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Abstract

Robust loss functions are essential for training
deep neural networks with better generalization
power in the presence of noisy labels. Symmetric
loss functions are confirmed to be robust to label
noise. However, the symmetric condition is overly
restrictive. In this work, we propose a new class of
loss functions, namely asymmetric loss functions,
which are robust to learning with noisy labels for
various types of noise. We investigate general the-
oretical properties of asymmetric loss functions,
including classification calibration, excess risk
bound, and noise tolerance. Meanwhile, we intro-
duce the asymmetry ratio to measure the asymme-
try of a loss function. The empirical results show
that a higher ratio would provide better noise tol-
erance. Moreover, we modify several commonly-
used loss functions and establish the necessary
and sufficient conditions for them to be asymmet-
ric. Experimental results on benchmark datasets
demonstrate that asymmetric loss functions can
outperform state-of-the-art methods. The code is
available at https://github.com/hitcszx/ALFs

1. Introduction
The success of deep neural networks based supervised learn-
ing largely relies on massive high-quality labeled data. How-
ever, in practice, the annotation process inevitably intro-
duces wrong labels, due to the lack of experts involved
or data from public crowdsourcing platforms (Liu et al.,
2011; Arpit et al., 2017). Empirical studies show that over-
parameterized deep networks can even fit random labels
(Zhang et al., 2017). When samples are mis-labeled, the net-
work would memorize wrong patterns, leading to impaired
performance in the subsequent inference tasks. Accordingly,
robust learning of classifier in the presence of label noise
has received a lot of attention.
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To alleviate the impact of label noise to classifier learning,
one popular research line is to design noise-tolerant loss
functions. This approach has been pursued in a large body
of work (Long & Servedio, 2008; Wang et al., 2019a; Liu &
Guo, 2020; Lyu & Tsang, 2020; Menon et al., 2020; Feng
et al., 2020) that embraces new losses, especially symmet-
ric loss functions and their variants (Manwani & Sastry,
2013; van Rooyen et al., 2015; Ghosh et al., 2017; Zhang &
Sabuncu, 2018; Wang et al., 2019b; Ma et al., 2020).

Symmetric loss functions were proposed as a sufficient con-
dition such that the risk minimization with respect to the
loss becomes noise-tolerant for binary classification (Man-
wani & Sastry, 2013). Subsequently, the unhinged loss (van
Rooyen et al., 2015), which is equivalent to a scaled Mean
Absolute Error (MAE) (Ghosh et al., 2017), was proved
to be the only convex loss function that is strongly robust
for symmetric label noise (SLN). Ghosh et al. (Ghosh
et al., 2017) theoretically demonstrated that a loss function
would be inherently tolerant to SLN as long as it satisfies
the symmetric condition. The sufficient condition was then
extended for multi-class classification (Ghosh et al., 2017)
and was emphasized in the BER minimization and AUC
maximization from corrupted labels (Charoenphakdee et al.,
2019). However, MAE treats every sample equally, lead-
ing to significantly longer training time before convergence.
This drawback motivates some works to improve MAE,
which follows the principle of combining the robustness of
MAE and the fast convergence of Cross Entropy (CE). For
instance, (Zhang & Sabuncu, 2018) advocated the use of
a more general class of noise-robust loss functions, called
Generalized Cross Entropy (GCE), which encompasses both
MAE and CE. Inspired by the symmetric KL-divergence,
the symmetric cross entropy (SCE) (Wang et al., 2019b)
was proposed to combine CE with a noise tolerance term,
namely Reverse Cross Entropy (RCE). Ma et al. (Ma et al.,
2020) theoretically demonstrated that by applying a simple
normalization, any loss can be made robust to noisy labels.
However, the normalized loss functions are not sufficient to
train accurate DNNs and are prone to encounter the gradient
explosion problem.

From the above review, it can be found that the fitting ability
of the existing symmetric loss functions is restricted by the
symmetric condition (Zhang & Sabuncu, 2018; Charoen-
phakdee et al., 2019). However, the symmetric condition
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is too stringent to find a convex loss function (Plessis et al.,
2015; Ghosh et al., 2015; van Rooyen et al., 2015), leading
to difficulties in optimization. Thus, learning with symmet-
ric loss function usually suffers from underfitting issues.

In this paper, we propose a new class of robust loss func-
tions, namely asymmetric loss functions, which are tailored
to satisfy that the Bayes-optimal prediction under the loss is
a point-mass on the highest scoring label, i.e., the loss has
Bayes-optimal prediction that matches that of the 0-1 loss.
Specifically, our scheme is based on a reasonable assump-
tion that in a training dataset samples have higher probabil-
ity to be annotated with true semantic labels than any other
class labels. According to this clean-labels-domination
assumption, the proposed asymmetric loss is derived. It in-
dicates that, minimizing the L-risk under noisy case, which
can be formulated as the weighted form, would make the
optimization direction shift to the loss term with the max-
imum weight. In this way, the contribution of noisy la-
bels in the process of classifier learning is eliminated, and
thus the proposed asymmetric loss functions are inherently
noise-tolerant. Furthermore, we offer a complete theoreti-
cal analysis about the properties of asymmetric loss func-
tions, including classification calibration, excess risk bound,
noise-tolerance, and asymmetry ratio. We show that sev-
eral commonly-used loss functions can be modified to be
asymmetric, and establish the corresponding necessary and
sufficient conditions for them. The main contributions of
our work are highlighted as follows:

• We propose a new family of robust loss functions,
namely asymmetric loss functions, which are noise-
tolerant with an appropriate model for various types
of noise. We theoretically prove that completely asym-
metric losses, which include symmetric losses as a
special case, are classification-calibrated, and have an
excess risk bound when they are strictly asymmetric.

• We introduce the asymmetric ratio to measure the
asymmetry of a loss function, which, together with
the clean level of labels, can be associated with noise-
tolerance. The empirical results show that higher ratio
will provide better noise robustness.

• We generalize several commonly-used loss functions,
and establish the necessary and sufficient conditions
for them to be asymmetric. The experimental results
demonstrate that the new loss functions can outperform
the state-of-the-art methods.

2. Preliminaries
2.1. Risk Minimization

Define X ⊂ Rd as the feature space from which the samples
are drawn, and Y = [k] = {1, ..., k} as the class label

space, i.e., we consider a k-classification problem, where
k ≥ 2. In an ideal classifier learning problem, we are given
a clean training set, S = {(x1, y1), ..., (xN , yN )}, where
(xi, yi) is drawn i.i.d. from an unknown distribution D
over X × Y . The classifier is a mapping function from
feature space to label space h(x) = arg maxi f(x)i, where
f : X → C, C ⊆ [0, 1]k, ∀ c ∈ C, 1T c = 1. f(x) denotes
an approximation of p(·|x), which is considered as a neural
network ending with a softmax layer in this work.

We define a loss function as a mapping L : C × Y → R,
where arg minu∈C L(u, y) = ey , L(u, y) is monotonically
decreasing on the prediction probability uy of class y, and
ey denotes a one-hot vector. The L-risk for the hypothesis
f is defined as

RL(f) = ED[L(f(x), y)] = Ex,y[L(f(x), y)], (1)

where E is denoted as expectation operator. Under the risk
minimization framework, our objective is to learn a optimal
classifier, f∗, which is a global minimum of RL(f).

2.2. Label Noise Model

The annotation process inevitably introduces label noise, the
model of which can be formulated as

ỹn =

{
i, i ∈ [k], i 6= yn with probability ηxn,i

yn with probability (1− ηxn
)
,

(2)
where ηxn,i denotes the probability of flipping the true label
yn into i for xn, and ηxn

=
∑
i 6=yn ηxn,i denotes the noise

ratio of xn. This noise model shows that a realistic corrup-
tion probability is dependent on both data features and class
labels (Xiao et al., 2015; Goldberger & Ben-Reuven, 2016),
and this kind of noise is called instance- and label-dependent
noise (Cheng et al., 2020). However, this modeling approach
of label noise has not been investigated extensively yet due
to its complexity.

Instead, a popular approach for modeling label noise sim-
ply assumes that the corruption process is conditionally
independent of data features when the true label is given
(Natarajan et al., 2013), i.e., ηxn

and ηxn,i are only depen-
dent on the class labels, which can be then represented as
a label transition matrix. If ηxn,i = η, ∀xn, i, the noise is
called symmetric (or uniform) noise, where a true label is
flipped into other labels with equal probability. In contrast to
symmetric noise, another type of noise is called asymmetric
if ∀n, ηxn

= η and ∃i 6= yn, ∀j 6= yn&i, ηxn,i > ηxn,j ,
i.e., a certain class is more likely to be wrongly annotated
into a particular label (Song et al., 2020).

Based on the label noise model, the L-risk under noisy case
can be formulated as

RηL(f) = ED
[
(1− ηx)L(f(x), y) +

∑
i 6=y

ηx,iL(f(x), i)
]
.
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It can be found that, due to the presence of noisy la-
bels, the classifier learning process is influenced by∑
i 6=y ηx,iL(f(x), i), i.e., noisy labels would degrade the

generalization performance of deep neural networks. De-
fine f∗η be the global minimum of RηL(f), then L is noise-
tolerant if f∗η is also the global minimum of RL(f).

2.3. Symmetric Loss Functions

The most popular family of loss functions in robust learning
is symmetric loss (Manwani & Sastry, 2013; Ghosh et al.,
2017). A loss is called symmetric if it satisfies

k∑
i=1

L(f(x), i) = C, ∀x ∈ X ,∀f, (3)

where C is a constant value. Ghosh et al. (Ghosh et al.,
2017) proved that, for a k-classification problem, if the
loss L is symmetric and the noise ratio η < k−1

k , then
under symmetric noise L is noise-tolerant. Moreover, if
RL(f∗) = 0, the loss function is also noise-tolerant under
asymmetric noise, where f∗ is a global minimizer of RL.

One of the most classic symmetric loss functions is MAE
(Ghosh et al., 2017), which is defined as L(u, i) = ‖ei −
u‖1 = 2−2ui and obviously satisfies

∑
i L(u, i) = 2k−2.

Reverse Cross Entropy (RCE) proposed in (Wang et al.,
2019b) is also belonging to the kind of symmetric loss,
which is actually the variant of MAE. Ma et al. (Ma et al.,
2020) proposed the normalized loss functions, which can
make any loss symmetric by using a simple normalization
operation. However, the symmetric condition is too strin-
gent to find a convex loss function (Plessis et al., 2015;
Ghosh et al., 2015; van Rooyen et al., 2015), leading to
difficulties in optimization. Thus, learning with symmetric
loss function usually suffers from the underfitting effect.

In this paper, we propose a new family of loss functions,
asymmetric loss functions, which includes symmetric loss
functions as its special case. More importantly, the pro-
posed asymmetric loss family also guarantees some desir-
able properties and contain many convex loss functions,
which facilitate the subsequent optimization process.

3. Asymmetric Loss Functions
In this section, we introduce in details the proposed asym-
metric loss functions. Firstly, we state the clean-labels-
domination assumption, which serves as the fundamental
basic in the subsequent derivation. Then we introduce the
proposed asymmetric loss functions, a new class of robust
loss function, which achieve robust learning by keep con-
sistency between the Bayes-optimal prediction of the loss
and that of the 0-1 loss. Subsequently, we theoretically
explore general properties of asymmetric loss functions, in-
cluding classification calibration, excess risk bound, noise

tolerance, and asymmetry ratio. Finally, we show that sev-
eral commonly-used loss functions can be modified to be
asymmetric and thus robust to label noise. The necessary
and sufficient conditions are offered for them. The detailed
proofs for theorems and corollaries can be found in the
supplementary material.

3.1. Clean-labels-domination Assumption

For robust learning, it is reasonable to assume that in a
training dataset samples have higher probability to be anno-
tated with true semantic labels than any other class labels,
which is referred to as clean-labels-domination assumption.
In the following, we first provide the formal definition of
class-wise clean-labels-domination.

Definition 1. Given an underlying clean dataset S, the
corresponding observed noisy dataset is S̃. The i-th class
subset of S̃ is formulated as S̃i = {(x, ỹ) : y = i, (x, ỹ) ∈
S̃, (x, y) ∈ S}, with i ∈ [k]. We define that the class label i
is dominant in S̃i if it satisfies∑

(x,ỹ)∈S̃i

I(ỹ = i) > max
j 6=i

∑
(x,ỹ)∈S̃i

I(ỹ = j), (4)

where I(·) is the identity function.

The dataset S̃ is claimed to be clean-labels-dominant if
in all classes correct labels are dominant. In real-world
datasets, the noise ratio of noisy labels is reported to range
from 8.0% to 38.5% (Song et al., 2020), which serves as
the corroboration that S̃ is usually clean-labels-dominant.
Based on this empirical observation, we further assume
that the label noise model defined in (2) is clean-labels-
dominant:

Assumption 1. The label noise model is clean-labels-
dominant, i.e., it satisfies that ∀x, 1− ηx > maxj 6=y ηx,j .

Compared with the symmetric noise assumption behind
symmetric losses (Ghosh et al., 2017), i.e., 1 − ηx > 1

k ,
although Assumption 1 is more restrictive, it makes sense in
general and applicable to most of the real-world applications.
Specifically, without the help of any prior knowledge, if
there exists an approach that can help to learn a correct
classifier on clean-labels-non-dominant cases, then it would
fail in learning a correct classifier on clean-labels-dominant
cases since the learned classifier tends to classify a sample
into a non-dominant class rather than the corresponding
dominant class (i.e., the true class).

3.2. Asymmetric Loss Functions

For a sample (x, y) drawn from D, we have the conditional
L-risk (Bartlett et al., 2006):

Lη(f(x), y) = (1− ηx)L(f(x), y) +
∑
i 6=y

ηx,iL(f(x), i).
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The exact values of {ηx,i}i6=y are usually unknown, and
what we only know is 1− ηx > maxi 6=y ηx,i according to
Assumption 1. Our purpose is to find a simple and elegant
formulation of L such that minimizing the risk leads to a
classifier with the same probability of mis-classification as
the noise-free case. To this end, in this work, we suggest a
new class of loss functions defined as follows:

Definition 2. On the given weights w1, ..., wk ≥ 0, where
∃t ∈ [k], s.t., wt > maxi6=t wi, a loss function L(u, i) is
called asymmetric if L satisfies

arg min
u

k∑
i=1

wiL(u, i) = arg min
u

L(u, t), (5)

where we always have arg min
u

L(u, t) = et.

We define that L is asymmetric on the label noise model
that satisfies Assumption 1, if L is asymmetric on {1 −
ηx} ∪ {ηx,i}i 6=y, ∀(x, y) drawn from D. L is called com-
pletely asymmetric, if L is asymmetric on any weights
w1, ..., wk ≥ 0 that contain a unique maximum. And we
call L strictly asymmetric, if it satisfies

∑k
i=1 wiL(u′, i) <∑k

i=1 wiL(u, i), ∀ w1, ..., wk ≥ 0 with a unique maximum
wt, and ∀ u′,u ∈ C, u′t > ut.

The asymmetry is reflected by the fact that minimizing the
weighted risk would make the optimization direction shift
to the loss term with the maximum weight. This strategy is
referred to as the-largest-takes-all.

More specifically, according to Definition 2 and Assumption
1, asymmetric loss functions are inherently noise-tolerant,
which can eliminate the contribution of noisy labels (i.e.,∑

i 6=y ηx,iL(f(x), i)) in the process of classifier learning.
It is desirable since it provides an approach of obtaining the
minimum for noise-free case L(u, t) from the minimization
for noisy case

∑k
i=1 wiL(u, i). In other words, the asym-

metric loss are tailored to satisfy that the Bayes-optimal
prediction under the loss is a point-mass on the highest scor-
ing label, i.e., the loss has Bayes-optimal prediction that
matches that of the 0-1 loss.

3.3. Properties of Asymmetric Loss Functions

Let L(u, i) be asymmetric on the label noise model which
is clean-labels-dominant. According to the asymmetric
condition (5), it can be derived that (1 − ηx)L(u, y) +∑
i 6=y ηx,iL(u, i) ≥ (1−ηx)L(u∗, y)+

∑
i 6=y ηx,iL(u∗, i),

where u∗ = ey , and the equality holds if and only if u = u∗.
This inequality reveals a beautiful property for binary clas-
sification as follows:

Theorem 1 (Classification calibration). Completely asym-
metric loss functions are classification-calibrated.

Classification calibration is known to be a minimal re-
quirement of a loss function for the binary classification

task (Tong, 2003; Bartlett et al., 2006). We say that φ is
classification-calibrated if driving the excess risk over the
Bayes-optimal predictor for φ to zero also drives the ex-
cess risk for 0-1 loss to zero. Actually, the conditional risk
minimizer of L is equivalent to the Bayes-optimal classifier
I(ηx > 1

2 ) (see more in supplementary materials).
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Figure 1. Verification of classification calibration. Solid and
dashed lines denote the curve of H`(η) and H−` (η), respectively.
As can be observed, the curve of H−` is always above that of H`,
i.e., the loss functions are classification-calibrated.

Another essential property is excess risk bound (Bartlett
et al., 2006), which provides a relationship between the
excess risk of minimizing the mis-classification risk w.r.t
the 0-1 loss and the surrogate loss. The following theorem
indicates an excess bound for any strictly and completely
asymmetric loss functions.

Theorem 2 (Excess risk bound). An excess risk bound of a
strictly and completely asymmetric loss function L(u, i) =
`(ui) can be expressed as

R`0−1
(f)−R∗`0−1

≤ 2(R`(f)−R∗` )
`(0)− `(1)

, (6)

where R∗`0−1
= infg R`0−1

(g) and R∗` = infg R`(g).

The result suggests that the excess risk bound of any strictly
and completely asymmetric loss function is controlled only
by the difference of `(0) − `(1). Intuitively, the excess
risk bound shows that if the hypothesis f minimizes the
surrogate risk R`(f) = R∗` , then f must also minimize the
mis-classification risk R`0−1(f) = R∗`0−1

.

As aforementioned, symmetric loss functions are well-
studied with general properties (Manwani & Sastry, 2013;
Ghosh et al., 2017; Charoenphakdee et al., 2019). Here we
reveal the relationship between symmetric loss functions
and asymmetric loss functions.

Theorem 3. Symmetric loss functions are completely asym-
metric.

An important condition for symmetric loss functions to be
noise-tolerant under asymmetric noise is RL(f∗) = 0, i.e.,
there exists a hypothesis can fit the distribution D perfectly.
Here we use deep networks as the hypothesis class to obtain
enough fitting ability (Zhang et al., 2017; Zou & Gu, 2019).
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Figure 2. The validation for necessary and sufficient conditions of AGCE, AUL and AEL, wherem = argmaxi wi, n = argmaxi 6=m wi,
and a∗ is the value such that wm

wn
· r(`) = 1 for different loss functions.

Assumption 2. Given the loss function L and a separable
distribution D, we assume that there exists a hypothesis
f : X → C, f ∈ Hnet, ∀(x, y) drawn from D, such that f
minimizes L(f(x), y).

To satisfy this assumption, the hypothesis classHnet should
be as universal as possible to approximate complex func-
tions. According to the universal approximation theorem
(Cybenko, 1989; Martin & Peter L., 1999), if a certain deep
network model is employed, Hnet will be a universal hy-
pothesis class and thus contains the optimal function.

Theorem 4 (Noise tolerance). In a multi-classification prob-
lem, given an appropriate neural network class H which
satisfies Assumption 2, the loss function L is noise-tolerant
if L is asymmetric on the label noise model.

This theorem shows that noise tolerance can be obtained
without knowing the exact noise rates when the loss is asym-
metric on the label noise model. This conclusion does not
depend on the data distribution. We just require that the
label noise model is clean-labels-dominant and there is a
neural network which is as universal as possible. Therefore,
the key question becomes how to design a loss function
being asymmetric on the label noise model. Moreover, if
a loss is completely asymmetric, then it is robust to any
label noise model. In the next subsection, we will provide a
comprehensive analysis.

Inspired by the benefit of symmetric (Wang et al., 2019b)
or complementary learning(Kim et al., 2019), the Active
Passive Loss (APL) framework was proposed (Ma et al.,
2020) for both robust and sufficient learning. The following
theorem indicates that the asymmetric loss functions are
also suitable for the APL framework. In our experiments,
we also employ the framework to achieve better or at least
comparable performance.

Theorem 5. ∀α, β > 0, if L1 and L2 are asymmetric, then
αL1 + βL2 is asymmetric.

We know that all symmetric loss functions are also asym-
metric according to Theorem 3. Is there a new asymmetric
loss function? However, Definition 2 is too abstract to find a
new specific form. In the following, we will provide a com-
prehensive theoretical analysis about designing asymmetric

loss functions and propose several specific ones.

3.4. Asymmetry Ratio

As we can see, the asymmetry or direction of minimization
is dependent on which one is the maximum weight, but
how to measure the asymmetry of the function and select an
asymmetric enough loss? We give the following definition:

Definition 3. Consider a loss function L(u, i) = `(ui), we
define the asymmetry ratio r(`) as

r(`) = inf
0≤u1,u2≤1
u1+u2≤1
0≤∆u≤u2

`(u1)− `(u1 + ∆u)

`(u2 −∆u)− `(u2)
. (7)

The asymmetry ratio r denotes the infimum ratio of change
in the loss function ` when we increase the value of u1 to
u1 + ∆u, and correspondingly decrease the value of u2 to
u2 −∆u. For example, the asymmetry ratio of MAE is 1,
and the asymmetric ratio of GCE is 0 (q < 1). Based on
the definition, we obtain the sufficient condition that L is
asymmetric on some weights.

Theorem 6 (Sufficiency). On the given weights w1, .., wk,
where wm > wn and wn = maxi 6=m wi, the loss function
L(u, i) = `(ui) is asymmetric if wm

wn
· r(`) ≥ 1.

Remark. Let c = min(x,y),i6=y
1−ηx
ηx,i

, which can be re-
garded as a measure of the clean level for the label noise
mode in (2). The larger the c, the cleaner the labels. More-
over, we usually have c ≥ 1 in accordance with Assumption
1, then ` will be completely asymmetric if r(`) ≥ 1. On the
other hand, we can estimate c to design a loss that satisfies
r(`) ≥ 1

c , i.e., being asymmetric on the label noise model,
which leads to noise tolerance in accordance with Theorem
4. In fact, a loss satisfying r(`) ≥ 1

1.5 can be verified to be
asymmetric to handle all synthetic noises regardless of on
MNIST or CIFAR-10/-100. For a real-world dataset, the
clean level is usually higher than the synthetic case. In a
sense, Theorem 6 associates the clean level and the asymme-
try ratio with noise tolerance. In Section 4, we empirically
show that larger c · r(`) would provide more noise tolerance.
In the following, we shows that if c · r(`) ≥ 1, asymmetric
losses will produce at least a positive weighted optimization
rather than negative effects for any hypothesis class.
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(b) AGCE (q ≥ 1)
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Figure 3. Test accuracies of AGCE, AUL and AEL with different parameters on CIFAR-10 under 0.8 symmetric noise.

Theorem 7. In a binary classification problem, we as-
sume that L is strictly asymmetric on the label noise
model which is clean-labels-dominant, for any hypothe-
sis class H, let f∗ = arg minf∈HR

η
L(f). If ∀x, we have

1−ηx
ηx
·r(L) > 1, then f∗ also minimizes a positive weighted

L-risk Rw,L(f) = E[w(x, y) · L(f(x), y)].

According to the definition of the asymmetric ratio, we
can easily obtain an upper bound of r(`) when modifying
the half-space constraint u1 + u2 ≤ 1 to the hyperplane
u1 + u2 = 1 and setting ∆u = u2, i.e.,

r(`) ≤ inf
0≤u1,u2≤1
u1+u2=1

`(u1)− `(1)

`(0)− `(u2)
= ru(`). (8)

In some cases, the equality will hold, for example, both
r and ru of MAE are equal to 1. Actually, a completely
asymmetric loss ` satisfies ru(`) ≥ 1.

Theorem 8 (Necessity). On the given weights w1, .., wk,
where wm > wn and wn = maxi 6=m wi, the loss function
L(u, i) = `(ui) is asymmetric only if wm

wn
· ru(`) ≥ 1.

According to Theorem 6 and Theorem 8, when r(`) =
ru(`), wm

wn
· r(`) ≥ 1 will become the necessary and suffi-

cient condition for L(u, i) = `(ui) to be asymmetric. The
following corollaries are straightforward from this.

Corollary 1. On the given weights w1, .., wk, where wm >
wn and wn = maxi6=m wi, the loss function Lq(u, i) =
[(a+1)q−(a+ui)

q]/q (where q > 0, a > 0) is asymmetric
⇔ wm

wn
≥ (a+1

a )1−q · I(q ≤ 1) + I(q > 1).

Mathematically, the loss function Lq, shown in Figure
4(a), is the negative shifted Box-Cox transformation, which
we name as the Asymmetric Generalized Cross Entropy
(AGCE) because when 0 < q ≤ 1 and a = 0, the loss
function is called GCE (Zhang & Sabuncu, 2018) which
can be seen as a generalized mixture of CCE (when q → 0)
and MAE (when q = 1). Like MAE, both the r and ru of
AGCE are equal. More specifically, r is equal to ( a

a+1 )1−q

when q ≤ 1, and 1 when q ≥ 1. As a consequence, AGCE
is completely asymmetric when q ≥ 1. Corollary 1 shows
that if q > 1, the loss function beyond the range of q in
GCE is asymmetric, or if q ≤ 1 and wm

wn
≥ (a+1

a )1−q, the
convex loss function is also asymmetric, but when q < 1
and a = 0, the conventional GCE is not asymmetric.

Corollary 2. On the given weights w1, .., wk, where wm >
wn and wn = maxi6=m wi, the loss function Lp(u, i) =
[(a − ui)

p − (a − 1)p]/p (where p > 0 and a > 1) is
asymmetric⇔ wm

wn
≥ ( a

a−1 )p−1 · I(p > 1) + I(p ≤ 1).

We call the loss function above the Asymmetric Unhinged
Loss (AUL) shown in Figure 4(b) , because it is derived
from the unhinged loss (a = 1 and p = 1). Both the r and
ru of AUL are also equal, more specifically, the value of
r is (a−1

a )p−1 when p ≥ 1, and 1 when p < 1. Similar to
AGCE, AUL is completely asymmetric when p ≤ 1.
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Figure 4. Illustration of asymmetric loss functions.

Corollary 3. On the given weights w1, .., wk, where wm >
wn and wn = maxi 6=m wi, the exponential loss function
La(u, i) = exp(−ui/a) (where a > 0) is asymmetric ⇔
wm

wn
≥ exp(1/a).

We call the convex loss function above the Asymmetric
Exponential Loss (AEL). According to the Corollary 3, we
know that both r and ru of AEL are equal to exp(−1/a) ≤
1, so AELs will not be completely asymmetric.

4. Experiments
In this section, we empirically investigate asymmetric loss
functions on benchmark datasets, including MNIST (Lecun
et al., 1998), CIFAR-10/-100 (Krizhevsky & Hinton, 2009) ,
and a real-world noisy dataset WebVision (Li et al., 2017).

4.1. The Robustness of Asymmetric Loss Functions

Validation of Classification Calibration. We first conduct
an experiment to validate the classification calibration in
Theorem 1. As a corroboration, we plot the curves of H`(η)
and H−` (η) (the definitions can be found in the supplemen-
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Table 1. Test accuracies (%) of different methods on benchmark datasets with clean or symmetric label noise (η ∈ [0.2, 0.4, 0.6, 0.8]).
The results (mean±std) are reported over 3 random runs and the top 3 best results are boldfaced.

Datasets Methods Clean (η = 0.0) Symmetric Noise Rate (η)
0.2 0.4 0.6 0.8

MNIST

CE 99.15 ± 0.05 91.62 ± 0.39 73.98 ± 0.27 49.36 ± 0.43 22.66 ± 0.61
FL 99.13 ± 0.09 91.68 ± 0.14 74.54 ± 0.06 50.39 ± 0.28 22.65 ± 0.26

GCE 99.27 ± 0.05 98.86 ± 0.07 97.16 ± 0.03 81.53 ± 0.58 33.95 ± 0.82
NLNL 98.61 ± 0.13 98.02 ± 0.14 97.17 ± 0.09 95.42 ± 0.30 86.34 ± 1.43
SCE 99.23 ± 0.10 98.92 ± 0.12 97.38 ± 0.15 88.83 ± 0.55 48.75 ± 1.54
NCE 98.60 ± 0.06 98.57 ± 0.01 98.29 ± 0.05 97.65 ± 0.08 93.78 ± 0.41

NCE+RCE 99.36 ± 0.05 99.14 ± 0.03 98.51 ± 0.06 95.60 ± 0.21 74.00 ± 1.68
AUL 99.14 ± 0.05 99.05 ± 0.09 98.90 ± 0.09 98.67 ± 0.04 96.73 ± 0.20

AGCE 99.05 ± 0.11 98.96 ± 0.10 98.83 ± 0.06 98.57 ± 0.12 96.59 ± 0.12
AEL 99.03 ± 0.05 98.93 ± 0.06 98.78 ± 0.13 98.51 ± 0.06 96.40 ± 0.11

CIFAR10

CE 90.48 ± 0.11 74.68 ± 0.25 58.26 ± 0.21 38.70 ± 0.53 19.55 ± 0.49
FL 89.82 ± 0.20 73.72 ± 0.08 57.90 ± 0.45 38.86 ± 0.07 19.13 ± 0.28

GCE 89.59 ± 0.26 87.03 ± 0.35 82.66 ± 0.17 67.70 ± 0.45 26.67 ± 0.59
SCE 91.61 ± 0.19 87.10 ± 0.25 79.67 ± 0.37 61.35 ± 0.56 28.66 ± 0.27

NLNL 90.73 ± 0.20 73.70 ± 0.05 63.90 ± 0.44 50.68 ± 0.47 29.53 ± 1.55
NCE 75.65 ± 0.26 72.89 ± 0.25 69.49 ± 0.39 62.64 ± 0.18 41.49 ± 0.66

NCE+RCE 90.87 ± 0.37 89.25 ± 0.42 85.81 ± 0.08 79.72 ± 0.20 55.74 ± 0.95
AUL 91.27 ± 0.12 89.21 ± 0.09 85.64 ± 0.19 78.86 ± 0.66 52.92 ± 1.20

AGCE 88.95 ± 0.22 86.98 ± 0.12 83.39 ± 0.17 76.49 ± 0.53 44.42 ± 0.74
AEL 86.38 ± 0.19 84.27 ± 0.12 81.12 ± 0.20 74.86 ± 0.22 51.41 ± 0.32

NCE+AUL 91.10 ± 0.13 89.31 ± 0.20 86.23 ± 0.18 79.70 ± 0.08 59.44 ± 1.14
NCE+AGCE 90.94 ± 0.12 89.21 ± 0.08 86.19 ± 0.15 80.13 ± 0.18 50.82 ± 1.46
NCE+AEL 90.71 ± 0.04 88.57 ± 0.14 85.01 ± 0.38 77.33 ± 0.18 47.90 ± 1.21

CIFAR100

CE 71.33 ± 0.43 56.51 ± 0.39 39.92 ± 0.10 21.39 ± 1.17 7.59 ± 0.20
FL 70.06 ± 0.70 55.78 ± 1.55 39.83 ± 0.43 21.91 ± 0.89 7.51 ± 0.09

GCE 63.09 ± 1.39 61.57 ± 1.06 56.11 ± 1.35 45.28 ± 0.61 17.42 ± 0.06
SCE 69.62 ± 0.42 52.25 ± 0.14 36.00 ± 0.69 20.14 ± 0.60 7.67 ± 0.63

NLNL 68.72 ± 0.60 46.99 ± 0.91 30.29 ± 1.64 16.60 ± 0.90 11.01 ± 2.48
NCE 29.96 ± 0.73 25.27 ± 0.32 19.54 ± 0.52 13.51 ± 0.65 8.55 ± 0.37

NCE+RCE 68.65 ± 0.40 64.97 ± 0.49 58.54 ± 0.13 45.80 ± 1.02 25.41 ± 0.98
NCE+AUL 68.96 ± 0.16 65.36 ± 0.20 59.25 ± 0.23 46.34 ± 0.21 23.03 ± 0.64

NCE+AGCE 69.03 ± 0.37 65.66 ± 0.46 59.47 ± 0.36 48.02 ± 0.58 24.72 ± 0.60
NCE+AEL 68.70 ± 0.20 65.36 ± 0.14 59.51 ± 0.03 46.94 ± 0.07 24.48 ± 0.24

tary material) for the proposed losses AGCE with q > 1 and
AUL with p < 1, which are completely asymmetric accord-
ing to Corollaries 1 and 2. As shown in Fig. 1, under the
same parameter setting, the curve ofH−` (η) (dashed ones) is
always above the corresponding of H`(η) (solid ones) when
η 6= 1/2, i.e., the loss functions are classification-calibrated.

Validation of Corollaries. We also design a simple experi-
ment to validate the necessary and sufficient conditions in
Corollaries 1, 2 and 3, where we randomly generate a posi-
tive weight vector w ∈ Rk+ (k is set to 10), and initialize a
random variable z ∈ Rk. Our goal is to optimize z by mini-
mizing

∑k
i=1 wiL(σ(z), i), where σ(·) denotes the softmax

function. As aforementioned, asymmetric loss functions
will optimize p = σ(z) as a one-hot vector. The experimen-
tal results are shown in Figure 2. Let m = arg maxi wi,
we can see that when wm

wn
· r(`) ≥ 1, pm is very close to 1,

and has an obvious gap from 1 when wm

wn
· r(`) < 1. The

consequence holds regardless of AGCE, AUL, or AEL, and
an important phenomenon is that the curve is more and more
asymmetric as a or r(`) gets bigger and bigger.

About Hyper-parameters. We then run a set of experi-
ments on CIFAR-10 to verify the robustness of asymmetric
loss functions AGCE, AUL, and AEL with different hyper-
parameter settings. The label noise is set to be symmetric
and the noise rate is set to 0.8. We use an 8-layer CNN as
the model to be learned.

One of the advantages of asymmetric losses is that we do
not need to know the exact values of noise rates, especially
for completely asymmetric losses. For the symmetric noise
with rate 0.8, the clean level c = min(x,y)∈S,i6=y

1−ηx
ηx,i

= 9
4 .

To make the AGCE asymmetric with q = 0.5, we need to
guarantee 9

4 · (
a
a+1 )1−0.5 ≥ 1, i.e., a ≥ 16

65 . To make the
AUL asymmetric with p = 2, we need to guarantee 9

4 ·
(a−1
a )2−1 ≥ 1, i.e., a ≥ 9

5 . To make the AEL asymmetric,
we need to guarantee 9

4 ≥ exp(1/a), i.e., a ≥ 1/ ln 9
4 .

As shown in Figures 3(a) and 3(b), when q = 1.5, all the
curves remain robust, and when q = 0.5, the AGCE whose
asymmetry ratio is smaller than 16

65 exhibits significant over-
fitting after epoch 20. In Figure 3(a), although the curve
is not robust on a = 0.3 > 16

65 , it will be more and more
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(a) GCE with η = 0.0 (b) GCE with η = 0.2 (c) GCE with η = 0.4 (d) GCE with η = 0.6 (e) GCE with η = 0.8

(f) AGCE with η = 0.0 (g) AGCE with η = 0.2 (h) AGCE with η = 0.4 (i) AGCE with η = 0.6 (j) AGCE with η = 0.8

Figure 5. Visualization for GCE (top) and AGCE (bottom) on MNIST with different symmetric noise (η ∈ [0.0, 0.2, 0.4, 0.6, 0.8]) by
t-SNE (Van der Maaten & Hinton, 2008) 2D embeddings of deep features.

robust as a increases gradually. Our understanding is that
the data is not ideal enough such that the optimization is a
trade-off between sample separability and the asymmetry
of loss. Similar experimental phenomena have occurred on
AUL and AEL. According to Figures 3(c) and 3(d), when
p < 1, AUL always remains robust, and when p = 2, AUL
becomes more and more robust as the asymmetric ratio
r(`) = a−1

a gets larger, which is similar to AEL.

Remark. An important experimental conclusion is that
as a or the asymmetric ratio r increases, whether it is for
AGCE (q < 1), AUL (p > 1), or AEL, c · r(L) is becoming
larger, and the training process shows more robust results,
but may lead to less fitting ability. Therefore, we roughly
follow a principled approach for hyper-parameter tuning:
for simple datasets, we prefer the hyperparameters with
a higher asymmetry ratio to obtain robustness, while for
complicated datasets we tend to use hyper-parameters with
a lower asymmetry ratio to obtain better fitting ability.

4.2. Evaluation on Benchmark Datasets

Baselines. We consider several state-of-the-art methods:
Generalized Cross Entropy (GCE) (Zhang & Sabuncu,
2018), Negative Learning for Noisy Labels (NLNL) (Kim
et al., 2019), Symmetric Cross Entropy (SCE) (Wang et al.,
2019b), Normalized Cross Entropy (NCE), the weighting of
NCE and Reverse Cross Entropy (RCE), as well as our pro-
posed AUL, AGCE and AEL. Inspired by the Active Passive
Loss (Ma et al., 2020), we combine the proposed AGCE,
AUL, and AEL with NCE, then we obtain NCE+ALFs, i.e.,
NCE+AGCE, NCE+AUL and NCE+AEL. We also train
networks using the commonly-used losses Cross Entropy
and Focal Loss (Lin et al., 2017).

Experimental Details. The noise generation, networks,

training details, hyper-parameter settings and more experi-
mental results can be found in the supplementary material.

Results. Tables 1 and 2 report the test accuracy results of
each loss function on the benchmark datasets with sym-
metric label noise and asymmetric label noise, respec-
tively. As we can see, our proposed AGCE, AUL and
AEL have a significant improvement in most label noise
settings for MNIST and CIFAR-10. For example, compared
with GCE, SCE, NLNL and NCE, AUL achieves better test
accuracy on MNIST and CIFAR-10 for symmetric noise
with any noise rate and asymmetric noise with noise rate
η ∈ {0.1, 0.2, 0.3}. However, in our limited parameter tun-
ing, ALFs suffer from underfitting with asymmetric label
noise with η = 0.4. According to Theorems 3 and 5, the
proposed asymmetric loss functions can be applied to the
APL framework (Ma et al., 2020). And our NCE+ALFs, es-
pecially NCE+AGCE and NCE+AUL, achieve the top three
best results in most test scenarios across all datasets. In sev-
eral cases, our method are better than all baseline methods.
The results demonstrate that asymmetric loss functions can
be robust enough to get the outstanding performance for
both symmetric and asymmetric label noise.

Visualization. We further investigate the feature represen-
tations learned by AGCE compared to that learned by GCE.
We first extract the high-dimensional features at the sec-
ond last layer, then project all features of test samples in
to 2D embeddings by t-SNE (Van der Maaten & Hinton,
2008). The projected representations on MNIST with differ-
ent symmetric label noise are illustrated in Fig. 5. As can
be observed, GCE encounters obvious overfitting with label
noise, and the embeddings look completely mixed together
when η = 0.8. On the contrary, AGCE learns good repre-
sentations with more separated and clearly bounded clusters
in all noisy cases.
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Table 2. Test accuracies (%) of different methods on benchmark datasets with asymmetric label noise (η ∈ [0.1, 0.2, 0.3, 0.4]). The
results (mean±std) are reported over 3 random runs and the top 3 best results are boldfaced.

Datasets Methods Asymmetric Noise Rate (η)
0.1 0.2 0.3 0.4

MNIST

CE 97.57 ± 0.22 94.56 ± 0.22 88.81 ± 0.10 82.27 ± 0.40
FL 97.58 ± 0.09 94.25 ± 0.15 89.09 ± 0.25 82.13 ± 0.49

GCE 99.01 ± 0.04 96.69 ± 0.12 89.12 ± 0.24 81.51 ± 0.19
NLNL 98.63 ± 0.06 98.35 ± 0.01 97.51 ± 0.15 95.84 ± 0.26
SCE 99.14 ± 0.04 98.03 ± 0.05 93.68 ± 0.43 85.36 ± 0.17
NCE 98.49 ± 0.06 98.18 ± 0.12 96.99 ± 0.17 94.16 ± 0.19

NCE+RCE 99.35 ± 0.03 98.99 ± 0.22 97.23 ± 0.20 90.49 ± 4.04
AUL 99.15 ± 0.09 99.15 ± 0.02 98.98 ± 0.05 98.62 ± 0.09

AGCE 99.10 ± 0.02 99.07 ± 0.09 98.95 ± 0.03 98.44 ± 0.11
AEL 98.99 ± 0.05 99.06 ± 0.07 98.90 ± 0.15 98.34 ± 0.08

CIFAR10

CE 87.55 ± 0.14 83.32 ± 0.12 79.32 ± 0.59 74.67 ± 0.38
FL 86.43 ± 0.30 83.37 ± 0.07 79.33 ± 0.08 74.28 ± 0.44

GCE 88.33 ± 0.05 85.93 ± 0.23 80.88 ± 0.38 74.29 ± 0.43
SCE 89.77 ± 0.11 86.20 ± 0.37 81.38 ± 0.35 75.16 ± 0.39

NLNL 88.54 ± 0.25 84.74 ± 0.08 81.26± 0.43 76.97 ± 0.52
NCE 74.06 ± 0.27 72.46 ± 0.32 69.86 ± 0.51 65.66 ± 0.42

NCE+RCE 90.06 ± 0.13 88.45 ± 0.16 85.42 ± 0.09 79.33 ± 0.15
AUL 90.19 ± 0.16 88.17 ± 0.11 84.87 ± 0.04 56.33 ± 0.07

AGCE 88.08 ± 0.06 86.67 ± 0.14 83.59 ± 0.15 60.91 ± 0.20
AEL 85.22 ± 0.15 83.82 ± 0.15 82.43 ± 0.16 58.81 ± 3.62

NCE+AUL 90.05 ± 0.20 88.72 ± 0.26 85.48 ± 0.18 79.26 ± 0.05
NCE+AGCE 90.35 ± 0.15 88.48 ± 0.16 85.96 ± 0.24 80.00 ± 0.44
NCE+AEL 89.95 ± 0.04 87.93 ± 0.06 84.81 ± 0.26 77.27 ± 0.11

CIFAR100

CE 64.85 ± 0.37 58.11 ± 0.32 50.68 ± 0.55 40.17 ± 1.31
FL 64.78 ± 0.50 58.05 ± 0.42 51.15 ± 0.84 41.18 ± 0.68

GCE 63.01 ± 1.01 59.35 ± 1.10 53.83 ± 0.64 40.91 ± 0.57
SCE 61.63 ± 0.84 53.81 ± 0.42 45.63 ± 0.07 36.43 ± 0.20

NLNL 59.55 ± 1.22 50.19 ± 0.56 42.81 ± 1.13 35.10 ± 0.20
NCE 27.59 ± 0.54 25.75 ± 0.50 24.28 ± 0.80 20.64 ± 0.40

NCE+RCE 66.38 ± 0.16 62.97 ± 0.24 55.38 ± 0.49 41.68 ± 0.56
NCE+AUL 66.62 ± 0.09 63.86 ± 0.18 50.38 ± 0.32 38.59 ± 0.48

NCE+AGCE 67.22 ± 0.12 63.69 ± 0.19 55.93 ± 0.38 43.76 ± 0.70
NCE+AEL 66.92 ± 0.22 62.50 ± 0.23 52.42 ± 0.98 39.99 ± 0.12

4.3. Evaluation on Real-world Noisy Label

To evaluate the effectiveness of asymmetric loss functions,
we test on the real-world noisy dataset WebVision (Li et al.,
2017), where we follow the ”Mini” setting in (Jiang et al.,
2018; Ma et al., 2020) that only takes the first 50 concepts
of the Google resized image subset as the training dataset
and further evaluate the trained ResNet-50 (He et al., 2016)
on the same 50 concepts of the corresponding validation set.

Table 3. Top-1 validation accuracies (%) on WebVision validation
set using different loss functions.

Loss CE GCE SCE NCE+RCE NCE+AGCE AGCE
Acc 66.96 61.76 66.92 66.32 67.12 69.40

The top-1 validation accuracies under different loss func-
tions on the clean WebVision validation set are reported in
Table 3. More experimental details and results can be found
in supplementary materials. As shown in Table 3, the pro-
posed loss functions AGCE and NCE+AGCE outperform
the existing loss functions GCE, SCE, and NCE+RCE. The
results demonstrate that asymmetric loss functions can help
the trained model against real-world label noise.

5. Conclusion
This paper introduces asymmetric loss functions, which al-
low training a noise-tolerant classifier with noisy labels as
long as clean labels dominate. We then prove that com-
pletely asymmetric losses are classification-calibrated, and
have an excess risk bound when the asymmetry is strict. Fur-
thermore, we introduce the asymmetric ratio to measure the
asymmetry. The empirical results demonstrate that the larger
ratio will provide better robustness. We also prove asymmet-
ric loss functions will provide a global clean weighted-risk
when minimizing the noisy risk for any hypothesis class.
The experiments on benchmark datasets show the advantage
of using the modified loss functions.
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