+ L= (15)
l<a<i 2 2
1 0
= 5[26(1/2) = £(0) = £(1)] = 5[€(0) — £(1)]

where 22¢(a) + 15261 — o) > 1£90(1/2) + 1580

)+ (1/2), for o € [1/2, 1], since ¢ is strictly asymmetric.
We can see that ¢ is symmetric about 0, i.e., 1)(—t) = ¢)(t), and 1)(0) = £120(1/2) — £(0) — £(1)] > 0. Therefore, ¥(0) is
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convex. For simplicity, let o (t) = (¢ — 1/2). Then, according to Jensen’s inequality, we have

=

Ry, (f) — Ry,_,)

§ B0 (F()) # o) |20 — 1)
< E[) (Lo (f(x)) # o(m)]2mx — 1))

E [I(o(£(x)) = o)) - $(0)| +E [I(£(x)) # o)) - (|20 — 1]
< 9(0) +E [Lo(£()) # o)) - (Hf () = He(0))]

Lo ((x)) # o) - ({a:(a inf Coul01) - Hemx))]

=9(0) +E
%)(Ux*%)éoﬂe[oxl]}

< 9(0) + E [I(o(f(x)) # 0 (nx)) - (Co (F (%), £) = He(nx))]

< 9(0) +E[L(o(f(x)) # 0 (nx)) - (Cop (F (%), £) = He(nx)] + E[L(0(f (%)) = 0(1x)) - (Cre (f (%), £) = He(1x))]
= (0) +E [Cy, (f(x), ) = He(11x)]

= 9(0) + Re(f) - R;,

where we have used the fact that for any x, and in particular when sign(f(x) — 1/2) = sign(nx — 1/2), C,, (f(x), ) >
Hy(1y). On the other hand, since ¢(#) = 1(0) + “;J[Z(O) — £(1)], we have

~ R5071 (f) - RZU,l

¥(0) + 5 [6(0) = (1)) = $(Bey . (f) = Bi,_,) < $(0) + Re(f) = Ry, (16)

i.e., we obtain the excess risk bound as follows

2Relf) — Rp)

R[o—l(f) - Rzo—l < K(O) — 6(1)

a7
The result suggests that the excess risk bound of any completely asymmetric loss function is controlled only by the difference

of £(0) — ¢(1). Intuitively, the excess risk bound suggests that if the prediction function f minimizes the surrogate risk
R(f) = Ry, then the prediction function f must also minimize the misclassification risk Ry, , (f) = R}, _ . O

C. Proof for Theorems and Corollaries

Theorem 3. Symmetric loss functions are completely asymmetric.

Proof. For any weights wy, ..., wg, 3¢, s.t., wy > max;¢ w;, i.e., w; — wy < 0. Let L be a symmetric loss function, then

k
Z w;L(u,4) = weL(u,t) + Z w; L(ua, 1)
i=1 it
it
> w,C + lrlrélUn/ ;(wZ —wy)L(u, 1)

where U" = {u : > ,, L(u,i) = C — miny L(u,?)} = {argmin L(u,t)}. Therefore, aurgminZ:f:1 w;L(u,i) =

argmin L(u,t), i.e., L is a completely asymmetric loss function. O
u

C.1. Proof for theorems

Theorem 4 (Noise-Tolerance). In a multi-classification problem, given an appropriate neural network class H which
satisfies Assumption 7, then the loss function L is noise-tolerant if L is asymmetric on the label noise model.
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Proof. Let f* = argminsey R} (f), when we regard the conditional risk L"(x,y) as a new loss function, then f*
minimizes L7(f(x),y) for each (x,y). Because L is an asymmetric loss and 1 — 7 is bigger than 7 ;, f* also minimizes
L(f(x),y). Therefore, we have

Rr(f) = Ex,y L(f(x),y) = Exy L(f*(x),y) = RL(f7),
so f* minimizes Ry, (f). O

Theorem 5. Vo, 8 > 0, if Ly and Lo are asymmetric, then aly + B Lo is asymmetric.

Proof. Given weights w1, ..., wg, wy > max; - w;, because L and Lo are asymmetric, let u* = e; = arg miny, L1 (u,t) =
arg miny Ly (u, t), i.e.,

k k
Z w;Li(u, 1) > Z w;L1(u*,4) and
i=1 i=1 (19)

k k
Z wiLQ (u, Z) Z Z wiLg(u*, Z)
i=1 i=1

Then we have Zle w;laly(u,4) + BLa(u,i)] > Ele w;i(aLi(u*,i) + fLa(u*, )], and the equality holds if and only
if u =u*, so al; + 8L, is asymmetric. O

Lemma 1. Consider a loss function L(u,i) = {(u;), for any wy > wy > 0, u € C, if £ satisfies wil(uy) + wal(ug) >
wi1l(uy + uz) + wal(0), and the equality holds only if us = 0, then L is completely asymmetric.

Proof. Given any weights w1, ..., Wy, wy > maxX;-; w;, the optimal solution is u* = ey, then

k
ZwiL(u, 1) = wel(ug) + Z wil(u;)

i#t
> wel(ug + Y wi) + > wil(0) (20)
i#t it

k
= ZwiL(u*,i)
i=1

The equality holds if and only if u; = 0, for ¢ # ¢, i.e., u* is the only one minimizes Zle w; L(u, 1), so L is completely
asymmetric. [

Theorem 6 (Sufficiency). On the given weights wy, .., wy, where Wy, > wy, and w, = MmaX;+y W;, the loss function
L(u,i) = l(u;) is asymmetric if 2= - r(£) > 1.

Proof. If 2= . r(£) > 1, then for any i # m, we have

Win, 1 2(0) — £(uy;) 2(0) — £(uy;)
> — > >
Wy o T( ) o Ogus,il,gigl K(unb) - é(um + uz) o g(um) - E(Uf’m + ul) (21)
U +u; <1
e, Wy l(uy) + wil(u;) > W l(um + u;) + w;£(0), so L is asymmetric according to Theorem 1. O

Theorem 7. In a binary classification problem, we assume that L is strictly asymmetric on the label noise model which
keeps dominant, for any H, let f* = argminysey R} (f). IfVx, % -r(L) > 1 hold, then f* also minimizes a positive
weighted L-risk R, 1,(h) = Ew(x, y)L(f(x),y).



Supplementary Materials

Proof. Without loss of generality, let the label set be {0,1}, and f* = argminsey R} (f), then we have

Ri(f") = RL(f)

[L(f( (
(1 =) [L(f* (%)) = LU (%), )] + 7 [L(f* (%), 1 — ) — L(f(x), 1 —y)]} (22)
[L(f( (

Esey I(F*(x)y > £(x)y) | (1 = m) [L(F* (%), 9) = L(F(%), )] + —2~ [L(F* (), ) - L(f(X)vy)H
=Eayw(x,y) L(f* (%), y) — Ex,yw(x, y) L(f (%), y)

where we have

)y

(23)
)y
and

L =17, frx)y = f(x)y 24)

Otherwise, R} (f*) — R} (f) < 0, so we obtain

EX,yw(Xv y)L(f*(x),y) < Exww(x, y)L(h(x),y), (25)
i.e., f* also minimizes the positive weighted L-risk Ex ,w(x,y)L(f*(x),y).
O
Theorem 8 (Necessity). On the given weights w, .., wy, where w,, > w, and w, = MmaX;xmy w; the loss function
L(u, i) = €(u;) is asymmetric only if 2= -1, (£) > 1.
Proof. If loss function Ly(u,i) = £(u;) is asymmetric, then for w,,, > wy,, let u; = 0, 7 # m,n, then wy,{(uy,) +
wpl(un) > wpl(1) + w,£(0) always holds, i.e.,
Woy, . ) — (U, + up)

inf
Wn 07;:1&?511 £(0) — £(uy)

> 1, (26)

s0 -y (€) > 1. O

C.2. Proof for corollaries

Corollary 1. On the given weights w1, .., wy, where wy, > w, and w, = MaX;x, w;, the loss function Ly(u,i) =
[(a+ 1)1 — (a+u;)7/q (where g > 0, a > 0) is asymmetric if and only if “= > (%t1)17¢ . T(q < 1) +I(g > 1).

Proof. = If loss function L,(u,i) = £(u;) is asymmetric, then for w,, > wy,, let u; = 0, i # m,n, then w,, l(uy,) +

wpl(un) > wnl(1) + w,£(0) always holds, i.e.,

wpl(a+ 1T = (a+ um)? > wy[(a+ u,)? — af. (27)

(a+u + Au)? — (a+uq)?
(a+u2)?— (a+uy — Au)?

(28)
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so we have
(a+1—u)?—al

Wm >
_— su .
Wn ~ 02us (a+ 1)7 — (a+ u)d

RHS equals to (“+1)!=7if ¢ < 1, and equals to 1 when ¢ > 1.

<« According to Theorem 1, L is asymmetric

<= Wl (Um) + wil(w;) > Wil (U + u;) + w;€(0)

o W > sup £(0) — £(wi)
Wi wp >0 L(Um) — (U, + u;)
Ui+ Um <1
o W > sup (a+u;)? — al
Wi w0 (@+ U+ Um )T — (@ + Up)?
Ui+ <1
w a4, \ Tl
& —=>1I(¢<1)- sup ( m) +1I(g > 1)
wi 0< Uy, <1 a

1
@Z@z(a—F ) I(g <1)+1I(g > 1).

On the other hand, if %= > (%t1)1=¢ . [(q < 1) + I(¢ > 1). Then for any i # m, we have
1) +1(g > 1).

w > (4E)1 I

[:JI/\

Corollary 2. On the given weights w1, .., w, where wy, > wy, and w, = MaX;.y, w;. The loss function Lp(u, i) =
[(a = u;)P — (a — 1)P]/p (where p > 0 and a > 1) is asymmetric if and only if 2= > (=4-)P~1 - I(p > 1) + I(p < 1).

Proof. = If L,(u,i) = £(u;) is asymmetric, then for w,, > w, > 0, let u; = 0, i # m, n, then w,, ¢ (up,) + wpl(uy,) >
wml(1) + w,£(0) always holds, i.e.,

so we have

W
> sup )
Wy o<u<1 (@ —u)P — (a—1)P

RHS equals to (25 )P~ Lif p > 1, and equals to 1 when p < 1.

< According to Theorem 1, L is asymmetric

<= wnl(um) + wil(u;) ml (U, + u;) + w;£(0)

> w
¢(0) — £(us)
m) =

w
& 2> sup

Wi Wiy Ui, >0 E( (un + UZ)
Ui+um, <1
p _ — . \P
o Wm > sup a? — (a — u;)
Wi Ui U, >0 (a - U’m)p - (a — U — um)p
Ui +um, <1

p—1
o s I(p >1)- sup ( a ) +I(p<1)
W; 0<u,<1 \@ — Um

p—1
Wi, a
o m s dp>1)+I(p<1).
wi_<a_1> (p>1)+1I(p<1)

On the other hand, if %= > (%tL)1=4.](q < 1) 4+ I(q > 1). Then for any i # m, we have “= > (-4 )P=1 . I(p >
1) +1(p < 1). m

Corollary 3. On the given weights wy, .., wy, where wy,, > w, and w, = max;x, w;. The exponential loss function
Lq(u,i) = exp(—u;/a) (where a > 0) is asymmetric if and only if = > exp(1/a).
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Proof. = If L,(u,i) = £(u;) is asymmetric, then for w,, > w,, > 0,letu; = 0, i # m, n, then w,, {(uy,) + w,l(uy,) >
Wil (U, + Uup) + w,0(0) always holds, i.e.,

—u — Uy — U —Up,

win[exp(—==) — exp( )] = wy[1 — exp(

)],

so we have 1

Wm Um
—Zexp(—) =>aq0> —.
Wnp, a In w,, — Inw,,
<« According to Theorem 1, L, is asymmetric
< W l(tm) + wil(u;) > Wl (U + u;) + wif(0)

w u
o > exp (—m)
w; a

7

On the other hand, when a > ——L— then for any i # m, we have = > exp(1/a). O

In wy, —Inw, ’

D. Experiments
D.1. Evaluation on Benchmark Datasets

Noise generation. The noisy labels are generated following standard approaches in previous works (Ma et al., 2020; Patrini
et al., 2017). For symmetric noise, we corrupt the training labels by flipping labels in each class randomly to incorrect labels
to other classes with flip probability 7 € {0.2,0.3,0.6,0.8}. For asymmetric noise, we flip the labels within a specific set of
classes. For MNIST, flipping 7 — 1,2 — 7, 5 <+ 6, 3 — 8. For CIFAR-10, flipping TRUCK — AUTOMOBILE, BIRD —
AIRPLANE, DEER — HORSE, CAR <+ DOG. For CIFAR-100, the 100 classes are grouped into 20 super-classes with
each has 5 sub-classes, and each class are flipped within the same super-class into the next in a circular fashion.

Networks and training. We follow the experimental settings in (Ma et al., 2020): 4-layer CNN for MNIST, an 8-layer
CNN for CIFAR-10 and a ResNet-34 (He et al., 2016) for CIFAR-100. The networks are trained for 50, 120, 200 epochs for
MNIST, CIFAR-10, CIFAR-100, respectively. For all the training, we use SGD optimizer with momentum 0.9 and cosine
learning rate annealing. Weight decay is setto 1 x 1073, 1 x 10~% and 1 x 10~° for MNIST, CIFAR-10 and CIFAR-100,
respectively. The initial learning rate is set to 0.01 for MNIST/CIFAR-10 and 0.1 for CIFAR-100. Batch size is set to 128.
Typical data augmentations including random width/height shift and horizontal flip are applied.

Parameter settings. We set the parameter settings which match their original papers for all baseline methods. The details
can be seen in Table 1.

Table 1. Parameters settings for different methods.

Method MNIST CIFAR-10 CIFAR-100 WebVision
GCE& NGCE (q) ©0.7) ©0.7) ©0.7) ©0.7)
SCE (4, a, B) (-4,001,1.0) (4,0.1,1.0)  (4,6.0,1.0) (-4, 10.0, 1.0)
FL& NFL (7) (0.5) (0.5) (0.5) -
AGCE (a, q) 4,0.2) (0.6, 0.6) - (1e-5,0.5)
AUL (a, p) (3,0.1) (5.5,3) - -
AEL (a) (3.5) 2.5) - -
NFL+RCE (4, a, B) | (-4,1.0,100.0) (-4,1.0,1.0)  (-4,10.0,1.0) -
NCE+MAE (a, ) (1.0, 100.0) (1.0, 1.0) (10.0, 1.0) -
NCE+RCE (o, 8) (1.0, 100.0) (1.0, 1.0) (10.0, 1.0) (50.0,0.1)
NCE+AGCE (a, ¢, a, ) | (4,02,0,1)  (6,1.5,1,4)  (1.8,3,10,0.1) (2.5,3,50,0.1)
NCE+AUL (a, p, a, B) | (3,0.1,0,1) (63,15, 1,4) (6,3, 10,0.015) -
NCE+AEL (a, a, 5) (35,0, 1) 5,1, 4) (1.5, 10,0.1) -

Results. The experimental results of symmetric and asymmetric label noise are shown in Table 3 and Table 4, respectively.
And we also visualize the learned features by the AGCE loss function and the GCE loss function. Figure 2 validates AGCE’s
ability of separating samples and robustness to label noise with any noise rate 7 € {0.0,0.2, 0.4, 0.6, 0.8}. Figure 3 validates
different loss functions of separating samples and robustness to symmetric label noise with noise rates 0.0 and 0.4.
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D.2. Evaluation on Real-world Noisy Labels

Here, we evaluate our asymmetric loss functions on large-scale real-world noisy dataset WebVision 1.0 (Li et al., 2017).
It contains 2.4 million images of real-world noisy labels, crawled from the web using the 1,000 concepts in ImageNet
ILSVRCI12. Since the dataset is very big, for quick experiments, we follow the training setting in (Jiang et al., 2018; Ma
et al., 2020) that only takes the first 50 classes of the Google resized image subset. We evaluate the trained networks on the
same 50 classes of WebVision 1.0 validation set, which can be considered as a clean validation. ResNet-50 (He et al., 2016)
is the model to be learnt. We compare our NCE+AGCE with GCE, SCE and NCE+RCE. The training details follow (Ma
et al., 2020), where for each loss, we train a ResNet-50 (He et al., 2016) using SGD for 250 epochs with initial learning rate
0.4, nesterov momentum 0.9 and weight decay 3 x 10~° and batch size 512. The learning rate is multiplied by 0.97 after
every epoch of training. All the images are resized to 224 x 224. Typical data augmentations including random width/height
shift, color jittering and random horizontal flip are applied. Experiments can be reported in Table 2.
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Figure 2. Visualization for GCE (top) and AGCE (bottom) on MNIST with different symmetric noise ( € [0.0, 0.2, 0.4, 0.6, 0.8]) by
t-SNE (Van der Maaten & Hinton, 2008) 2D embeddings of deep features.
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Figure 3. Visualization for CE, GCE, AGCE, AUL, and AEL on CIFAR10 with different symmetric noise (0.0 for top, 0.4 for bottom) by
t-SNE (Van der Maaten & Hinton, 2008) 2D embeddings of deep features.
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Table 2. Top-1 validation accuracies (%) on WebVision validatoin set of ResNet-50 models trained on WebVision using different loss
functions, under the Mini setting in (Jiang et al., 2018; Ma et al., 2020).

Loss | CE GCE SCE NCE+RCE NCE+AGCE AGCE
Acc | 66.96 61.76 66.92 66.32 67.12 69.40

(a) GCE withn = 0.1 (c) GCE withn = 0.3

0.6

() AGCE with n = 0.1

0.8 1.0 0.4

(2) AGCE with ) = 0.3

0.6 0.8 1.0

(f) AGCE with ) = 0.2 (h) AGCE with = 0.4

Figure 4. Visualization for GCE (top) and AGCE (bottom) on MNIST with different asymmetric noise (n € [0.1, 0.2, 0.3, 0.4]) by t-SNE
(Van der Maaten & Hinton, 2008) 2D embeddings of deep features.
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Figure 5. Illustration of asymmetric loss functions.
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Figure 6. Test accuracies of AGCE and AUL with different parameters on CIFAR-10 under 0.8 symmetric noise.
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Table 3. Test accuracies (%) of different methods on benchmark datasets with clean or symmetric label noise (5 € [0.2, 0.4, 0.6, 0.8]).
The results (mean=std) are reported over 3 random runs and the top 3 best results are boldfaced.

_ Symmetric Noise Rate ()

Datasets Methods Clean (n = 0.0) 0.2 0.4 0.6 08
CE 99.17 £ 0.11 98.98 £20.07 98.54 +£0.10 94.10 £0.70 46.60 &= 0.91
FL 99.13 £ 0.09 91.68 = 0.14 74544+ 0.06 50.39 +£0.28 22.65+0.26
GCE 99.27 £+ 0.05 98.86 = 0.07 97.16 £0.03 81.53 £0.58 33.95+0.82
NLNL 98.61 +0.13 98.02 £ 0.14 97.17£0.09 9542 +0.30 86.34 +1.43
SCE 99.23 + 0.10 98.92 +0.12 9738 £0.15 88.83 £0.55 48.75+1.54
NCE 98.60 4+ 0.06 98.57 £0.01 98.29 £0.05 97.65+0.08 93.78 +0.41
MNIST NFL 98.51 £ 0.03 98.354+0.07 98.14+0.06 97.48 +£0.09 93.28+0.40
NGCE 98.72 £ 0.05 98.65 £0.04 9842+ 0.03 97.67+£0.12 94.76 & 0.31
NFL+RCE 99.41 4+ 0.06 99.13 £ 0.07 98.46 £0.07 9553 +£0.36 73.52 + 1.39
NCE+MAE 99.34 4+ 0.02 99.14 +0.05 9842 4+0.09 95.65+0.13 72.97 +0.34
NCE+RCE 99.36 4+ 0.05 99.14 + 0.03 98.51 £0.06 95.60 £0.21 74.00 + 1.68
AUL 99.14 4+ 0.05 99.05 +0.09 98.90 +0.09 98.67 + 0.04 96.73 + 0.20
AGCE 99.05 £ 0.11 98.96 = 0.10 98.83 +0.06 98.57 +£0.12 96.59 + 0.12
AEL 99.03 £+ 0.05 98.93 +0.06 98.78 =0.13 98.51 +£0.06 96.40 + 0.11
CE 90.48 4+ 0.11 74.68 £ 0.25 5826 +0.21 38.70£0.53 19.55+0.49
FL 89.82 +£0.20 73.72 £ 0.08 5790+ 045 38.86+0.07 19.13 +0.28
GCE 89.59 +£0.26 87.03 £0.35 82.66£0.17 67.70+045 26.67 +0.59
SCE 91.61 = 0.19 87.10 025 79.67 £0.37 61.354+0.56 28.66+0.27
NLNL 80.73 £ 0.20 73.70 £0.05 6390+ 044 50.68 +£0.47 29.534+1.55
NCE 75.65 + 0.26 72.89 £0.25 69.49 £0.39 62.64 £0.18 41.49 + 0.66
NGCE 80.92 £ 0.16 78.82 +£0.09 75524+0.37 69.79 £0.27 52.03 + 0.88
NFL 73.42 £ 0.35 7093 +£0.38 67.28 £0.24 60.30 £0.75 39.07 £ 0.40
CIFAR10 NFL+RCE 90.97 £ 0.19 88.890 +0.14 86.03 £0.33 79.65+041 54.33 +0.80
NCE+MAE 89.17 £ 0.09 86.98 +0.07 83.74 £0.10 76.024+0.16 46.69 + 0.31
NCE+RCE 90.87 4 0.37 89.25 +0.42 8581 £0.08 79.72+0.20 55.74 + 0.95
AUL 91.27 £ 0.12 89.21 £0.09 85.64 +0.19 78,86+ 0.66 52.92+1.20
AGCE 88.95 +£0.22 86.98 £0.12 83.39+0.17 7649 4+0.53 44.42+0.74
AEL 86.38 +£0.19 8427 +0.12 81.12+£0.20 74.86+022 51.41+0.32
NCE+AUL 91.10 £0.13 89.31 - 0.20 86.23 +0.18 79.70 £ 0.08 59.44 + 1.14
NCE+AGCE 90.94 4+ 0.12 89.21 - 0.08 86.19 =0.15 80.13 +£0.18 50.82 + 1.46
NCE+AEL 90.71 4+ 0.04 88.57 £0.14 85.01 £0.38 7733 4+0.18 47.90+1.21
CE 71.33 £ 0.43 56.51 £0.39 39.92+0.10 21.39+1.17 7.59 +£0.20
FL 70.06 £ 0.70 5578 £1.55 39.834+043 2191 +0.89 7.51 +0.09
GCE 63.09 £+ 1.39 61.57 £1.06 56.114+135 4528 +0.61 17.42+0.06
SCE 69.62 £ 0.42 5225 +£0.14 36.00£0.69 20.14+0.60 7.67 +0.63
NLNL 68.72 £ 0.60 4699 =091 3029 +1.64 16.60£090 11.01 +2.48
NCE 29.96 + 0.73 2527 £0.32 19.54+£0.52 13.51 +0.65 8.55+0.37
CIFAR100 NGCE 22.83 +£0.30 1896 +1.41 15.09+0.64 11.07+0.77 6.14 £+ 0.50
NFL 28.73 £ 0.08 23.85+0.24 18.96+0.58 13.304+0.80 8.20 £ 0.16
NFL+RCE 67.90 £ 0.40 64.53 £0.69 57.854+054 4479 +1.00 24.71+0.93
NCE+MAE 67.60 £ 0.51 5230 £0.11 36.09+£0.55 18.63 +0.60 748 +1.35
NCE+RCE 68.65 +0.40 6497 £0.49 58.54+0.13 45.80+ 1.02 2541+ 0.98
NCE+AUL 68.96 + 0.16 65.36 + 0.20 59.25 +0.23 46.34 +£0.21 23.03 +0.64
NCE+AGCE 69.03 £ 0.37 65.66 =0.46 59.47 +0.36 48.02 £+ 0.58 24.72 £ 0.60
NCE+AEL 68.70 £ 0.20 65.36 = 0.14 59.51 +0.03 46.94 + 0.07 24.48 +0.24
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Table 4. Test accuracies (%) of different methods on benchmark datasets with clean or asymmetric label noise (n € [0.1,0.2,0.3,0.4]).

The results (mean=std) are reported over 3 random runs and the top 3 best results are boldfaced.

Asymmetric Noise Rate (17)

Datasets Methods 01 0.2 03 04
CE 99.13 £0.05 9899 +0.01 9727 +0.22 88.70 £ 0.49
FL 97.58 £0.09 9425+0.15 89.09+0.25 82.13 £0.49
GCE 99.01 =0.04 96.69 £0.12 89.12+0.24 81.51 =0.19
NLNL 98.63 = 0.06 98.354+0.01 97.51 £0.15 95.84 +0.26
SCE 99.14 = 0.04 98.03 £0.05 93.68 +043 8536 +0.17
NCE 98.49 +0.06 98.18 £0.12 96.99 +0.17 94.16 £ 0.19
MNIST NFL 98.354+0.07 9786+0.16 9633 +0.21 92.08 £0.28
NGCE 98.73 £0.04 98.67 £0.05 9832 +0.11 97.27 £0.08
NFL+RCE 99.38 - 0.02 9898 £0.10 97.18 +0.14 89.58 = 4.81
NCE+MAE | 99.32 +£0.09 98.89+0.04 9693 +0.17 91.45+0.40
NCE+RCE | 99.35 +0.03 98.99 +£0.22 97.234+0.20 90.49 +4.04
AUL 99.154+0.09 99.15+0.02 9898 +0.05 98.62 £ 0.09
AGCE 99.10 £20.02 99.07 = 0.09 9895 + 0.03 98.44 + 0.11
AEL 98.99 +0.05 99.06 =0.07 98.90 + 0.15 98.34 + 0.08
CE 87.55+0.14 8332+0.12 79316 £0.59 74.67 +0.38
FL 86.43 £0.30 83.37+0.07 7933 +£0.08 7428 +0.44
GCE 88.33 £ 0.05 8593+0.23 80.88+0.38 74.29 +0.43
SCE 89.77 £ 0.11 86.20£0.37 81.38+0.35 75.16+£0.39
NLNL 88.54 +0.25 84.74 £0.08 81.26+043  76.97 +0.52
NCE 74.06 = 0.27 7246 +0.32 69.86 £ 0.51 65.66 & 0.42
NGCE 80.18 £0.27 79.21 £0.08 76.76 £0.07 70.10 + 1.82
NFL 7228 +£0.15 70.78 £0.13 68.27+0.43 65.09 £ 0.40
CIFAR10 NFL+RCE 8991 +£0.17 8824 +0.16 85.81 £0.23 79.25 +0.25
NCE+MAE | 88.31 £20.20 86.50+0.31 83.34+0.39 77.14 £0.33
NCE+RCE | 90.06 +0.13 88.45+0.16 8542+0.09 79.33+0.15
AUL 90.19 £ 0.16 88.17 £0.11 84.87 £ 0.04 56.33 £+ 0.07
AGCE 88.08 £ 0.06 86.67+0.14 83.59+0.15 60.91 +0.20
AEL 8522 +0.15 83.82+£0.15 8243+0.16 58.814+3.62
NCE+AUL | 90.05 +£0.20 88.72 4+0.26 85.48 +0.18 79.26 + 0.05
NCE+AGCE | 90.35 £ 0.15 88.48 +0.16 85.96 =0.24 80.00 = 0.44
NCE+AEL | 8995+ 0.04 87934+0.06 84.81+026 7727 +0.11
CE 64.85 +0.37 58.11£0.32 50.68 +0.55 40.17 +1.31
FL 64.78 £0.50 58.054+042 51.154+0.84 41.18 + 0.68
GCE 63.01 £1.01 59354+1.10 53.834+064 4091 +0.57
SCE 61.63 =0.84 53.81 £042 4563 +0.07 36.43+0.20
NLNL 59.55+1.22 50.19+056 4281 +1.13 35.10£0.20
NCE 2759 £0.54 25.75+050 2428 +£0.80 20.64 +£0.40
CIFAR100 NGCE 20.89 £0.52 19.28 £0.23 17.77 £2.32 13.15+2.90
NFL 2646 £0.31 25394087 23.184+0.80 20.104+0.21
NFL+RCE 6597 £0.18 62.77 £0.31 55.60 & 0.25 41.66 £ 0.20
NCE+MAE | 60.22 +£0.37 5220+041 4450+£046 35.82+0.27
NCE+RCE | 66.38 +0.16 62.97 +0.24 55.38 + 0.49 41.68 + 0.56
NCE+AUL | 66.62 +0.09 63.86 +0.18 50.38 +0.32 38.59 +£0.48
NCE+AGCE | 67.22 £ 0.12 63.69 +0.19 5593 +0.38 43.76 = 0.70
NCE+AEL | 66.92 +0.22 62504023 52424098 39.99 +0.12
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