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8. Theoretical Derivations
8.1. Notations and Preliminaries

Let X ⇢ Rp be the input space, Z ⇢ Rd be the latent feature space, and Y ⇢ R be the output space. R : X ! Z denotes a
representation function that maps inputs into features. T denotes a domain (or task), which consists of a data distribution
D over X and a ground-truth labeling function c

⇤ : X ! Y . Given a domain T := hD, c
⇤
i and a representation function R,

we use D̃ to denote the induced image of D under R (Ben-David et al., 2007), s.t. given a probability event B,

Ez⇠D̃
[B(z)] = Ex⇠D[B(R(x))].

Accordingly, c̃⇤ denotes the induced labeling function under R:

c̃
⇤(z) := Ex⇠D [c⇤(x)|R(x) = z] .

Let h : Z ! Y denote a hypothesis that maps features to predicted labels, and H ✓ {h : Z ! Y} denote a hypothesis
class. For our analysis, we assume the FL tasks are for binary classification, i.e. Y = {0, 1}, and the loss function is 0-1
bounded, with l(ŷ, y) = |ŷ � y|. Same assumptions have been adopted by various prior art (Ben-David et al., 2007; Blitzer
et al., 2008; Ben-David et al., 2010; Lin et al., 2020; Ben-David et al., 2007).

Given two distributions D and D
0, dH(D,D

0) is defined as the H-divergence between D and D
0, i.e.:

dH(D,D
0) := 2 sup

A2AH

|PrD(A)� PrD0(A)|},

where AH is a set of measurable subsets under D and D
0 for certain h 2 H. Moreover, H4H is defined as the symmetric

difference hypothesis space (Blitzer et al., 2008), i.e.:

H4H := {h(z)� h
0(z), h, h0

2 H}

where � denotes the XOR operator, so that h(z)� h
0(z) indicates that h and h

0 disagrees with each other. Accordingly,
AH4H is a set of measurable subsets for 8 h(z)�h

0(z) 2 H4H. Then dH4H(·, ·) is defined as the distribution divergence

induced by the symmetric difference hypothesis space (Blitzer et al., 2008):

dH4H(D,D
0) := 2 sup

A2AH4H

|PrD(A)� PrD0(A)|}.

Specifically, let D,D
0 be two arbitrary distributions on the input space X , and let D̃, D̃

0 be their induced images over R.
Then based on the definition of dH4H(·, ·), one can have:

dH4H(D̃, D̃
0) = 2 sup

A2AH4H

|Ex⇠D [Pr(A(R(x)))]� Ex⇠D0 [Pr(A(R(x)))]|

= 2 sup
A2AH4H

|Ez⇠D̃
[Pr(A(x))]� Ez⇠D̃0 [Pr(A(z))]|

= 2 sup
A2AH4H

|Pr
D̃
(A)� Pr

D̃0(A)|}.

8.2. Derivations of Remark 1

Remark. Let p(y) be the prior distribution of labels, and r(z|y) : Y ! Z be the conditional distribution derived from

generator Gw. Then regulating a user model ✓k using samples from r(z|y) can minimize the conditional KL-divergence
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between two distributions, derived from the user and from the generator, respectively:

max
✓k

Ey⇠p(y),z⇠r(z|y) [log p(y|z;✓k)] ⌘ min
✓k

DKL[r(z|y)kp(z|y;✓k)],

Proof. Expanding the KL-divergence, we have

* DKL[r(z|y)kp(z|y;✓k)] ⌘ Ey⇠p(y)


Ez⇠r(z|y)


log

r(z|y)

p(z|y;✓)

��

= Ey⇠p(y)Ez⇠r(z|y) [log r(z|y)]� Ey⇠p(y)Ez⇠r(z|y) [log p(z|y;✓)]

= � H(r(z|y))
constant w.r.t ✓k

� Ey⇠p(y)Ez⇠r(z|y)[log p(z|y;✓)].

where H(r(z|y)) is constant w.r.t ✓k. Therefore when optimizing ✓k we have:

min
✓k

DKL[r(z|y)kp(z|y;✓k)]

⌘min
✓k

� Ey⇠p(y),z⇠r(z|y) [log p(z|y;✓k)]

⌘max
✓k

Ey⇠p(y)Ez⇠r(z|y)[log
p(y|z;✓k)p(z)

p(y)
]

⌘max
✓k

Ey⇠p(y)Ez⇠r(z|y)[log p(y|z;✓k) + log p(z)� log p(y)]

⌘max
✓k

Ey⇠p(y)Ez⇠r(z|y)[log p(y|z;✓k)].

where H(r(z|y)) denotes the entropy of the probability distribution r(z|y) which is not optimizable w.r.t ✓k, and
p(z|y;✓k) := p(y|z;✓k)p(z)

p(y) is defined as the probability that the input representation to the predictor is z if it yields a
label y.

8.3. Derivations of Theorem 1

Before deriving Theorem 1, we first present an upper-bound for the generalization performance from prior art (Ben-David
et al., 2007), which analyzes the role of a feature representation function in the context of domain adaptation:

Lemma 1. Generalization Bounds for Domain Adaptation (Ben-David et al., 2007; Blitzer et al., 2008):

Let TS and TT be the source and target domains, whose data distributions are DS and DT . Let R : X ! Z be a feature

representation function, and D̃S , D̃T be the induced images of DS and DT over R, respectively. Let H be a set of hypothesis

with VC-dimension d. Then with probability at least 1� �, 8 h 2 H:

LTT (h)  L̂TS (h) +

s
4

m

✓
d log

2em

d
+ log

4

�

◆
+ dH4H(D̃S , D̃T ) + �, (8)

where e is the base of the natural logarithm, L̂TS (h) is the empirical risk of the source domain given m observable samples,
and � = minh2H (LTT (h) + LTS (h)) is the optimal risk on the two domains.

One insight from Lemma 1 is that a good representation function plays a tradeoff between minimizing the empirical risk
(L̂TS (h)) and the induced distributional discrepancy ( dH4H(D̃S , D̃T )). Based on Lemma 1, one can establish Theorem 1
as the following:

Theorem. (Generalization Bounds for FL) Consider an FL system with K users. Let Tk = hDk, c
⇤
i and T = hD, c

⇤
i

be the k-th local domain and the global domain, respectively. Let R : X ! Z be a feature extraction function that is

simultaneously shared among users. Let hk denote the hypothesis learned on domain Tk, and h = 1
K

PK
k=1 hk be the

global ensemble of user predictors. Then with probability at least 1� �:

LT (h) 
1

K

X

k2[K]

L̂Tk(hk) +
1

K

X

k2[K]

(dH4H(D̃k, D̃) + �k) +

s
4

m

✓
d log

2em

d
+ log

4K

�

◆
,
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where L̂Tk(hk) is the empirical risk of hk, �k := minh(LTk(h) + LT (h)) denotes an oracle performance on Tk and T ,

and D̃k and D̃ is the induced image of Dk and D from R, respectively, s.t. Ez⇠D̃k
[B(z)] = Ex⇠Dk [B(R(x))] given a

probability event B, and so for D̃.

Proof. By treating each one of the local domains k 2 [K] as the source and the global domain as the target, one can have
that, 8 � > 0, with probability 1� �

K :

LT (hk)  L̂Tk(hk) + dH4H(D̃k, D̃) + �k +

s
4

m

✓
d log

2em

d
+ log

4K

�

◆
.

Also, due to the convexity of risk function and Jesen inequality, one can have:

LT (h) ⌘ LT

0

@ 1

K

X

k2[K]

hk

1

A  1

K

X

k2[K]

LT (hk).

Therefore,

Pr

2

4LT (h) >
1

K

X

k2[K]

0

@L̂Tk(hk) +
X

k2[K]

(dH4H(D̃k, D̃) + �k) +

s
4

m

✓
d log

2em

d
+ log

4K

�

◆1

A

3

5

Pr

2

4 1

K

X

k2[K]

LT (hk) >
1

K

X

k2[K]

0

@L̂Tk(hk) +
X

k2[K]

(dH4H(D̃k, D̃) + �k) +

s
4

m

✓
d log

2em

d
+ log

4K

�

◆1

A

3

5

Pr

2

4
_

k2[K]

LT (hk) > L̂Tk(hk) + dH4H(D̃k, D̃) + �k +

s
4

m

✓
d log

2em

d
+ log

4K

�

◆3

5



X

k2[K]

�

K
= �.

Theorem 1 shows that the performance of the aggregated hypothesis is upper-bounded by: 1) the local performance of
each user hypothesis (L̂Tk(hk)), 2) the dissimilarity between the global and local distributions over the feature space
(dH4H(D̃k, D̃)), 3) the oracle performance (�k), and 4) the numerical constraints regarding the number of empirical
samples m and the VC-dimension d.

8.4. Derivations of Corollary 1

Corollary. Let T , Tk, R defined as in Theorem 1. DA denotes an augmented data distribution, and D
0

k = 1
2 (Dk +DA)

is a mixture of distributions. Accordingly, D̃A and D̃
0

k denote the induced image of DA and D
0

k over R, respectively. Let

D̂
0

k = D̂k [ D̂A be an empirical dataset of D
0

k, with |D̂k|=m, |D̂
0

k| = |D̂k|+ |D̂A| = m
0

. Assume the discrepancy between

D̃A and D̃ is bounded, s.t 9 ✏ > 0, dH4H(D̃A, D̃)  ✏, then with probability 1� �:

LT (h) 
1

K

X

k

LT
0

k
(hk) +

1

K

X

k

(dH4H(D̃0

k, D̃)) +
1

K

X

k

�
0

k +

s
4

m0

✓
d log

2em0

d
+ log

4K

�

◆
, (9)

where T
0

k = {D
0

k, c
⇤
} is the updated local domain, �

0

k = minh(LT
0

k
(h) + LT (h)) denotes the oracle performance, and

dH4H(D̃0

k, D̃)  dH4H(D̃k, D̃) when ✏ is small.

Proof. Equation 9 can be directly derived by Theorem 1. We now focus on analyzing the relation between dH4H(D̃k, D̃)
and dH4H(D̃0

k, D̃), which is the data dissimilarity before and after data augmentation using samples from distribution DA,
respectively.
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Based on the definition of dH4H(·, ·), one can derive that:

dH4H(D̃0

k, D̃)

=2 sup
A2AH4H

���Ez⇠D̃
0

k
[Pr(A(z))]� Ez⇠D̃

[Pr(A(z))]
���

=2 sup
A2AH4H

���Ez⇠ 1
2 (D̃k+D̃A) [Pr(A(z))]� Ez⇠D̃

[Pr(A(z))]
���

=2 sup
A2AH4H

����
1

2
Ez⇠D̃K

[Pr(A(z))] +
1

2
Ez⇠D̃A

[Pr(A(z))]� Ez⇠D̃
[Pr(A(z))]

����

 sup
A2AH4H

��Ez⇠D̃K
[Pr(A(z))]� Ez⇠D̃

[Pr(A(z))]
��+ sup

A2AH4H

��Ez⇠D̃A
[Pr(A(z))]� Ez⇠D̃

[Pr(A(z))]
��

=
1

2
dH4H(D̃k, D̃) +

1

2
dH4H(D̃A, D̃).

It is clear that 1
2dH4H(D̃A, D̃), which is bounded by ✏, affects the dissimilarity between the induced image of local and the

global distribution, therefore plays a key role in upper-bounding the global performance (LT (h) in Equation 9). Next, we
discuss different scenarios when FL can benefit from such augmented data, and when the quality of augmented distribution
DA can limit the generalization performance of the aggregated model.

DA can benefit local users when ✏ is small: To see this, one can assume that:

dH4H(D̃A, D̃) = ✏  min
k

dH4H(D̃k, D̃),

of which the intuition is that, after feature mapping, the discrepancy between the augmented distribution and the global
distribution is smaller than the discrepancy between an individual user and the global. Based on this assumption, one can
conclude that 8 Tk 2 T :

dH4H(D̃0

k, D̃) =
1

2
dH4H(D̃k, D̃) +

1

2
dH4H(D̃A, D̃)


1

2
dH4H(D̃k, D̃) + min

j
dH4H(D̃j , D̃)

dH4H(D̃k, D̃),

Therefore, a small dH4H(D̃A, D̃) benefits local users w.r.t their generalization performance, by both reducing the data
discrepancy and enriching the empirical samples, in that:

LT (hk)  LT
0

k
(hk) + �

0

k + dH4H(D̃0

k, D̃)
| {z }

dH4H(D̃k,D̃)

+

s
4

m0

✓
d log

2em0

d
+ log

4

�

◆

| {z }


p
4
m (d log 2em

d +log 4
� )

( Derived from Lemma 1).

DA has positive effects on the generalization performance when ✏ is moderate: Instead, one might as well assume that

dH4H(D̃A, D̃) = ✏ 
1

K

KX

k=1

dH4H(D̃k, D̃),

which implies that, after feature mapping over R, the dissimilarity between DA and the global distribution D is at least as
small as the average dissimilarity between local users and the global. Based on this assumption, one can derive that:

X

k

dH4H(D̃0

k, D̃) 
X

k

dH4H(D̃k, D̃),

s
4

m0

✓
d log

2em0

d
+ log

4

�

◆


s
4

m

✓
d log

2em

d
+ log

4

�

◆
,

which can still contribute to a tighter upper-bound for the global performance in Equation 9, compared with not using the
augmented data.

Conversely, when ✏ is over-large, which implies that DA is not relevant to the original FL task, it may have negative impacts
on the generalization performance.
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9. Extended Experiments
We first discuss some practical considerations for implementing our algorithm:

• Weighting user models: User models vary in their ability to predict certain labels over others due to their statistical
heterogeneity. Therefore, we use the number of training labels available to users to summarize a weight matrix
⇤ = {�

c
k|c 2 Y, k 2 {1, 2, · · · ,K}}, s.t. 8c, i, j,

�c
i

�c
j
= nc

i
nc
j

indicates the ratio of training samples for label c between
two users i and j, and

P
k �

c
k = 1 8c 2 Y . We then apply this weight matrix to adjust the generator objective as the

following:

min
w

J(w) := Ey⇠p̂(y)Ez⇠Gw(z|y)


�y
kl

✓
�

✓
1
K

XK

k=1
g(z;✓p

k)

◆
, y

◆�
.

We found that this weighted objective can further mitigate the impact of negative ensemble, especially when a teacher
model is too weak to predict certain labels due to lacking training samples of that category.

• Stochastic generative learning: Built upon prior arts on generative learning (Kingma & Welling, 2014), we use an
auxiliary noise vector with dimension dn to infer the desirable feature representation for a given label y, s.t. z ⇠

Gw(·|y) ⌘ Gw(y, ✏|✏ ⇠ N (0, I)). To further increase the diversity of the generator output, we also leverage the idea
of diversity loss from prior work (Mao et al., 2019) to train the generator model.

9.1. Prototype Results

User 1 User 2 User 3 Oracle
Before 97.1 81.3 81.2 98.4After 98.6 98.3 98.2

Table 5. Accuracy (%) before and after KD.

We adopt an one-round FL setting for the prototype experiment, for which
the dataset distributions of local users, as well as their model decision
boundaries before and after knowledge distillation, are illustrated in Figure
9. Accuracy of user models on the global dataset is also summarized in
Table 5, from which one can observe that the generalization performance
of user models have been notably improved by the distilled knowledge.

9.2. Experimental Setup
We provide the network architecture for the generator and the classifier in Table 6 and Table 7. For the generator Gw,
we adopt a two-MLP layer network. It takes a noise vector ✏ and an one-hot label vector y as the input, which, after a
hidden layer with dimension dh, outputs a feature representation with dimension d. For the classifier, we adopt a network
architecture with a CNN module followed by a MLP module. Hyperparameter settings for the experiments are provided in
Table 8.

Dataset Hyperparameter Value
CELEBA dn, dh, d 32, 128, 32

MNIST& EMNIST dn, dh, d 32, 256, 32

Table 6. Network architecture for the generator Gw.

Dataset Hyperparameter Value

CELEBA CNN Module [16, M, 32, M, 64]
MLP Module [784, 32]

MNIST
& EMNIST

CNN Module [6, 16]
MLP Module [784, 32]

Table 7. Network architecture for the classification model.

9.3. FEDGEN with Partial Parameter Sharing

Algorithm 2 summarizes an variant approach of FEDGEN for a specific FL setting, where only the last prediction layer is
shared among users while keeping the feature extraction layers localized.

9.4. Extended Experimental Results

We elaborate the learning curves trained on the MNIST, CELEBA, and EMNIST dataset in Figure 10, Figure 11, and Figure
12, respectively, with their performance summarized in Table 9.
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(a) Local user data distribution and total data distribution.

(b) User models generate biased decision boundaries before KD, provided with incomplete local data.

(c) Decision Boundaries of user models are improved after KD.

Figure 9. Knowledge distillation process for the prototype experiment.

Algorithm 2 FEDGEN with Partial Parameter Sharing

1: Require: Tasks Tk, k 2 {1, · · · ,K};
Global predictor ✓p, local parameters {✓k = [✓f

k ;✓
p
k]}

K
k=1;

Generator parameter w; p̂(y) uniformly initialized;
Learning rate ↵, �, local steps T , batch size B, local label counter ck.

2: repeat
3: Server selects active users A uniformly at random, then broadcast w,✓p, p̂(y) to A.
4: for all user k 2 A in parallel do
5: ✓p

k  ✓p,
6: for t = 1, . . . , T do
7: {xi, yi}Bi=1 ⇠ Tk, {ẑi ⇠ Gw(·|ŷi), ŷi ⇠ p̂(y)}Bi=1.
8: Update label counter ck.
9: ✓k  ✓k � �r✓kJ(✓k).

10: end for
11: User sends ✓p

k, ck back to server.
12: end for
13: Server updates ✓p

 
1

|A|

P
k2A

✓p
k, and p̂(y) based on {ck}k2A.

14: w  w � ↵rwJ(w).
15: until training stop
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Hyperparameter Value

Shared Parameters

Learning rate 0.01
Optimizer sgd
Local update steps (T ) 20
Batch size (B) 32
Communication rounds 200
# of total users 20
# of active users 10

FEDDFUSION Ensemble Optimizer adam
Generator learning rate 10�4

Ensemble batch size 128

FEDGEN Generator Optimizer adam
Generator learning rate 10�4

Generator inference size 128
User distillation batch size 32

FEDDISTILL& FEDDISTILL+ Distillation coefficient 0.1

FEDPROX Proximal coefficient 0.1

Table 8. We use the above configurations for experiments unless mentioned otherwise.

(a) ↵ = 0.05 (b) ↵ = 0.1 (c) ↵ = 1 (d) ↵ = 10

Figure 10. Performance curves on MNIST dataset, where a smaller ↵ denotes larger data heterogeneity.

(a) CELEBA, r = 9/10. (b) CELEBA, r = 5/10. (c) CELEBA, r = 5/25. (d) CELEBA, r = 10/25.

Figure 11. Performance curves on CELEBA dataset.
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(a) ↵ = 0.05, T = 20 (b) ↵ = 0.1, T = 20 (c) ↵ = 1, T = 20 (d) ↵ = 10, T = 20

(e) ↵ = 0.05, T = 40 (f) ↵ = 0.1, T = 40 (g) ↵ = 1, T = 40 (h) ↵ = 10, T = 40

Figure 12. Performance curves on EMNIST dataset, under different data heterogeneity and communication frequencies.

Top-1 Test Accuracy.
Dataset Setting FEDAVG FEDPROX FEDENSEMBLE FEDDISTILL FEDDISTILL+ FEDDFUSION FEDGEN

MNIST

↵ = 0.05 87.70±2.07 87.49±2.05 88.85±0.68 70.56±1.24 86.70±2.27 90.02±0.96 91.30±0.74
↵ = 0.1 90.16±0.59 90.10±0.39 90.78±0.39 64.11± 1.36 90.28±0.89 91.11±0.43 93.03±0.32
↵ = 1 93.84±0.25 93.83 ± 0.29 93.91±0.28 79.88±0.66 94.73±0.15 93.37±0.40 95.52±0.07
↵ = 10 94.23±0.13 94.06±0.10 94.25±0.11 89.21±0.26 95.04±0.21 93.36±0.45 95.79±0.10

CELEBA
r = 5/10 87.48±0.39 87.67±0.39 88.48±0.23 76.68±1.23 86.37±0.41 87.01±1.00 89.70±0.32
r = 5/25 89.13±0.25 88.84±0.19 90.22±0.31 74.99±1.57 88.05± 0.43 88.93±0.79 89.62±0.34
r = 10/25 89.12±0.20 89.01±0.33 90.08±0.24 75.88±1.17 88.14±0.37 89.25±0.56 90.29±0.47

EMNIST,
T=20

↵ = 0.05 62.25±2.82 61.93±2.31 64.99±0.35 60.49±1.27 61.56±2.15 70.40±0.79 68.53±1.17
↵ = 0.1 66.21±2.43 65.29±2.94 67.53±1.19 50.32±1.39 66.06±3.18 70.94±0.76 72.15±0.21
↵ = 1 74.83±0.99 74.12±0.88 75.12±1.07 46.19±0.70 75.41±1.05 75.43±0.37 78.48±1.04
↵ = 10 74.83± 0.69 74.24±0.81 74.90±0.80 54.77±0.33 75.55 ±0.94 74.36±0.40 78.43±0.74

EMNIST,
T=40

↵ = 0.05 64.51±1.13 63.60±0.69 65.74±0.45 60.73±1.62 60.73±1.06 70.46±1.16 67.64 ±0.75
↵ = 0.1 67.71±1.31 66.79±0.77 68.96±0.66 49.54±1.18 67.01±0.38 71.55±0.43 70.90 ±0.49
↵ = 1 77.02±1.09 75.93 ±0.95 77.68±0.98 46.72±0.73 78.12±0.90 77.58±0.37 78.92± 0.73
↵ = 10 77.52±0.66 76.54±0.71 77.92±0.62 54.85±0.44 78.37±0.76 77.31±0.45 79.29±0.53

Table 9. Performance overview under different data heterogeneity settings. For MNIST and EMNIST, user data follows the Dirichlet
distribution with hyperparameter ↵, with a smaller ↵ indicating higher heterogeneity. For CELEBA, r denotes the ratio between active
users and total users. T denotes the local training steps (communication delay). All above experiments use batch size B=32.


