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8. Theoretical Derivations
8.1. Notations and Preliminaries

Let X C RP be the input space, Z C R? be the latent feature space, and ) C R be the output space. R : X — Z denotes a
representation function that maps inputs into features. 7 denotes a domain (or task), which consists of a data distribution
D over X and a ground-truth labeling function ¢* : X — Y. Given a domain 7 := (D, ¢*) and a representation function R,
we use D to denote the induced image of D under R (Ben-David et al., 2007), s.. given a probability event B,

E. 5B(2)] = Eenn[B(R(2))].
Accordingly, ¢* denotes the induced labeling function under R:
¢*(2) := Egp [¢"(2)|R(x) = 2].

Let h : Z — ) denote a hypothesis that maps features to predicted labels, and H C {h : Z — Y} denote a hypothesis
class. For our analysis, we assume the FL tasks are for binary classification, i.e. J) = {0, 1}, and the loss function is 0-1
bounded, with {(§,y) = |§ — y|. Same assumptions have been adopted by various prior art (Ben-David et al., 2007; Blitzer
et al., 2008; Ben-David et al., 2010; Lin et al., 2020; Ben-David et al., 2007).

Given two distributions D and D', dy (D, D’) is defined as the H-divergence between D and D', i.e.:

dy(D,D') :==2 sup [Prp(A) —Prp(A)|},
AeAy

where Ay, is a set of measurable subsets under D and D’ for certain h € H. Moreover, H/AH is defined as the symmetric
difference hypothesis space (Blitzer et al., 2008), i.e.:

HAH = {h(z) & K (2),h, I € H}

where @ denotes the XOR operator, so that h(z) @ h/(z) indicates that h and b’ disagrees with each other. Accordingly,
Az 18 a set of measurable subsets for V h(z) @ h'(z) € HAH. Then dya (-, -) is defined as the distribution divergence
induced by the symmetric difference hypothesis space (Blitzer et al., 2008):

duan(D,D'):=2 sup |Prp(A) —Prp/(A)}.
A€EANAnH

Specifically, let D, D’ be two arbitrary distributions on the input space X, and let D, D’ be their induced images over k.
Then based on the definition of dyax (-, -), one can have:

dusn(D, D) =2 sup  |Esup [Pr(A(R(2)))] — Esnps [Pr(A(R(2)))]]

A€Ayan

=2 sup [E, 5 [Pr(A(@))] —E, 5 [Pr(A(2))]|
A€AyAn

=2 sup |Prs(A) —Prp, (A)l}.
AcAynn

8.2. Derivations of Remark 1

Remark. Let p(y) be the prior distribution of labels, and v(z|y) : ¥ — Z be the conditional distribution derived from
generator G,. Then regulating a user model 0y, using samples from r(z|y) can minimize the conditional KL-divergence
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between two distributions, derived from the user and from the generator, respectively:

Hg:X Eywp(y),zwr(z|y) [logp(y|z, gk)] = Holin DKL[T(Z|y)||p(Z|y7 9k)]7
Proof. Expanding the KL-divergence, we have
2 Dalr AP 00)] = Eyept [Eemria 08 0005 |
' p(zly; 6)

= Epr(y)EzNT(z\y) [10g7’(2’|y)] - EyNP(y)]EZNT(Z\y) [1ng(2‘y, 0)]
== H(r(z]y)) = Eyepy)Eenrzpy log p(z]y; 0)]-

constant w.r.t 8

where H (r(z|y)) is constant w.r.t 8. Therefore when optimizing 6;, we have:
min Dy, [r([y)l[p(z]y; 0x)]
= HGILH - Eywp(y),zwr(zh/) [logp(zlya gkr)]

p(yl2; Gk)p(Z)]
p(y)
= I%%X Epr(y)Ez~r(2|y) [logp(y|z, Gk:) + lng(Z) - Ing(y)]

= Eyp(y) Eznr(aly) [log
k

= max Eyp) Bz 21y l0g p(y]2; O1)].

where H (r(z|y)) denotes the entropy of the probability distribution r(z|y) which is not optimizable w.r.t 6y, and
p(z|y; Ok) = W is defined as the probability that the input representation to the predictor is z if it yields a

label y. O

8.3. Derivations of Theorem 1

Before deriving Theorem 1, we first present an upper-bound for the generalization performance from prior art (Ben-David
et al., 2007), which analyzes the role of a feature representation function in the context of domain adaptation:

Lemma 1. Generalization Bounds for Domain Adaptation (Ben-David et al., 2007; Blitzer et al., 2008):

Let Ts and ‘Tt be the source and target domains, whose data distributions are Ds and Dr. Let R : X — Z be a feature

representation function, and Dg, D be the induced images of Ds and Dy over R, respectively. Let H be a set of hypothesis
with VC-dimension d. Then with probability at least 1 — 0,V h € H.:

4 2 4 . -
L7 (h) < Ly (h) + \/m <d log % +log 5) + dynn(Ds, D) + A\, (8)

where e is the base of the natural logarithm, ﬁTs (h) is the empirical risk of the source domain given m observable samples,
and A = minpey (L7, (h) + L7, (h)) is the optimal risk on the two domains.

One insight from Lemma 1 is that a good representation function plays a tradeoff between minimizing the empirical risk
(L74(h)) and the induced distributional discrepancy ( dyaw (Ds, Dr)). Based on Lemma 1, one can establish Theorem 1
as the following:

Theorem. (Generalization Bounds for FL) Consider an FL system with K users. Let T, = (Dy,c*) and T = (D, ¢*)
be the k-th local domain and the global domain, respectively. Let R : X — Z be a feature extraction function that is
simultaneously shared among users. Let hy denote the hypothesis learned on domain Ty, and h = % Zszl hi be the
global ensemble of user predictors. Then with probability at least 1 — §:

1 A 1 L 4 4K
Lr(h) < It > ﬁ’rk(hk)‘*‘? > (dHAH(Dk7D)+>\k)+\/ (dlog 7 tls— >

ke[K) ke[K]
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where L. (hy) is the empirical risk of hy, A, := miny, (L7, (h) + L7 (h)) denotes an oracle performance on Ty, and T,
and Dy, and D is the induced image of Dy, and D from R, respectively, s.t. E__ 7 [B(z)] = Eyzup, [B(R(x))] given a

z~Dy,

probability event B, and so for D.

Proof. By treating each one of the local domains k € [K] as the source and the global domain as the farget, one can have
that, ¥ § > 0, with probability 1 — 2

- 4 2 4K
ﬁT(hk) < E’Tk(hk) + dHAH(Dk7D) + Ai + \/m (dl g% + log 5)

Also, due to the convexity of risk function and Jesen inequality, one can have:

Lr(h) =Ly % > i S% > Lr(hi).

Therefore,

1 R L~ 4 2 4K
Pr ET(h)>? A EY (dHAH(Dk,D)+)\k)+\/ (dlo %H 5)

ke[K] ke[K]

4 R~ 4 2em 4K
<Pr|— Z Lr(hg) > — Z Ly(h)+ Y (dHAH(Dk7D)+>\k)+\/m (dlogd—i—log 5 )

ke[K ke[K] ke[K]

. L 4 2 AK
<Pr | \/ Lr(h) > L. (he) + dran(De, D)+ A + \/ (dlo % +log = )
ke[K]

O

Theorem 1 shows that the performance of the aggregated hypothesis is upper-bounded by: 1) the local performance of
each user hypothesis (/ka (hk)), 2) the dissimilarity between the global and local distributions over the feature space
(dy AH(@k, 75)), 3) the oracle performance (\y), and 4) the numerical constraints regarding the number of empirical
samples m and the VC-dimension d.

8.4. Derivations of Corollary 1

Corollary. Let T, Ty, R defined as in Theorem 1. Dy denotes an augmented data distribution, and D), = (Dk + D)
is a mixture of distributions. Accordingly, Da and D’ denote the induced i image of Da and D), over R, respectlvely Let
D; = Dk U Dy be an empirical dataset of D, with |Dy|=m, |D}| = |Di| + |DA| m’ . Assume the discrepancy between
Dy and D is bounded, s.t 3 € > 0 dHAH(DA, D) < €, then with probability 1 — §:

2em/’ 4K
Z,CT, (hi) + ZdHM D;, D Z)\ \/ (dlog o +log 5) )

where T = {Dy,, c*} is the updated local domain, X, = miny (L7 (h) + L7(h)) denotes the oracle performance, and
Ay (132, 15) < dq.mq.[(f)k, f)) when € is small.

Proof. Equation 9 can be directly derived by Theorem 1. We now focus on analyzing the relation between dy A« (ﬁk, 75)
and dy a3 (Dy,, D), which is the data dissimilarity before and after data augmentation using samples from distribution Dy,
respectively.
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Based on the definition of dya (-, -), one can derive that:
dyn3 (D}, D)

=2 sup [E._p, [Pr(A()] ~E._5 [Pr(.A(z))]‘
A€Ayan

=2 s [Eyp i, AR - B [Pr(A(2))]

2 s |3E. g, PHAG)] + B, PRAG)] ~ B, Pr(AC))]
A€Aynn
< sup  [E,_p, [Pr(A(2))] —E, 5 [Pr(A(2))]| + sup |E,_ 5, [Pr(A(2))] — E,_p [Pr(A(2))]|
A€Aynn A€Aynn

1 L~ 1 - -
=§dHAH(Dk7 D) + §dHAH (Da, D).

It is clear that %d;.[ AH (23 A, 15), which is bounded by e, affects the dissimilarity between the induced image of local and the
global distribution, therefore plays a key role in upper-bounding the global performance (£ (h) in Equation 9). Next, we
discuss different scenarios when FL can benefit from such augmented data, and when the quality of augmented distribution
D 4 can limit the generalization performance of the aggregated model.

D 4 can benefit local users when ¢ is small: To see this, one can assume that:

dynn(Da, D) =€ < min dyan(Dy, D),

of which the intuition is that, after feature mapping, the discrepancy between the augmented distribution and the global
distribution is smaller than the discrepancy between an individual user and the global. Based on this assumption, one can
conclude thatV 7, € T

1 .1 o
dyr(Dy, D) =§dHAH(Dk7 D) + §dHAH(DAa D)
1 L _
SgdHAH(DIm D) + mjin dynn(Dj, D)
SdHAH (’[jkv 13)7

Therefore, a small dyy Ay(ﬁ A, 25) benefits local users w.r.t their generalization performance, by both reducing the data
discrepancy and enriching the empirical samples, in that:

-~ 4
Ly (hi) < Ly (hi) + X + < duan(Dy, D) + \/m <dlog y 5
—_———

<dur#(Dy,D)

2em/’ 4
o + log ) ( Derived from Lemma 1).

<+v/L(dlog 242 +log 2)

D 4 has positive effects on the generalization performance when ¢ is moderate: Instead, one might as well assume that

K

o 1 _
dyurn(Da,D) =€ < o ;dHAH(DkaD>7

which implies that, after feature mapping over R, the dissimilarity between D4 and the global distribution D is at least as
small as the average dissimilarity between local users and the global. Based on this assumption, one can derive that:

L L 4 2em/’ 4 4 2em 4
E , < E — )<y = - =
: dq{AH(Dk,'D) < - dHAH(Dk7D>7 \/m/ (dlog d + log 6) = \/m <dlog d + log 5),

which can still contribute to a tighter upper-bound for the global performance in Equation 9, compared with not using the
augmented data.

Conversely, when € is over-large, which implies that D 4 is not relevant to the original FL task, it may have negative impacts
on the generalization performance. O
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9. Extended Experiments

We first discuss some practical considerations for implementing our algorithm:

* Weighting user models: User models vary in their ability to predict certain labels over others due to their statistical
heterogenelty Therefore, we use the number of tralnlng labels available to users to summarize a weight matrix

={XN|ceV,ke{l,2,--- ,K}}, st Ve, 1,7, /\C nt < indicates the ratio of training samples for label c between

two users ¢ and j,and ), A} = 1Vc e Y. We then apply this weight matrix to adjust the generator objective as the
following:

, 1 (K
min J(w) := Eywpy) Eanu 2ly) {W (0 (f > 90z Gi’)) y)} ~

We found that this weighted objective can further mitigate the impact of negative ensemble, especially when a teacher
model is too weak to predict certain labels due to lacking training samples of that category.

Stochastic generative learning: Built upon prior arts on generative learning (Kingma & Welling, 2014), we use an
auxiliary noise vector with dimension d,, to infer the desirable feature representation for a given label y, s.t. z ~
G (-|y) = G (y, €le ~ N(0,I)). To further increase the diversity of the generator output, we also leverage the idea
of diversity loss from prior work (Mao et al., 2019) to train the generator model.

9.1. Prototype Results

We adopt an one-round FL setting for the prototype experiment, for which

the dataset distributions of local users, as well as their model decision Userl User2 User3 Oracle
boundaries before and after knowledge distillation, are illustrated in Figure Before  97.1 81.3 81.2 98.4
9. Accuracy of user models on the global dataset is also summarized in After 98.6 98.3 98.2

Table 5, from which one can observe that the generalization performance

of user models have been notably improved by the distilled knowledge. Table 5. Accuracy (%) before and after KD.

9.2. Experimental Setup

We provide the network architecture for the generator and the classifier in Table 6 and Table 7. For the generator G,
we adopt a two-MLP layer network. It takes a noise vector € and an one-hot label vector y as the input, which, after a
hidden layer with dimension dj,, outputs a feature representation with dimension d. For the classifier, we adopt a network
architecture with a CNN module followed by a MLP module. Hyperparameter settings for the experiments are provided in
Table 8.

Dataset Hyperparameter Value
Dataset Hyperparameter Value CNN Module [16, M, 32, M, 64]
CELEBA Ay dy.d 32,128, 32 CELEBA  \LP Module (784, 32]
MNIST& EMNIST dn,dp,d 32,256,32 MNIST CNN Module [6, 16]
& EMNIST MLP Module [784, 32]

Table 6. Network architecture for the generator G, .
Table 7. Network architecture for the classification model.

9.3. FEDGEN with Partial Parameter Sharing

Algorithm 2 summarizes an variant approach of FEDGEN for a specific FL setting, where only the last prediction layer is
shared among users while keeping the feature extraction layers localized.

9.4. Extended Experimental Results

We elaborate the learning curves trained on the MNIST, CELEBA, and EMNIST dataset in Figure 10, Figure 11, and Figure
12, respectively, with their performance summarized in Table 9.
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1-st user data. 2-nd user data. 3-rd user data. Total data.
PO

(a) Local user data distribution and total data distribution.
1-st user decision boundary.  2-nd user decision boundary.  3-rd user decision boundary. Oracle decision boundary.

(b) User models generate biased decision boundaries before KD, provided with incomplete local data.
1-st user decision boundary 2-nd user dgcision boundary 3-rd user decision boundary Oracle Decision Boundary

(c) Decision Boundaries of user models are improved after KD.

Figure 9. Knowledge distillation process for the prototype experiment.

Algorithm 2 FEDGEN with Partial Parameter Sharing

1: Require: Tasks 7;, k € {1,--- , K};
Global predictor 7, local parameters {0, = [0,’: SOV
Generator parameter w; p(y) uniformly initialized;
Learning rate «, 3, local steps T, batch size B, local label counter c.

2: repeat
3:  Server selects active users A uniformly at random, then broadcast w, 6%, p(y) to A.
4:  for all user k£ € A in parallel do
5: Hz — 07,
6: fort=1,...,Tdo
7 {i, gy ~ T {2 ~ G (1), 9 ~ P(y) s
8: Update label counter cg.
9: 0, 0, — ﬂngJ(Ok)
10: end for
11: User sends OZ, ¢, back to server.
12:  end for

13:  Server updates 67 <« ﬁ > kea 07, and p(y) based on {cy }rea.
14 w < w—aVyJ(w).
15: until training stop
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Hyperparameter Value
Learning rate 0.01
Optimizer sgd
Local update steps (1) 20
Shared Parameters Batch size (B) 32
Communication rounds 200
# of total users 20
# of active users 10
FEDDFUSION Ensemble Optimizer adam
Generator learning rate 1074
Ensemble batch size 128
FEDGEN Generator Optimizer adam
Generator learning rate 1074
Generator inference size 128
User distillation batch size 32
FEDDISTILL& FEDDISTILLY  Distillation coefficient 0.1
FEDPROX Proximal coefficient 0.1

Table 8. We use the above configurations for experiments unless mentioned otherwise.
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Figure 10. Performance curves on MNIST dataset, where a smaller a denotes larger data heterogeneity.
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Figure 11. Performance curves on CELEBA dataset.
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Figure 12. Performance curves on EMNIST dataset, under different data heterogeneity and communication frequencies.

Top-1 Test Accuracy.

Dataset  Setting FEDAVG  FEDPROX FEDENSEMBLE FEDDISTILL FEDDISTILLT FEDDFUSION FEDGEN
a=0.05 87.704+2.07 87.49+2.05 88.85+0.68 70.56+£1.24 86.704+2.27  90.02+0.96 91.30+0.74
MNIST a=0.1 90.16+0.59 90.10£0.39  90.784+0.39  64.11+1.36 90.28+0.89  91.11+0.43  93.03+0.32
a=1 93.84+0.25 93.83 £0.29 93.914+0.28  79.88+0.66 94.73+£0.15 93.374+0.40 95.52+0.07
a=10 94.23+0.13 94.06£0.10  94.254+0.11  89.21+£0.26  95.04+£0.21  93.36+£0.45 95.79+0.10
r=5/10 87.48+0.39 87.67+0.39  88.48+0.23  76.68+1.23 86.37+0.41 87.01+1.00 89.70+0.32
CELEBA r=15/25 89.13+£0.25 88.84+0.19  90.22+0.31  74.99+1.57 88.05+0.43 88.93+0.79 89.62+0.34
r=10/25 89.12+£0.20 89.01+0.33 90.084+0.24  75.88+1.17 88.144+0.37 89.25+0.56  90.29+0.47
a=0.05 62.254+2.82 61.93£231 64.99+£035 60.49+1.27 61.56+2.15 70.40+0.79 68.53£1.17
EMNIST, a=0.1 66.214+2.43 65294294  67.53£1.19 50.32+1.39 66.06£3.18  70.94+0.76 72.15+0.21
T=20 a=1 74.83+0.99 74.12+0.88  75.12+1.07  46.19+0.70 75.41£1.05  75.434+0.37 78.48+1.04
a=10 74.834+ 0.69 74.2440.81 74.90+0.80  54.77+£0.33 75554094 74.36+0.40 78.43+0.74
a=0.05 6451£1.13 63.60+£0.69  65.74+£0.45  60.73£1.62 60.73+£1.06  70.46+1.16 67.64 +0.75
EMNIST, a=0.1 67.71+£1.31 66.794+0.77  68.96+0.66  49.54+1.18 67.01+£0.38  71.55+0.43 70.90 £0.49
T=40 «a=1 77.02+1.09 7593 +£0.95 77.684+0.98  46.72+0.73  78.12+0.90  77.58+0.37 78.92+ 0.73
a=10 77.524+0.66 76.5440.71 77.9240.62  54.85+0.44 78.374+0.76  77.31+£0.45 79.29+0.53

Table 9. Performance overview under different data heterogeneity settings. For MNIST and EMNIST, user data follows the Dirichlet
distribution with hyperparameter «, with a smaller « indicating higher heterogeneity. For CELEBA, r denotes the ratio between active
users and total users. 7" denotes the local training steps (communication delay). All above experiments use batch size B=32.



