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Abstract

Graph sparsification is a powerful tool to approx-
imate an arbitrary graph and has been used in
machine learning over graphs. As real-world
networks are becoming very large and naturally
distributed, distributed graph sparsification has
drawn considerable attention. In this work, we
design communication-efficient distributed algo-
rithms for constructing spectral vertex sparsifiers,
which closely preserve effective resistance dis-
tances on a subset of vertices of interest in the orig-
inal graphs, under the well-established message
passing communication model. We prove that
the communication cost approximates the lower
bound with only a small gap. We further provide
algorithms for constructing pair-wise spanners
which approximate the shortest distances between
each pair of vertices in a target set, instead of
all pairs, and incur communication costs that are
much smaller than those of existing algorithms in
the message passing model. Experiments are per-
formed to validate the communication efficiency
of the proposed algorithms under the guarantee
that the constructed sparsifiers have a good ap-
proximation quality.

1. Introduction

Vertex sparsifiers and edge sparsifiers of a graph are a
smaller graph that has a reduced number of vertices and
a reduced number of edges respectively, but preserving im-
portant properties such as the spectral property, flow/cut
values or distances of the input graph. Recently they have
been used to improve the computational or communication
complexity of machine learning methods (Chen et al., 2016;
Loukas & Vandergheynst, 2018; Loukas, 2019; Zhu et al.,
2019a; Bravo Hermsdorff & Gunderson, 2019; Rong et al.,
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2020; Zheng et al., 2020; Chen et al., 2020).

Given a graph G(V, E') where V and F denote the sets of
vertices and edges, a subset of terminal vertices T' C V
represents the vertices of interest in the graph G. In practice,
a community with a shared interest in social networks, or
abnormal nodes in communication networks, can form the
terminal set 7" for the respective graphs. The effective resis-
tance between two vertices u and v is the voltage differential
between them when we regard the graph as an electrical net-
work of resistors with one unit of current injected at u and
extracted at v. Effective resistances can be defined based
on graph Laplacian and are useful in many applications that
seek to cluster nodes in a network (von Luxburg et al., 2014).
For example, they have deep connections to random walks
on graphs (Tetali, 1991). The Schur complement' (Zhang,
2005) of the Laplacian L of G with respect to (w.r.t.) T
is a pivotal concept, and can help calculate a spectral ver-
tex sparsifier H(T, E') of G w.r.t. T (Durfee et al., 2019)
that preserves effective resistance between the vertices in
T'. The concept of Schur complement is also used in solv-
ing Laplacian linear systems Lx = b when only a portion
of b is concerned. Schur complements have found a wide
range of applications including semi-supervised learning,
Markov chains and finite-element analysis, and computer
vision (Wagner et al., 2018; Kyng et al., 2016; Koutis et al.,
2011; Dorfler & Bullo, 2013; Zhang, 2005).

Similar to Schur complements that preserve crucial proper-
ties only for pairs of terminals in 7', another research thread
works on constructing graph structures which preserve dis-
tances for pre-specified pairs of vertices, instead of all pairs.
For a set of vertex pairs P C V' x V, a P-pairwise spanner
F(V,E' C E) of G only approximates distances between
pairs (u,v) € P in G up to a small stretch. For example,
a P-pairwise spanner of stretch (+2) (or called (42)-P-
pairwise spanner) of G, is a subgraph F' of G where the
distance between every pair in P is at most their distance
in G plus two. When P has certain special structures, there
might be better trade-offs between the stretch and the size
(the number of edges) of the spanner. There exist two main
variants: S-sourcewise spanners for a subset of vertices

"We will use Schur complements and spectral vertex sparsi-
fiers interchangably, although strictly speaking, the former is the
Laplacian of the latter.
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S C V called sources when P = S x V, and T-subsetwise
spanners for terminals 7" when P = T x T. Pair-wise
spanners and their variants were first studied in the theory
community with applications in distributed computing, net-
work routing, and computational biology (Coppersmith &
Elkin, 2006; Cygan et al., 2013; Parter, 2014; Kavitha &
Varma, 2015; Kavitha, 2017; Ahmed et al., 2020). They can
be useful for learning over graphs such as graph neural net-
works (You et al., 2019; Yang et al., 2019), spectral methods
(Chen et al., 2016; Zhu et al., 2019a), and a series of graph
kernel methods based on shortest paths and connectivity
(Costa & Grave, 2010; Shervashidze et al., 2011; Borgwardt
& Kriegel, 2005; Hermansson et al., 2015).

However, graph-based learning on modern large-scale
graphs imposes high computational and storage demands,
which are too expensive, if not impossible, to meet by a
single machine. Thus, distributed computing clusters and
server storage are a popular and cost-effective way to meet
the requirements (Balcan et al., 2013; 2014). Distributed
graph sparsification has received considerable research inter-
ests, e.g., (Chen et al., 2016; Woodruff & Zhang, 2017; Sun
& Zanetti, 2019; Fernandez et al., 2020). In these works,
the well-established message passing communication model
represents a distributed system with point-to-point commu-
nication. There is a communication channel between each
of s remote sites and a coordinator. Each site can send a
message to another site by first sending to the coordina-
tor, who then forwards the message to the destination. For
an n-vertex graph G(V, E), each site S; holds a subset of
edges E; C E on a common vertex set V' and their union
is £ = U;_, E;. The model can be separated into the mes-
sage passing with and without duplication models, based on
whether two remote sites have edge duplicates. The major
objective is to minimize the communication cost, which is
usually measured by the total number of bits communicated.

Unfortunately, there is no known study of constructing
Schur complements in any distributed computational model.
The task appears challenging as it involves a matrix inver-
sion which is inherently indecomposable. For pair-wise
spanners and their variants, although they have been studied
in the non-distributed model (Coppersmith & Elkin, 2006;
Cygan et al., 2013; Kavitha & Varma, 2015; Kavitha, 2017)
and the CONGEST distributed model (Censor-Hillel et al.,
2018), they have not been systematically studied in the mes-
sage passing model. The only existing work in the message
passing model is a recent study on standard all-pairs span-
ners, which can imply pair-wise spanners (Fernandez et al.,
2020). However, the communication costs O(n%/2s) (O
hides a poly-logarithmic factor) and O(y/sn%/? + ns) of
constructing standard spanners in the message passing mod-
els respectively with and without duplication could be very
large, relatively to the situation when the cardinality of pairs
|P| is small.

Table 1. The communication costs of distributed algorithms for
constructing approximate Schur complements. Given an n-vertex
graph G(V, E) with edges distributed at s remote sites, T is a
subset of V and B C V is the boundary vertex set (defined in Sec.
2). We have the following results for the message passing without
duplication model.

LocalSS
O(ns) (Thm. 4)

LocalSC
O(|T U B|s) (Thm. 8)

Lower Bound
Q(Ts)

Our Contributions. We initiate the investigation of dis-
tributed learning of Schur complements. (1) We propose
two algorithms, namely the local spectral sparsification
(LocalSS) and the local Schur complement (LocalSC) meth-
ods in the message passing without duplication model. The
former utilizes the decomposability of spectral sparsifiers
and incurs a communication cost O(ns). Unfortunately, the
cost does not depend on the size of the terminals |T'| and
appears to be wasteful when |T'| < n. This motivates the
latter method that enjoys a communication cost O(|T'U B]s)
(See Table 1), where B is the set of boundary vertices. Infor-
mally, a boundary vertex in B is a vertex with at least two
of its edges linking to different sites, e.g., a boundary router
in communication networks and a highway hub in road net-
works, and usually |B| < n. Unlike spectral sparsifiers,
Schur complement (w.r.t. T') is indecomposible. However,
importantly, we discover and prove that after adding bound-
ary vertices B to the terminal set, Schur complement w.r.t.
T U B becomes decomposible. This property immediately
implies a distributed algorithm. Considering the wide util-
ity of Schur complements, the decomposability of Schur
complement w.r.t. 7' U B can be of independent interest.

(2) We generalize the decomposability of spectral sparsi-
fiers to the multi-graph setting. The property enables us
to apply spectral sparsification to reduce the size of Schur
complements to nearly linear from quadratic. We analyze
that the communication lower bound of distributed Schur
complement is ©(|7'|s) and the gap between the achieved
upper bound and the lower bound is O(|B|s) which can be
small because in practice B is small. Finally, we show that
the proposed algorithms can be extended to the dynamic
setting.

(3) We propose a serials of distributed constructions of
pair-wise spanners and the variants of different stretch-size
trade-offs as summarized in Theorems 1, 2 and Corollary
1. We emphasize that all algorithms work for both the mes-
sage passing with and without duplication models. In the
message passing with duplication model, compared to the
communication cost O(n3/2s) of the existing work (Fer-
nandez et al., 2020), when |S| < y/n and |[H(P)| < v/n,
our algorithms for constructing S-sourcewise spanners and
P-pairwise spanners incur a smaller communication com-
plexity. In the message passing without duplication model,
when |S| < /2 and |H(P)| < \/Z, our algorithms incur
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a communication cost smaller than O( V3132 4 ns) of the
existing method (Fernandez et al., 2020). Moreover, the
sizes of the sourcewise and pairwise spanners match those
of the same spanners constructed by a corresponding se-
quential algorithm up to a poly-logarithmic factor (Kavitha
& Varma, 2015; Abboud & Bodwin, 2016; Kavitha, 2017).

Theorem 1 (Sourcewise Spanner). For a graph G(V, E)
and a subset of source vertices S C V, there exists an
algorithm that constructs a (+2)-S-sourcewise spanner of
size O(n5/*|S|M*) with high probability (w.h.p.) using
communication cost O(|S|ns).

Theorem 2 (Pairwise Spanner). For a graph G(V, E) and
a set of vertex pairs P C 'V x V| there exists an algo-
rithm that constructs a (+2)-P-pairwise spanner ((+4)-P-
pairwise spanner) of size O(n|P|'/3) (resp., O(n|P|*/7))
w.h.p. using communication cost O(|H(P)|ns), where
H(P) is P’s hitting set, H(P) = {X C V|V(u,v) €
Pue Xorve X}.

Corollary 1 (Subsetwise Spanner). For a graph G(V, E)
and a subset of vertices T' C V, there exists an algorithm
that constructs a (+2)-T-subsetwise spanner ((+4)-T-
subsetwise spanner) of size O(n|T|*/?) (resp., O(n|T|*/'7))
w.h.p. using communication cost O(|T|ns).

(4) Empirical studies are designed using both synthetic and
real-world datasets to confirm that the proposed algorithms
are effective in constructing Schur complements with a good
approximation quality and also efficient communication in
the message passing model.

Related Work. Schur complements are also known as Kron
reduction, and have been compared to other graph reduction
techniques (Loukas, 2019; Bravo Hermsdorff & Gunder-
son, 2019). However, it is unclear how these techniques
can be adapted in the distributed environment. (Saad &
Sosonkina, 1999) studied how to use Schur complements
to solve a distributed sparse linear system, but they did not
work on distributed constructions of Schur complements.
There exist several works on using edge sparsifiers in graph-
based learning (Rong et al., 2020; Zheng et al., 2020; Chen
et al., 2020), though they are designed neither for vertex
sparsifiers nor the distributed setting. Exact pair-wise and
source-wise spanners (called preservers) were firstly studied
in (Coppersmith & Elkin, 2006; Bollobas et al., 2005) and
then in (Bodwin & Williams, 2016; Bodwin, 2017). Further
studies focused on approximate pair-wise and source-wise
spanners with different stretch e.g., (+2), (+4) and (46)
(Cygan et al., 2013; Parter, 2014; Kavitha, 2017; Abboud
& Bodwin, 2016). (Abboud & Bodwin, 2016) considered
lower bounds for pair-wise spanners and their connection
with lower bounds for pair-wise preservers. (Censor-Hillel
et al., 2018) studied distributed constructions of pair-wise
spanners in the CONGEST model, but they are not for the
message passing model. (Forster et al., 2021) proposed a

communication-efficient algorithm in the CONGEST model
(not in message passing model) for solving graph Laplacian
linear systems. It is based on an algorithm for constructing
approximate minor Schur complements, and is a random-
ized algorithm. However, our algorithm is deterministic
and can employ a deterministic algorithm for constructing
spectral sparsifiers, e.g., (Baston et al., 2012). Their method
aims to parallelize the Li-Schild algorithm (Li & Schild,
2018) by replacing the random spanner trees that cannot be
implemented in parallel. Particularly, it identifies a subset
of (steady) edges that can be sampled independently of each
other. In contrast, we study and exploit the decomposability
theorem of Schur complements. A more comprehensive set
of related works is given in the Appendix.

2. Distributed Schur Complements

In this section, we present our first set of results, distributed
spectral vertex sparsification. We first formally define the
notations and the studied problem, and then propose two
distributed algorithms for constructing approximate Schur
complements and analyze their communication complexity.
Finally, we provide distributed algorithms in the dynamic
setting. All missing proofs can be found in the Appendix.

Notations and Definitions. We consider a weighted undi-
rected graph G(V, E, W), where n = |V|, m = |E| and
W (e) defines the weight of each edge e € E. Let A¢ be the
adjacency matrix of G, i.e., (Ag)u,o = W(u,v) if (u,v) €
FE and zero otherwise. Let the weighted degree of a vertex
ueV,du) =3,y W(u,v). Let Dg be the degree ma-
trix of G defined as (Dg )y, = d(u), and zero otherwise.
The Laplacian matrix of G is Lg = Dg — A¢. For an arbi-
trary vertex set X C V and X =V —-XinG, Lz canbe
Lixx) Lix x)
Lixx) Lixx)
The Schur complement of G w.r.t. X, denoted as SC(G, X),
is the matrix obtained by eliminating vertices in X using
Gaussian elimination (Zhang, 2005). Its closed-form is
SC(G,T), H, is an approximate Schur complement of G
w.r.t. T such that for every 2 € RI”!, it holds that (1 —e)x™ -
SC(G,T) x <2"Lpyx < (14€)z”-SC(G,T)-x. Inthe
message passing without duplication model, there are s re-
mote sites Sq,- -+, S5 and a coordinator. Each site .S; holds
a subset of edges E;; C E on a common vertex set V', defin-
ing its local graph G;(V, E;). It holds that £ = U{_, E;,
and E; N E; = 0 for1 < i # j < s. We study the prob-
lem of reducing the communication cost for distributively
constructing a (1 + ¢€)-SC(G, T') in the coordinator.

represented as block matrices: Lg =

Local Spectral Sparsification Method. Considering an ar-
bitrary graph problem P, a centralized method is to transmit
edges in all local graphs G; to the coordinator, and then
apply any centralized algorithm for P in G. However, this
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method incurs a communication cost O(m), which could
be prohibitively large for large-scale graphs. In contrast, a
principal method is that every site \S; performs local compu-
tations to get a succinct synopsis H; of its local graph G,
and then only transmits H;, instead of G, to the coordinator
(Chen et al., 2016; Zhu et al., 2019b). If H; has a much
smaller number of edges than GG;, the communication cost
can be significantly reduced.

(1 +¢)-SC

The Coordinator

Figure 1. The idea of the local spectral sparsification for construct-
ing (1 + ¢€)-SC.

We will follow this strategy, and start by introducing the
notion of spectral sparsification: a (1+ ¢)-spectral sparsifier
of G, denoted as (1 +¢€)-SS(G), is a subgraph H of G such
that for every x € R", the inequality (1 — €)z” Loz <
2T Lgx < (1+€)zT Lgz holds. It has wide usage in graph
clustering, linear system solvers, and semi-supervised learn-
ing (Calandriello et al., 2018; Chen et al., 2016; Zhu et al.,
2019a). Because spectral sparsifiers can well approximate
the Laplacian matrix of the original graphs, based on which
the Schur complement is calculated, we propose to first con-
struct a spectral sparsifier H of G in the coordinator and then
construct SC'(H,T') as an approximate Schur complement
(Fig. 1). Specifically, every site .S; constructs a spectral
sparsifier of its local graph G; as the synopsis H; and then
transmits H; to the coordinator. Upon receiving H; from all
sites, the coordinator first takes their union, H = U;_, H;,
and then constructs SC(H,T"). The distributed construction
of a spectral sparsifier in the coordinator was introduced in
(Abraham et al., 2016; Chen et al., 2016). It is based on
the decomposability property of spectral sparsifiers (Thm.
3): the union of spectral sparsifers of a subgraph of G is
a spectral sparsifier of G. Because each sparsifier H; has
size O(n), this method incurs a communication cost O(ns).
However, the cost could be large, relatively when the num-
ber of terminals is much smaller than |V, i.e., |T| < n.

Theorem 3 (Decomposability of Spectral Sparsifiers
(Abraham et al., 2016)). Let E1, - - - , Es be any partition of
the set of edges E in a weighted undirected graph G(V, E).
It holds that U;_, SS(G,;(V, E;)) = SS(G).

Theorem 4. For a subset of terminals T C V in a graph

G(V, E), using communication cost O(ns) the local spec-
tral sparsification method outputs a (1 + €)-SC(G,T).

Local Schur Complement Method. It is natural to con-
sider directly using the Schur complement as the synop-
sis H; of the local graph G;. That is, each site .S; con-
structs H; = SC(G;,T) and then transmits it to the coor-
dinator, who then takes the union of all the received H;,
H = U;_,H;. However, we prove that unlike spectral
sparsifiers, the Schur complement does not satisfy the de-
composability property in Theorem 5. The main reason is
that the matrix inversion in the definition of Schur comple-
ment does not satisfy the decomposability property. Hence
we have H # SC(G,T), rendering impossible to employ
the Schur complements of local graphs.

Theorem 5 (Indecomposability of Schur Complements).
Let E, - - -, Es be any partition of the edge set E in a graph
G(V, E). There exists a subset of vertices T C V such that
U,?:lHi 7£ SC(G,T), where H1 = SC(Gi(‘/, El),T)

Proof. By definition, for every i € [1, s] we have
Hy; = SC(G;,T) = Lg,ir.1— L, 1) Lg;il[T’T]LG,;[T,T]-
Summing all equalities for i € [1, s], we get that

k

Uiz Hii = Loy — Y La, i Lg i mLaar.m-
=1

Because at the right hand sides
k _

die1 LGi[T.,T]LG:[T,T] Lg,rm #

SC(G,T). O

We now introduce the notion of boundary vertices: a vertex
v € V is called a boundary vertex if v has two edges ob-
served at two different sites. Formally, the boundary vertex
set of G, B = {v|3(u,v) € E;, (v,w) € Ejs.t.i # j}.
Boundary vertices are well motivated in practice, e.g.,
boundary routers for sending cross-region packages in com-
munication networks, members in charge of outreach activ-
ities in social networks, and highway hubs connecting to
another region in road networks. Because in practice the
number of boundary vertices in a network is much smaller
than the total number of vertices, we assume that | B| < n.

We make an interesting observation that after taking the
union of boundary vertices B and terminals 7" as the ver-
tex set w.r.t. which a Schure complement of G; is con-
structed, the Schur complement will satisfy the decom-
posability property. Specifically, each site S; constructs
H; = SC(G;,T U B) and then transmits it to the coordina-
tor. Upon receiving all the H;, the coordinator takes their
union H = U;_, H;. Note that the SC operator can intro-
duce multiple edges between the same two vertices. Here
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(a) The input graph G (b) H = SC(G1,T U B)
T Vl? V7 T Vo v? A} Vg
‘:1 ,E v s :’9‘./1 s 15 \:"
15 guoeo- 2
S2 :5" v-.: “ V4 Vs V1o Vi1
Vo, i Vo, i

(¢c) Hy, = SC(G5, T U B) (d) SC(G,T U B)

Figure 2. An illustrating example for the decomposabiity in Thm.
6. All edge weights are one unless stated explicitly. In Fig. 2a, the
edges of GG are distributed at two sites: solid edges are in the site Sq
and dash edges are in Sz. The terminals in T' = {v2, v4, vs, v11}
are surrounded by a rectangle. The boundary vertices in B =
{vs, vs, v7, v10} are in bold. In Fig. 2b and 2¢, we plot the Schur
complements H{ = SC(G1,T U B) and Hy = SC(G2,T U B)
at the sites S1 and Sa, respectively. Fig. 2d shows that the union
of Hi and Hj is equal to SC(G, T U B).

the union of two parallel edges e; (u,v) of weight W (e;)
and es(u, v) of weight W (ez) is an edge (u,v) of weight
W(e1) + W{(ez). Then it is guaranteed that H is equal to
SC(G,TUB). The decomposability is summarized in Thm.
6 and an illustrating example is provided in Fig. 2.

Theorem 6. Under the notations of Thm. 5, let B C'V be
the set of boundary vertices in G. For all subsets of vertices
T C V, it holds that U;_,H, = SC(G,T U B), where
H]=SC(G;,TUB)forl1 <i<s.

We rigorously prove Thm. 6 by using the star-mesh operator
for constructing Schur complements (Zhang, 2005). The
operator is performed at each vertex v not in 7' U B and
basically removes v and then updates the edges between
each pair of its neighbors. For every pair of v’s original
neighbors u, w, the star-mesh transform adds an edge (u, w)
with weight W (u, v)W (v, w)/d(v) to E if (u,w) ¢ E,
or otherwise increases W (u, w) by W (u, v)W (v, w)/d(v).
As in Lemma 1, it has been proved that one can apply the
star-mesh operator in the vertices in V' — T' — B with an
arbitrary order to calculate SC(G,T U B) (Zhang, 2005).
Then it suffices to prove that the union set of star-mesh op-
erators for constructing U;_, H/ and the set for constructing
SC(G,T U B) are equivalent. We emphasize that Thm. 6
holds for Schur complements constructed by an arbitrary
algorithm, although we prove it using the star-mesh trans-
forms method.

Lemma 1. (Zhang, 2005) For a vertex set V' C V ina
graph G(V, E), SC(G,V") can be computed by sequen-
tially performing star-mesh transforms on the vertices in
V' — V' in an arbitrary order.

Proof. (Theorem 6) Let Oy, - - , O, for r = |R| be any se-
quence of the vertices in R = V' —T— B that s to be reduced
by star-mesh transforms to compute SC(G,T U B) (sup-
pose that G is directly available in the coordinator). Because
each vertex v in R is not a boundary vertex, all its edges
will be observed only at a single site which we denote as
S(v). Let V(.S;) of each site .S; be the vertices v in R with
S(v) being S;, i.e., V(S;) = {v € R|S(v) = S;}. We can
easily get that V' (S1), -+, V(S;s) are a partitioning of the
vertex set R, i.e., Us_ V(S;) = Rand V(S;) NV (S;) =0
for1 < ¢ < j < s. Further let O,,,---,0;, be any se-
quence of the vertices in R that is to be reduced by star-mesh
transforms to compute H; = SC(G;,T U B) at each site
S;. It suffices to prove that the sequences O1, - - - , O,. and

5_1(O4y,- -+ ,0;,) are equivalent in constructing Schur
complements.

We observe that for each vertex v in R — V/(S;) at site
S;, the star-mesh transform does nothing because u has no
edges in the local graph GG;. We then remove all vertices
in R — V(S;) from the sequence O;,,---,0;, and only
keep the vertices in V' (.S;) in the sequence. This results in
an effective sub-sequence Oy, - | OiZ,i at S;, where h; =
|V (S;)| and each operation in the sequence corresponds
to a vertex in V(S;). Because V(S1), -,V (S;) are a
partitioning of the vertex set R, it is easy to see the two
sets {O1,---,0,} and {U;_(Oy,,,--- ,O;,, )} which are
induced by the respective sequence are the same. Based
on Lemma 1 and the fact that the union in U;_, H takes
summation of the weights of multiple edges between the
same two vertices as the new edge weight, we have the
two sequences Oq,---,0, and Ule(Oifl, e ,O,;fh_) are
equivalent in constructing Schur complements. This ir;lplies
that Oy,---,0, and U;_,(O;,, -+ ,0;, ) are equivalent,
completing the proof. O

Algorithm 1 LocalSC

Input: Local graph G; at each site S;, terminals 7', boundary
vertices B, and a parameter €
Output: (1+¢)-SC(G,T)

1: for site S; do

2:  Constructs H; = SC(G;,T U B);

3:  Constructs H{ = (1 + €)-SS(H;) by any standard spec-
tral sparsification algorithm, and then transmits it to the
coordinator;

4: Upon receiving all H,’, the coordinator takes their union

H" = U{_, H; and then returns SC(H",T);

Sparsification of Multi-Graphs. A potential problem is
that the constructed structure H; = SC(G;, T U B) at each
site can be dense and have up to O(|T U B|?) edges. It
can be too dense to be leveraged as a sparsifier, and can
also incur a large communication cost. One may consider
to apply spectral sparsification on each H to reduce its
size. However, the SC operation could add multiple edges
incident to the same two vertices in H at different sites.
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For example in Fig. 2b and 2c, H{ contains edge (vs, v1¢)
of weight 0.5 while HY contains edge (vs,v10) of weight
1.5. This prevents us from using Thm. 3, which does not
hold for multi-graphs, to prove the quality of the union of
spectral sparsifiers of local graphs.

We first generalize the decomposability of spectral sparsi-
fiers for simple graphs (Thm. 3) to multi-graphs (Thm. 7).
At the first glance, it appears challenging because parallel
edges in multi-graphs will be processed and sampled inde-
pendently. With a careful analysis of the union operation,
we are able to prove the decomposability in the multi-graph
setting. We further propose to apply a (1+¢€)-spectral sparsi-
fication in H/ to get H' = (1+¢€)-SS(SC(G;,TUB)) and
then transmit H/'. This can reduce the size of the sparsifer
from quadratic to nearly linear, O(|T' U B|). More impor-
tantly, because each site .S; transmits H! of size O(|T'U B|)
to the coordinator, the communication cost of this approach
is only O(|T U Bls).

Theorem 7 (Decomposability of Spectral Sparsifiers for
Multi-Graphs). Let E1,- - -, E be any partition of the set
of edges E in a weighted undirected multi-graph G(V, E).
It holds that U;_, SS(G,;(V, E;)) = SS(G).

Theorem 8. For a subset of terminals T' C 'V and boundary
vertices B C V ina graph G(V, E), Algorithm 1 constructs
a (14¢€)-SC(G,T) using communication cost O(|TUBs),
which is close to the communication lower bound Q(|T)s).

When all the vertices in a graph are included in 7' (i.e.,
|T'| = n), the problem degenerates to distributed spectral
sparsification problem, which has a communication lower
bound (ns) = Q(|T|s) (Chen et al., 2016). Because in
practice the number of boundary vertices |B| is usually
small, the gap between Alg. 1’s upper bound O(|T U Bls)
and this lower bound is small.

Extensions to Dynamic Graphs. Most of the massive
graphs in the real world, such as social networks and the
Web graph, are subject to frequent changes over time. We
show that Alg. 1 can be adapted to a dynamic graph under-
going both edge insertions and deletions. Given an initial
graph, each site .S; first initializes a (dynamic) Schur com-
plement (Durfee et al., 2019) in O(me~*) time. Then for
the updates observed locally at a subsequent time point,
S; maintains a Schur complement H of size O(me~?) for
the graph at the time point dynamically in O(l) amortized
time per update (Durfee et al., 2019). Next, it utilizes the
dynamic spectral sparsification algorithm (Abraham et al.,
2016) to maintain for H/ a sparsifier H}' of size O(te~2) in
O(e~?) amortized update time. Finally, S; transmits only
the updates of H’ compared to the previous time point to
the coordinator. Assuming that the number of updated edges
in H!' is roughly linear in the update time, the amortized
communication cost per edge update is 0(6_2).

Challenges in the Blackboard Model. Consider another
communication model called the blackboard model, where
there is a broadcast channel. We can still construct SC of the
local graph G; w.rt. TU B, H! = SC(G;, T U B), at each
site .S; as in Step 2 of Alg. 1. However, we cannot employ
existing spectral sparsification algorithms (Chen et al., 2016;
Zhu et al., 2019b) to construct (1 + €)-SS(US_, H!) using
communication cost of O(|T U B| + s). This is because
the algorithms do not work for multi-graphs. It is unclear
how the sampling-based algorithms perform sampling on
multiple edges incident to the same two vertices at different
sites. Therefore, it is an open problem to construct a (1 + ¢)-
SC(G,T) in the blackboard model using communication
cost o(|T U B|?s,n + s), where the latter comes from the
simple method that extends the local spectral sparsification
method to this model. Note that a trivial lower bound is
Q(|T| + s). This further shows the importance of the gen-
eralization of sparsification to multi-graphs in the message
passing model as in Thm. 7. More discussions can be found
in the Appendix.

3. Distributed Pair-Wise Spanners

In this section, we present the second group of results, dis-
tributed algorithms for constructing pair-wise spanners and
the variants. We first define notations we will use, and then
outline high-level ideas of the proposed distributed algo-
rithms. The missing algorithms and the proofs can be found
in the Appendix.

Notations. In a graph G(V, E), the neighbors of a vertex
win V are denoted as N(u) = {v|(u,v) € E), and the
neighbors of a subset of vertices U C V are N(U) =
Uyeu N (v). Let E(u,U) = {(u,v) | (u,v) € Fandv €
U}, and e(u,U) be an arbitrary edge in F(u,U). For a
subset of vertices U’, e(U’,U) = Uyepre(u,U). For a
subset of edges F' C E, let E(u,U,F) = E(u,U)NF
and e(u, U, F) be an arbitrary edge in E(u,U, F'). The
distance between two vertices u, v € V in a subgraph G’ of
G is denoted by d(u, v, G') and the shortest path realizing
it is II(u, v, G"), where ties are broken arbitrarily. The
function Send(X, Dest) sends data X to the destination
Dest and Dest can be the coordinator (C'O) or all sites
(AS). Similarily, Send(X,Y, Dest) sends data X and Y
to Dest. All steps in the pseudo-code are executed in CO,
unless stated explicitly in AS.

Overview. The proposed algorithms work for both the mes-
sage passing with and without duplication models, and are
inspired by existing pair-wise and source-wise spanners
(Kavitha & Varma, 2015; Kavitha, 2017; Censor-Hillel et al.,
2018). Basically there are three procedures, the clustering,
the breadth-first search (BFS) trees constructions and the
path-buying procedure. Given a set of cluster centers, the
clustering procedure organizes vertices of the input graph
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B U={ui,uz} _ Algorithm 2 Clustering
o o va,(va,un) [ T vavam) Input: A vertex set U and a graph G
ViV Vs (Vsu1) Vs(Vs,U2) Output A set C of clusters and edge set H
\ Vo(Vot Lty g(vsu), v7,(V7,U2) 1: C={Cu)=0|ueU}; H=0;
S2 (Va,un),(vs,u1), 2: Send(U, AS);
D \;; o g (Ve,U2),(V7,2) } 3: AS: Send(N(U),e(N(U),U),CO);
’ o F C(u1)={vs,va,vs} 4: N =Uas(NU));

(a) A graph observed at two sites C(u2)={ve,v7} 5: for each vertex v € N do
and a clustering C = {C1,C>} B 6:  (u,v) =e(v,U);
for cluster centers U = {u1,uz2}. Vava) [ X={viva} > (viva) 7: H=HU  (u,v);
Edges marked by S; are at site . > H=H U {(va,va)|< b 8 Cu)=C(u)Uuw;
S2 and otherwise at S;. Solid W V2)}7 9: X =V — N —U; Send(X, AS);
edges are included in H while - - 10: AS: Send(E(X,V),CO);
dash edges are in G. Site 1 co 52 11: H=HU (UASE(X V),

(b) distributed clustering

12: return (C, H);

Figure 4. The clustering algorithm and an illustrating example.

into clusters of radius one around the cluster centers and
there is a set of unclustered vertices. For example in Fig.
3a, there are two clusters C'; and C5 and v and v, are un-
clustered. For each cluster C;, edges connecting its cluster
center and its vertices are added to the spanner [, along
with all edges of the unclustered vertices (See the solid
edges). With the edges in C;, the distance between any
two vertices in C; can be well approximated. More impor-
tantly, if the distance between a vertex v outside C; and a
vertex in C; is known to be preserved in H, the distances
between v and all other vertices in C; are immediately well
approximated with a stretch of at most two.

Next, the BFS trees rooted at a sampled subset of cluster
centers are added to the spanner H. Consider a shortest path
II(u, v, G) we need to approximate for u € S, v € V in an
S-sourcewise spanner, or (u,v) € P in a P-pairwise span-
ner. When II(u, v, G) contains a large number of missing
edges in H, it will pass through a large number of clusters
(because all edges of unclustered vertices are already in
H) and thus w.h.p. it will pass through a cluster C; whose
cluster center is sampled to grow a BFS tree 7" and all edges
of the tree are added to H. Then II(u, v, G) is well approxi-
mated by the BFS tree T" and edges of the cluster C;. When
II(u, v, G) contains only a few missing edges in H, we are
afford to add all the missing edges or a carefully selected
subset of edges to H through a path-buying procedure. We
will discuss the cluster procedure and the path-buying pro-
cedure for source-wise spanners. The construction of a BFS
tree from a given root is already available in (Fernandez
et al., 2020).

The Clustering Procedure. Given a set of cluster centers
U, the coordinator sends the centers U to all remote sites.
Upon receiving U, each site sends U’s neighbors N (U) in
its local graph together with an arbitrary edge from each
neighbor in N(U) to U, e(N(U),U), to the coordinator.
The coordinator then takes union N of the neighbors at all
sites, and assign each vertex v in N to the cluster C'(u) of an
arbitrary neighboring cluster center u, and also add the edge

(u,v) to the spanner H. Finally, the coordinator requests
the edges of unclustered vertices X =V — N — U from all
sites and then adds them to H. The algorithm is provided in
Alg. 2 and an example is given in Fig. 4.

The Path-Buying Procedure. The path-buying method
was introduced in (Baswana et al., 2010) and has been used
in several spanner algorithms (Cygan et al., 2013; Parter,
2014; Kavitha & Varma, 2015). However, it is unknown how
to implement this procedure in the message passing model.
For S-sourcewise spanners 2 , our path-buying procedure
adds, for every pair of a source vertex u € S and a cluster
C; € C, the shortest path between them to an edge set F', if
it contains at most f missing edges in H. Specifically, for
each vertex u in .S, the coordinator grows a BFS-like tree T’
from u. It maintains a current layer L of vertices, initialized
to contain only u, and repeats the following until all clusters
in C have been reached or L is empty.

In each iteration, the coordinator sends L to every remote
site, who maintains the set of visited vertices L* by adding
L to it and then sends L’s unvisited neighbors N (L) — L*
and edges e(N (L) — L*, L) back to the coordinator. Upon
receiving all L’s neighbors and edges, the coordinator takes
union of the neighbors N = U 4g(N(L)— L*) as vertices in
the next layer. For each vertex v in N, the coordinator adds
v and its edge already in H, e(v, L, H) if such an edge exists
and otherwise e(v, L) to T'. Giving a priority to edges in H
can reduce the size of the constructed spanner. If IT(u, v, T)
already has more than f missing edges in H, v can be safely
pruned from the next layer N because all potential paths
through v have more than f missing edges. Otherwise, it
checks if the cluster C'(v) of v has not been reached before,
and maintains F' and terminates the construction of 7' if
necessary. Finally, N is assigned to L as the current layer.

The algorithm is provided in Alg. 3.
Discussions. For constructing (+4)-P-pairwise spanners,

*In principle the path-buying procedures for the pair-wise span-
ners are similar to that of source-wise spanners.
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Algorithm 3 PathBuying-S

Input: A vertex set .S, a graph G, an edge set H, a parameter f
and a set C of clusters
Output: An edge set F'

1: F =0

2: for each vertex u € S do

33 L={u},T = ({u},0); AS: L* =0

4:  while L # () do

5 Send(L, AS);

6: AS: L* = L UL, Send(N(L) — L*,e(N(L) —

L*,L),CO);

7: N:UAs(N(L)—L*);

8: for each vertex v € N do

9: ife(v, L, H) # () then

10: T=TU (v,e(v,L,H));

11: else

12: T=TU v,e(v,L));

13: if [{e|e € I(u,v,T) and e ¢ H}| > f then
14: N = N — {v}; Continue;

15: if C'(v) has not been reached before then

16: F =FUIl(u,v,T);

17: if all clusters in C' have been reached then
18: Go to Line 2;

19: L =N,
20: return F;

there is an additional prefix-suffix-buying procedure before
the path-buying procedure: for every pair (u,v) in P, it
adds the first / and the last [ missing edges in II(u, v, G) to
an edge set F'. This can be achieved by growing a BFS-like
tree from each vertex u in P’s hitting set, H(P) = {X C
V|V(u,v) € Pou € Xorv € X} and when a vertex v
which forms a pair with » in P is reached, maintaining
F accordingly. With the algorithms for constructing pair-
wise spanners in Thm. 2, we immediately get algorithms
for constructing T-subsetwise spanners (See Cor. 1). A
(42)-T-subsetwise and (+4)-subsetwise-spanner of G can
be constructed by setting P = T' x 1" and then applying a
(42)-P-pairwise and (4-4)- P-pairwise spanner in G, resp.

The communication costs of our algorithms for construct-
ing S-soursewise spanners and P-pairwise spanners are
O(|S|ns) and O(|H,(P)|ns), respectively. As mentioned
earlier, when the size of S and H(P) are small, i.e., smaller
than /n and /2 under the message passing with and with-
out duplication models resp., the communication costs are
smaller than those of the existing algorithms (Fernandez
et al., 2020), resp. O(n3/2s) and O(y/5n3/2 + ns). The
communication cost in the without duplication model might
be smaller than that in the with duplication model because
edge duplicates incur additional communications. We leave
this improvement as an important future work.

Compared to the sequential algorithms (Kavitha & Varma,
2015; Abboud & Bodwin, 2016; Kavitha, 2017), we stress
that our distributed algorithms construct source-wise and
pair-wise spanners of the same number of edges up to
only a poly-logarithmic factor. One may notice that 0-S-

sourcewise and 0- P-pairwise spanners H of G can be con-
structed by growing a BFS tree from each vertex in .S and
‘H(P) in G resp. and then adding all edges in the BFS trees
to H. Our algorithms have the same asymptotical commu-
nication costs as these algorithms. However, ours achieve a
significantly smaller number of edges in the spanner (at the
expense of a slightly larger stretch). To see this, the sizes
of the above pair-wise spanners of stretch 0, and our span-
ners of stretch (42) and (+4) are O(n|H(P)|) = O(n|P|),
O(n|P|*/3), and O(n|P|*/7), respectively. Similarly, the
sizes of the above source-wise spanner of stretch 0 and our
spanner of stretch (+2) are O(n|S|) and O(n®/*|S|'/4),
respectively. Therefore, our algorithms provide a smooth
trade-off between the stretch and the size of a spanner.

4. Experiments

In this section, we empirically evaluate the proposed algo-
rithms for constructing Schur complements. The algorithms
were implemented using Matlab and Julia programs, and
all experiments were performed in a machine with Intel
i7-9750H 2.6GHz CPU and 16G RAM.

Datasets and Methods. We use two synthetic datasets, Cir-
cles and Gaussians, and four real-world datasets Sculpture,
Sculpture-IM, Sculpture-11M, and Beach. In the Circles
dataset consisting of 2K vertices and about 17K edges, the
vertices are sampled from two circles of the same origin
but different radii 1 and 1.05, respectively. We connect
two vertices if they are mutually k-nearest neighbors of
each other for £ = 20, and use the standard RBF similarity
W(u,v) = exp{—||u—v||3/202} for ¢ = 10. For the
Beach dataset, we use a 524 x 88 version of a beach photo
resulting in 46, 112 vertices and 73,159, 983 edges with
k = 4000 and o = 5. The statistics of other datasets can be
found in the Appendix. Each graph edge is assigned to a site
S; for i € [1, s] by a rule described in the Appendix. We in-
dependently sample each vertex in the graph with probably
r and then use the sampled vertices as the terminals. We in-
dependently sample each vertex in the graph with probably
r and then use the sampled vertices as the terminals.

For the spectral sparsification, we employ the implemen-
tation of Spielman and Srivastava (Spielman & Srivastava,
2011) 3. The computation of approximation quality for
checking how well one graph approximates another is also
from the same code. For simplicity, the communication
cost is the total number of edges communicated, which ap-
proximates the total number of bits by a logarithmic factor.
The size of the constructed Schur complement (or called SC
size) is also recorded as it will affect the computational com-
plexity of the subsequent tasks. All performance measures
are averaged over five runs and reported together with their
standard deviation.

*github.com/danspielman/Laplacians.jl
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Figure 5. The experimental results on a synthetic dataset Circles.

Results. In the baseline setting, the number of sites s = 5,
the sampling rate » = 0.05, (i.e., |T| = 0.05n) and the
approximation parameter ¢ = 0.3. As shown in Fig. Sa,
for the Circles dataset, both LocalSS and LocalSC have
communication costs smaller than the centralized method
(~17K). The size of the boundary vertices |B| = 107,
the average size of |T'U B| = 201, and both are much
smaller than n = 2K. Then the communication costs of
LocalSC are consistently significantly smaller than those
of LocalSS, matching the theoretical analysis. When € in-
creases, the communication costs of both methods decrease
as a worse approximation is allowed. Although LocalSC has
a relatively worse approximation quality than LocalSS, both
methods result in an error always smaller than 0.07, much
better than the required quality ¢ = [0.2,0.5]. Moreover,
LocalSC has a significantly smaller SC size than LocalSS,
which is favorable for subsequent applications.

In the Gaussians and Sculpture datasets, the observations are
generally similar except when € is small, e.g. 0.2, the com-
munication cost of LocalSC is larger than that of LocalSS.
This may be due to that in LocalSC the Schur complements
constructed at all sites have edge duplicates. When € be-
comes larger, the cost of LocalSC becomes much smaller
than that of LocalSS again. As shown in Table 2 and 3, for
larger datasets LocalSC consistently achieves small commu-
nication cost and low approximation error (in comparison
with the centralized method where all m edges in the origi-
nal graph are communicated). The advantages of communi-
cation cost becomes more obvious in larger datasets.

On the Circles dataset, we also evaluate the effects when
the number of sites increases but other parameters remain
the same. Fig. 5b shows that the communication cost of
LocalSC increases faster than that of LocalSS. We observe
that in the theoretical communication cost O(|T U B|s) of
LocalSC, when s is larger, the number of boundary ver-
tices usually also increases accordingly. In Fig. 5c, with
an increasing number of vertices n € [0.5K, 1K, 2K, 3K],
the communication cost of LocalSS increases roughly lin-
early in n, supporting our theoretical result. More complete
discussions can be found in the Appendix.

€ Comm. Cost (cost/m*100%) | Approx. Quality

0.2 63 (0.06) 0.05 (0.004)
0.3 31 (0.01) 0.1 (0.02)

0.4 18 (0.04) 0.15 (0.02)
0.5 11 (0.02) 0.21 (0.02)
0.6 8(0.01) 0.29 (0.02)
0.7 6 (0.01) 0.31 (0.03)
0.8 5(0.01) 0.4 (0.04)

0.9 4(0.01) 0.42 (0.04)

Table 2. Performance of LocalSC on Beach dataset in the baseline
setting. Numbers in the parentheses are standard deviations.

e | Comm. Cost (cost/m*100%) | Approx. Quality
0.2 13 (0.07) 0.03 (0.001)
0.3 33 (0.07) 0.06 (0.005)
0.4 26 (0.07) 0.09 (0.01)
0.5 20 (0.05) 0.14 (0.01)
0.6 15 (0.05) 0.27 (0.1)
0.7 11 (0.04) 0.35 (0.09)
0.8 9 (0.03) 0.39 (0.04)
0.9 7 (0.01) 0.51 (0.09)

Table 3. Performance of LocalSC on Sculpture-11M dataset in the
baseline setting.

5. Conclusion and Future Work

We propose both distributed constructions of approximate
Schur complements and pair-wise spanners under the well-
established message-passing communication model. Rigor-
ous theoretical analysis is performed for all the algorithms
developed in this paper. We also conduct experiments to
evaluate the communication efficiency of the distributed
Schur complement algorithms. In the future, we will inves-
tigate how to extend our algorithms to other communication
models such as the blackboard model. It is also interesting to
study distributed constructions of other graph sparsification
techniques, e.g., spectral and cut sparsifiers.
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