
Examining and Combating Spurious Features under Distribution Shift

A. Proofs of Theorem 1
Lemma 1. If T is sufficient statistics, we have p(Y,X|T) = p(Y |T) · p(X|T).

Lemma 2. If T is sufficient statistics, we have p(Y |T (X)) = p(Y |X).

Proof. Find T ′(X), s.t. S(x) = 〈T (X), T ′(X)〉 is an invertible mapping of X , thus p(Y |X) = p(Y |S(X)) =
p(Y |T (X), T ′(X)). We have,

p(Y, T (X), T ′(X)|T (X)) = p(Y |T ′(X), T (X))p(T ′(X)|T (X)) (8)

From Lemma 1, we have
p(Y, T (X), T ′(X)|T (X)) = p(Y |T (X))p(T ′(X)|T (X)) (9)

By (8) and (9), we obtain p(Y |T ′(X), T (X)) = p(Y |T (X)) = p(Y |X).

Theorem 1. Suppose that there is only covariate shift in ptrain, i.e. ∃x ∈ Xtrain s.t. ptrain(x) 6= pideal(x) but ptrain(Y |X =
x) = pideal(Y |X = x), ∀x ∈ Xtrain. Let Ttrain(X) be the MSS representation learned under ptrain, then we have:

Htrain(Ttrain(x)|Tideal(x)) = 0. (2)

Proof. Since there is covariate shift between pideal and ptrain, we have ptrain(Y |X) = pideal(Y |X),∀x ∈ Xtrain.
Since Ttrain(X) is MSS of ptrain and by Lemma 2, we have ptrain(Y |Ttrain(X)) = ptrain(Y |X) = pideal(Y |X) =
pideal(Y |Tideal(X)),∀x ∈ Xtrain. Then ∀x ∈ Xtrain, y ∈ Y ,

ptrain(y|Tideal(x)) =
∑

x′:Tideal(x′)=Tideal(x)

ptrain(y|x′)ptrain(x′|T (x))

=
∑

x′:Tideal(x′)=Tideal(x)

pideal(y|x′)ptrain(x′|T (x))

=
∑

x′:Tideal(x′)=Tideal(x)

pideal(y|T (x))ptrain(x′|T (x))

= pideal(y|Tideal(x)) (10)

Then we have

Htrain(Y |Ttrain(X)) =
∑
x,y

ptrain(x, y)[− log ptrain(y|Ttrain(x))]

=
∑
x,y

ptrain(x, y)[− log pideal(y|Tideal(x))]

=
∑
x,y

ptrain(x, y)[− log ptrain(y|Tideal(x))]

= Htrain(Y |Tideal(X)) (11)

From equation 11 and the definition of sufficient statistics, we have

Itrain(Y ;Ttrain(X)) = Itrain(Y ;X) = Itrain(Y ;Tideal(X)) (12)

Thus, Tideal(X) is the sufficient statistics of X about Y under ptrain. By definition, we have

Htrain(Ttrain(X)|Tideal(X)) = 0. (13)

Corollary 1. Suppose Xtrain = Xideal in Theorem 1, then Ttrain(X) is also the MSS under pideal.

Proof. Since Xtrain = Xideal = X , with the similar derivation of equation 10, we have ∀x ∈ X , y ∈ Y

pideal(y|Tideal(x)) = pideal(y|Ttrain(x)) (14)

Together with Theorem 1, we have Ttrain(x) is also the MSS under pideal.

Examining and Combating Spurious Features under Distribution Shift

B. Connections between MLE and Learning Minimal Sufficient Statistics
B.1. Information Bottleneck (IB) Method

The information bottleneck (IB) method (Tishby et al., 2000) is an information theoretic principle introduced to extract
relevant information that an input X ∈ X contains about an output random variable Y ∈ Y . Defined on a joint distribution
of X and Y , IB learns a mapping function T (X) by optimizing the trade-off between the mutual information I(X;T) and
I(Y ;T) such that T (X) is a compressed representation of X (quantified by I(X;T)) that is most informative about Y
(quantified by I(Y ;T)). Let T be parameterized by θ, the objective of IB optimizes the trade-off between I(Y ;Tθ(X)) and
I(X;Tθ(X)):

min
θ
−I(Y, Tθ(X)) + βI(X;Tθ(X)) (15)

where β is a positive Lagrange multiplier.

Schwartz-Ziv & Tishby (2017) casts finding of minimal sufficient statistics (MSS) T (X) as a constrained optimization
problem using data-processing inequality (Cover, 1999):

min
T (X)

I(T (X);X)

s.t I(T (X);Y) = I(X;Y) (16)

This corresponds to the IB method (Eq. 15) which extends the notion of relevance between functions of samples and
parameters in conventional MSS to any joint distribution of X and Y . The IB method provides a computational framework
for finding approximate MSS in a soft manner by trading off the sufficiency for Y (I(Y; T(X))) and the minimality of the
statistic (I(X,T (X))) with the Lagrange multiplier β (Schwartz-Ziv & Tishby, 2017; Shamir et al., 2010).

B.2. Connections between MLE and IB

Given that the IB objective is approximately learning MSS in a soft manner, we next build the connections between the
popularly adopted maximum likelihood estimation (MLE) in supervised learning and the IB objective. We show that under
certain assumptions, MLE is approximating the IB objective defined on the joint distribution of ptrain(X,Y).

To facilitate the discussions, we decompose the model parameters into θ and φ that denote the parameters of the feature
extractor Tθ(x) and the classifier respectively. MLE minimizes the expected negative log probability under ptrain(X,Y):

min
θ,φ

Ex,y∼ptrain(X,Y)[− log pθ,φ(x, y)] (17)

⇐⇒ min
θ,φ

Ex,y∼ptrain(X,Y)[− log pφ(y|Tθ(x))− log pθ(x)] (18)

Usually, we only model the conditional distribution pφ(Y |X) and assume that pθ(X) = ptrain(X) which is independent
from θ. With the assumption that pθ(x) ∝ pβ(Tθ(x))), β > 0, (18) can be rewritten as:

min
θ,φ

Ex,y∼ptrain(X,Y)[− log pφ(y|Tθ(x))] + βEx∼ptrain(X)[− log p(Tθ(x))] (19)

Assume that the neural network parameterized by φ is a universal function approximator, then we can replace minθ,φ with
minθ and (19) can be written as:

min
θ
H(Y |Tθ(X)) + βH(Tθ(X)) (20)

by (1) I(Y ;Tθ(X)) = H(Y)−H(Y |Tθ(X))

(2) H(Tθ(X)) = I(X;Tθ(X)) +H(Tθ(X)|X) = I(X;Tθ(X))

⇐⇒ min
θ
−I(Y ;Tθ(X)) + βI(X;Tθ(X)) (21)

We can see that under the assumption of pθ(x) ∝ pβ(Tθ(x))), the MLE objective can be converted into the same form as the
IB objective. In practice, we usually do not model ptrain(X) and only optimize the first term I(Y ;Tθ(X)) in (21). However,
previous work (Schwartz-Ziv & Tishby, 2017; Geiger, 2020) has shown that deep neural networks (DNNs) are implicitly
minimizing I(X;Tθ(X)) with a wide range of activation functions and architectures, which are manifested as a second
compression phase during learning with SGD. Thus, we can presumably consider MLE as approximating the IB objective,
which is equivalent to learning the MSS on the train distribution ptrain(X,Y).

Examining and Combating Spurious Features under Distribution Shift

C. Details of the Online Greedy Algorithm for Group DRO

Algorithm 2: Online greedy algorithm for group DRO (Oren et al., 2019)
Input :α; m: total number of groups
Initialize historical average group losses L̂(0); historical estimate of group probabilities p̂train(0); learning rate η
for t = 1, · · · , T do

Sample a mini-batch batch B = (x,y,g) uniformly from ptrain
. Update the historical vectors of L̂(t) and p̂train(t) for each group g ∈ {1, · · · ,m}
L̂(t)(g)← EMA({`(xi,yi; θ(t−1)) : gi = g}, L̂(t−1)(g))
p̂train(t) ← EMA(#samples of each group in B, p̂train(t−1))
. Update the worst-case distribution q(t)

Sort p̂train(t) in the order of decreasing L̂(t) and denote the sorted group indexes π

q(t)(gπi
) = min{ p̂

train(t)(gπi
)

α , 1−
∑i−1
j=1

p̂train(t)(gπj
)

α }
. Update model parameters θ

θ(t) = θ(t−1) − η
|B|

∑|B|
i=1

q(t)(gi)
p̂train(t)(gi)

∇`(xi,yi; θ(t−1))
end

EMA refers to exponential weighted moving average such that EMA(v1, v2) = γv1 + (1− γ)v2, where γ ∈ (0, 1).

D. Synthetic Experiments: on Investigation Spurious Features under Covariate Shift

a b c d8 5 e f i d l3 6 t e s l a2 9

0 1 1+ +

y = 2 % 10 = 2

Figure 5. An illustrative example of the synthetic task.

Synthetic Experiments We design synthetic experiments where data is generated based on the ground-truth rules and
different biases are injected. We show that even in the presence of necessary information to learn the rules, the ERM model
(specifically, we examine MLE) can still learn spurious features or miss robust features under covariate shift. The synthetic
task aims to predict an integer y ∈ {0, · · · , 9} conditioned on a sequence x as shown in Fig. 5. Concretely, x is composed
of m chunks, where each chunk ci has |ci| characters that are randomly sampled from an alphabet V . We prepend an integer
c1i and append an integer c2i to each chunk ci, and both c1i and c2i are uniformly sampled from [1, 10]. The target integer y is
predicted following the rules: each triple of (c1i , ci, c

2
i) produces an indicator value di; di = c2i − c1i if c2i > c1i , otherwise

di = 0; then y = (
∑m
i=1 di) mod 10. We set 3 ≤ m ≤ 6, 3 ≤ |ci| ≤ 5 and |V| = 26,. We use a one-layer bidirectional

LSTM (Hochreiter & Schmidhuber, 1997) to model the input sequence and use the final hidden states of the LSTM to
predict the target value. We create training data following the the above description and design two settings that introduce
covariate shift to examine if the model can learn the rules with ERM.

(a) Setting 1 — ERM-trained models can miss robust features under covariate shift: We create the training data by
imposing c2m > c1m on the last chunk cm of all the training samples. When we create the training data, the rules applied to
each chunk are the same as described above, which means that the model does not need to learn additional rules for the last
chunk. We are interested in examining whether the model trained with ERM will apply the rules learned from other chunks
to the last one or it will miss the robust features of the last chunk. At test time, we evaluate on two groups of test sets: Dout
where c2m ≤ c1m, different from the training data, and Din where c2m > c1m, consistent with the training data. From Tab. 5,
we see that the test accuracy on Dout is much lower that that on Din. This demonstrates that the model only learns robust
features from chunks cm−11 but misses the robust features of the last chunk cm. We conjecture that the model trained with
ERM learns in a lazy way where it tries to minimize the entropy of learned features by memorizing patterns and taking
shortcuts as discussed further in Appendix B.2.

(b) Setting 2 — ERM-trained models can learn spurious features under covariate shift: In the second setting, we
inject spurious patterns into the training data that co-occur with the rules we aim to learn. As both robust rules and spurious
patterns co-exist in the training data, we would like to see whether the model picks up the spurious ones or the robust

Examining and Combating Spurious Features under Distribution Shift

Din Dout
Setting 1 99.93 ± 0.02 14.68 ± 2.60
Setting 2 100.00 ± 0.00 10.26 ± 0.25

Table 5. Test accuracy of the synthetic task.

ones. Specifically, each training input sequence has a chunk cj that includes a special segment of characters, e.g. a b. The
remainder of dj = c2j − c1j and the sum of all indicators

∑m
i=1 di mod by 10 are the same such that the target label y is

always the same as the indicator dj . Similarly, we test on two cases: i) Din where every sequence includes a special chunk
as in the training set; ii) Dout where characters in each chunk are uniformly sampled. We can see from Tab. 5 that the model
learns to use the spurious patterns to predict the target label instead of the general rules.

E. Experimental Details
E.1. Models and Training Details

Model Specific Settings In our method, we adopt two criterions in GC-DRO to determine when to update q(x, y|g) for
each groups: (1) update when the robust validation accuracy drops (2) update at every epoch. With (2), q(x, y|g) is updated
more frequently. For MNLI and Celeb-A, we use the second criterion. For FDCL18, we use the first criterion, because
this is a relatively smaller dataset and updating q(x, y|g) less frequently makes training more stable. Every time q(x, y|g)
is updates, we clear the historical losses in EMA that is used for updating q(g). We use exponentially weighted moving
average (EMA) to compute the historical losses for both q(g) and q(x, y|g), for which we denote EMAG and and EMACG
respectively. As shown above, we use γ to denote the coefficient for current value in EMA, thus 1−γ is used to the historical
value. We found that the value of γ is an important hyperparameter in some cases to achieve better performance, since the
final q distribution is computed through sorting the losses accumulated via EMA. Basically, a higher γ pays more attention
to the current value. We search over {0.1, 0.5} for both γ used in EMAG and EMACG respectively. Through the robust
accuracy on the validation set, we set both γ’s to be 0.5 for the NLP tasks except that for the imperfect partition of toxicity
detection we set γ used in EMAG to be 0.1. For the image task, we set both γ’s to be 0.1. For the γ used in accumulating
the historical fractions of groups, we always use a small value 0.01.

Training Details For the NLP tasks, we finetune a base Roberta model (Liu et al., 2019; Ott et al., 2019) and we segment
the input text into the sub-word tokens using the tokenization described in (Liu et al., 2019). During training, we sample
minibatches that contain at most 4400 tokens. We train MNLI using Adam (Kingma & Ba, 2014) with an intitial learnig rate
of 1e− 5 for 35 epochs and FDCL18 for 45 epochs, and we linearly decay the learning rate at every step until the end of
training. For the image task, we fine-tune a ResNet-18 (He et al., 2016) for 50 epochs with batch size of 256. We use SGD
with learning rate of 1e− 4. At the end of every epoch, we evaluate the robust accuracy on the validation set. We train on
one Volta-16G GPU and it takes around 2 - 5 hours to finish one experiments for different datasets.

E.2. Implementation of the Group DRO Loss

We referred to the implementation of greedy group DRO in Sagawa et al. (2020a), where they use the exact formulation
in Eq. 5 to compute the expected loss, which leads to inferior performance compared to the exponentiated-gradient based
optimization as reported in Sagawa et al. (2020a). The implementation computed the final loss by first computing the
average loss over instances for each group (MC for the inner expectation), then compute the full expected value over the
averaged group loss, as shown below:

`(x,y,g; θ) =
∑
g

q(g)¯̀(g) =
∑
g

q(g)
1

Cg

∑
{i,∀gi=g}

`(xi,yi; θ), (22)

where (x,y,g) is a mini-batch and Cg is the number of samples that belong to group g in the mini-batch. We can
see that instances that belong to different groups are weighted correspondingly by the number of group size in a
mini-batch. This causes that instances in large group get unfairly lower weights, especially when its probability in
the q distribution is low. We fix this by directly computing the expected loss over the joint distribution of q(x, y, g),
i.e. E(xi,yi,gi)∼q(x,y,g)`(xi, yi, gi; θ) = E(xi,yi,gi)∼ptrain(x,y,g)

q(xi,yi,gi)
ptrain(xi,yi,gi)

`(xi, yi, gi). Specifically, we do this by summing
over all the importance weighted instance losses using corresponding group weights and taking average. This allows us to
obtain unbiased gradient estimates of θ.

1

N

∑
i

q(gi)

ptrain(gi)
`(xi,yi; θ) (23)

