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Abstract

We view disentanglement learning as discovering
an underlying structure that equivariantly reflects
the factorized variations shown in data. Tradi-
tionally, such a structure is fixed to be a vector
space with data variations represented by trans-
lations along individual latent dimensions. We
argue this simple structure is suboptimal since it
requires the model to learn to discard the prop-
erties (e.g. different scales of changes, different
levels of abstractness) of data variations, which
is an extra work than equivariance learning. In-
stead, we propose to encode the data variations
with groups, a structure not only can equivariantly
represent variations, but can also be adaptively
optimized to preserve the properties of data varia-
tions. Considering it is hard to conduct training
on group structures, we focus on Lie groups and
adopt a parameterization using Lie algebra. Based
on the parameterization, some disentanglement
learning constraints are naturally derived. A sim-
ple model named Commutative Lie Group VAE is
introduced to realize the group-based disentangle-
ment learning. Experiments show that our model
can effectively learn disentangled representations
without supervision, and can achieve state-of-the-
art performance without extra constraints.

1. Introduction
Equivariance has been widely considered as one of the most
important desiderata in representation learning (Hinton et al.,
2011; Cohen & Welling, 2014; 2016; Higgins et al., 2018).
A representation is equivariant if the transformations on
the input data can be reflected by transformations on the
representation:

σ(g(x)) = g′σ(x), (1)
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where σ denotes the representation function, and g, g′ repre-
sent the same transformation acting on the data space and
representation space respectively. An invariant representa-
tion is achieved if g′ becomes the identity transformation.

Unsupervised disentangled representation learning is to dis-
cover the factorizable variations shown in data and encode
them with individual dimensions in representations (Hig-
gins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018;
Burgess et al., 2018; Jeong & Song, 2019; Zhao et al., 2017;
Li et al., 2020; Karras et al., 2020). A commonly applied
but less emphasized assumption is that the disentangled rep-
resentations are also equivariant, because the semantic (or
attribute) changes are reflected by the shifting of different
dimensions in the representations space. The difficulty of
this task is to learn the representation that preserves such an
equivariance without supervision.

Existing unsupervised disentanglement methods usually
learn the equivariance mapping based on a fixed vector
space. We argue that this modeling is suboptimal, because
it requires a model to do two tasks at the same time: (1)
to discover equivariance; and (2) to ignore the properties
in data variations to obey a fixed vector-space embedding.
Here the properties in variations can include different levels
of abstractness (e.g. low-level vs semantic attributes), differ-
ent scales of variations (e.g. significant vs subtle changes),
certain structures (e.g. cyclic), relation between variations
(e.g. conditional relation), etc. Our hypothesis is that the
equivariance is more likely to be learned with an adaptive
equivariant structure which is used to fit the data variations.
By this means, the model is relieved from doing a com-
bined difficult learning task and can thus focus on learning
equivariance. In this paper, group structures are adopted for
this task, and a conceptual illustration is shown in Fig. 1.
There exist some previous works that also adopt group struc-
tures to learn disentangled representations (Higgins et al.,
2018; Caselles-Dupré et al., 2019; Quessard et al., 2020;
Painter et al., 2020). However, these methods use predefined
(known) group structures, which are neither adaptive nor
generalizable. Additionally, these models cannot be learned
without supervision. To the best of our knowledge, this is
the first work to learn unsupervised disentangled represen-
tations based on adaptive group structures, which can be
successfully applied to complex datasets.
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Figure 1. The upper part shows the classical disentanglement by
learning equivariance with a vector space. On the left we show data
samples in red points to be the static observations of some under-
lying variations. The underlying variations are shown as arrows in
different colors with grey dash-arrows denoting noise that cannot
be disentangled. The shape and length of arrows represent the
properties of variations. An encoder f is trained to simultaneously
learn equivariance (θ) and ignore variation-properties (φ). The
lower part shows our proposed group-based disentanglement. Our
framework separates the whole work into two parts by training an
adaptive group structure to fit the variations (g) and an encoder to
focus on learning equivariance (f ′).

In this paper, we propose to use groups as representations
to achieve disentanglement without supervision. We focus
on Lie groups for modeling continuous variations in data,
and adopt the Lie algebra parameterization to enable practi-
cal training. Based on the parameterization, decomposition
constraints like one-parameter subgroup decomposition and
Hessian Penalty can be naturally derived to encourage dis-
entanglement. As for the realization, we first introduce a
simple variant of VAE called bottleneck-VAE, which is con-
structed from a new lower bound of log p(x). Based on the
bottleneck-VAE, the proposed Commutative Lie Group VAE
can be naturally implemented by incorporating Commuta-
tive Lie Group constraints. Our models are validated in the
unsupervised disentanglement learning setting on various
datasets. Without extra disentanglement constraints (like
statistical independence), our group-based model achieves
state-of-the-art on DSprites and 3DShapes datasets.

2. Related Work
Disentanglement Learning. Supervised disentanglement
learning has been mainly tackled as conditional generation
based on labeled-attributes (Reed et al., 2014; Kingma et al.,
2014; Dosovitskiy et al., 2014; Kulkarni et al., 2015; Yan
et al., 2016; Lample et al., 2017). After the introduction
of InfoGAN (Chen et al., 2016) and β-VAE (Higgins et al.,
2017), the task of unsupervised disentanglement learning
has gained increasingly interest in recent years. Most of
the learning models are based on the VAE framework, im-

posing constraints to learn continuous latent variables like
statistical independence (Burgess et al., 2018; Kumar et al.,
2018; Kim & Mnih, 2018; Chen et al., 2018), hierarchi-
cal biases (Chen et al., 2016; Li et al., 2020). Some other
models focus on adapting discrete variables into the disen-
tanglement learning (Dupont, 2018; Jeong & Song, 2019).
Another branch of methods is based on InfoGAN, modeling
the informativeness between the latent codes and the images,
e.g. IB-GAN (Jeon et al., 2018), InfoGAN-CR (Lin et al.,
2020), VPGAN (Zhu et al., 2020), and PS-SC GAN (Zhu
et al., 2021). These models all try to capture data variations
with individual latent variables in a vector space while we
propose to leverage an adaptive group structure to achieve
boosted disentanglement from a novel perspective.

Symmetry-Based Disentanglement Learning. In addi-
tion to the common definitions of disentanglement learning
(Bengio et al., 2012; Eastwood & Williams, 2018; Do &
Tran, 2020), Higgins et al. (Higgins et al., 2018) propose
another formal definition of disentanglement learning based
on group theory. In (Caselles-Dupré et al., 2019; Ques-
sard et al., 2020), concrete models are proposed to learn a
symmetry-based representation, but both methods rely on
the paired data with action labels revealed to be trained. In
(Painter et al., 2020), a reinforcement learning method is
incorporated to estimate the actions, but paired data sam-
ples of elemental transformations are still required for train-
ing. These models indeed attempt to capture symmetry-
variations with groups, but the group structures are prede-
fined and the ground-truth factorization is given, leading to
the inability for unsupervised disentanglement learning.

Group-Equivariant Convolutions. Inspired by the suc-
cessful application of translation equivariance in convolu-
tional neural networks (LeCun et al., 1989), there have been
a large number of works trying to bring other symmetry
groups into convolutional neural networks to improve data
efficiency and generalization, e.g. planar rotations (Co-
hen & Welling, 2016; Dieleman et al., 2016; Worrall et al.,
2017; Hoogeboom et al., 2018). spherical rotations (Cohen
et al., 2018; Worrall & Brostow, 2018), scaling (Worrall
& Welling, 2019; Sosnovik et al., 2020), general groups
(Bekkers, 2020), and groups on other data structures (Finzi
et al., 2020; Fuchs et al., 2020). Unlike our work, these
works learn representations with certain symmetries that are
predefined and usually semantic-agnostic to improve the
data efficiency and generalization in neural networks. On
the contrary, we focus on discovering variations that can
be equivariantly represented and disentangled, with group
structures unknown and representing semantic variations.

3. Preliminaries of Groups
This paper adopts some essential concepts from group the-
ory which we exhibit here.
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Group. A group is a set G with a binary operation ◦ being
the group multiplication. A group satisfies the following
axioms: Closure: For all h, g ∈ G we have h ◦ g ∈ G;
Identity: There exists an identity element e ∈ G such that
∀g ∈ G, e ◦ g = g ◦ e = g; Inverse: For each g ∈ G,
there exists an inverse element g−1 ∈ G such that g ◦
g−1 = g−1 ◦ g = e; Associativity: For all g, h, i ∈ G, we
have (g ◦ h) ◦ i = g ◦ (h ◦ i). In this paper, we consider
matrix groups under matrix multiplication (a subgroup of
the general linear groupGL(V ), where V denotes the vector
space on which the matrix group is acting).

Lie Group and Lie algebra. A Lie group is a group with
a continuous (and smooth) structure. In this paper, we
consider matrix Lie groups, which are Lie groups realized
as groups of matrices. Every Lie group is associated with
a Lie algebra g, a vector space that is the tangent space of
the Lie group at the identity element. A Lie algebra can be
parameterized with a basis {Ai}mi=1, where every element
in g is written as A = t1A1 + ...+ tmAm with ti being the
coordinates. Elements in a Lie algebra can be mapped to
the corresponding Lie group using the matrix exponential
map exp : g→ G.

One-parameter subgroup. A one-parameter subgroup is
(the image of) a function h : R → GL(V ) if: (1) h is
continuous; (2) h(0) = e; (3) h(t+ s) = h(t) ◦ h(s) for all
t, s ∈ R. A Lie group with a 1-dim Lie algebra ({Ai}mi=1 =
{A}) is a one-parameter subgroup: h = exp(tA), t ∈ R.

Group representation. In group theory, group representa-
tions describe abstract groups as linear transformations of
vector spaces. However, since we restrict our attention on
matrix Lie groups and also due to its potential confusion
with the term representation in machine learning, we discard
its group-theory definition in this paper. Instead, we use
the phrase group representation to describe a representation
that is learned with a group structure.

4. Method
We propose group representations for disentanglement learn-
ing in Sec. 4.1. To enable practical learning on group repre-
sentations, we introduce the Lie Algebra parameterization
in Sec. 4.2. In Sec. 4.3, we first introduce a variant of VAE
called bottleneck-VAE, and then introduce our Commuta-
tive Lie Group VAE by integrating the Commutative Lie
Group constraints.

4.1. Group Representation

Generally in an equivariance representation (as in Eq. 1),
there exist two separate components to be learned: the group
(of transformations) and the representation (of data). This is
not desirable since usually we need paired data to train the
group as we need supervision for transformations (Caselles-

Dupré et al., 2019; Quessard et al., 2020). However, if
all the variations shown in a dataset can be assumed to be
represented by a group (which is the case in disentanglement
learning), then we can assume there exists a canonical data
point x0 such that every other data point x is transformed
by a group element g0→x on the canonical data point:

σ(x) = σ(g0→x(x0)) = g′0→xσ(x0). (2)

Now we can see the representation structure is actually de-
termined by the group since the group defines the relation
between samples in the latent space while the absolute em-
bedding position of a single data point is not important. It is
thus reasonable to assign a fixed representation to the canon-
ical data point so that only the group structure is learned.
The key step is that we choose the group identity e as the
canonical representation so that every sample has a group
representation:

σ(x) = g′0→xσ(x0) = g′0→xe = g′0→x, (3)

and the samples are embedded on a group structure. This
group can now be learned with static observations since each
observation represents a transformation from the canonical
data point. Note that this group representation is similar to
the pose representation used in (Hinton et al., 2011) where
the pose of a capsule is represented by a matrix which
specifies the transformation between the canonical entity
and the actual instantiation.

Unfortunately, though we can assume such a group represen-
tation exists, it is not clear how it can be learned in practice.
It is also unclear how data samples can be mapped onto
a group, how sampling can be conducted on a group, and
how optimization can be implemented on a group. In this
paper, we shrink our concentration on continuous groups
(Lie groups) since (1) most attributes in data consist of con-
tinuous variations, and (2) it is easier to be parameterized
(and thus learned). We refer this type of representations as
Lie group representations.

4.2. Decomposition with Lie Algebra Parameterization

We parameterize Lie groups in this paper by a basis {Ai}mi=1

in the Lie algebra:

g(t) = exp(A(t)), g ∈ G,A ∈ g,

A(t) = t1A1 + t2A2 + ...+ tmAm,∀ti ∈ R, (4)

where g is the Lie algebra of Lie group G, and exp(·) is the
matrix exponential map which maps an element in a Lie
algebra to the corresponding Lie group. t = (t1, t2, ..., tm)
represents the coordinates in g of a data sample. When t =
0, the corresponding element on the group is e = exp(0),
the identity. The Lie algebra is a vector space thus enables
training with general optimization methods like SGD. In



Commutative Lie Group VAE

our implementation, the basis {Ai}mi=1 is optimized (as
weights) to find an adaptive group structure, and every data
sample can thus be identified by the coordinates t in the Lie
algebra. This also enables data sampling since we can attach
prior distributions on the coordinates t so as to simulate a
distribution on the group structure.

This Lie algebra parameterization without any constraints
cannot guarantee a group structure to be decomposed into
subgroups with each subgroup independently parameter-
ized by a single coordinate (homomorphism between the
group and the coordinate space), e.g. exp(t1A1 + t2A2) 6=
exp(t1A1)exp(t2A2). This is not desirable since we would
like a dimension in the coordinate ti to identify a single sub-
group exp(tiAi) and thus further represent a single variation
in the data space. If this is not satisfied, the disentanglement
is not achieved since the data variations are not encoded
into separate subspaces (t1, t2, ..., tm). In the next two para-
graphs we discuss two options to solve this problem.

One-parameter subgroup decomposition constraint.
Based on our Lie algebra parameterization (Eq. 4), we
have the following proposition to decompose a Lie group
into one-parameter subgroups:

Proposition 1. If AiAj = AjAi,∀i, j, then

exp(t1A1 + t2A2 + ...tmAm)

= exp(t1A1)exp(t2A2)...exp(tmAm) (5)

=
∏

perm(i)

exp(tiAi). (6)

Proof. See Appendix 1.

Eq. 6 means the equation holds for any permutation of the
index i. This decomposition ensures that the group structure
is decomposed into subgroups with each one parameter-
ized by a single coordinate ti. Via this constraint, the data
variations can be considered as disentangled into individual
latent dimensions ti’s if an equivariance between the data
variations and the group structure is learned. Since this
decomposition holds for any permutation of the subgroups,
the order of the subgroups would not influence the composi-
tion results thus the original group becomes commutative
in terms of the subgroups. This shows a limitation of our
method where it cannot disentangle variations that cannot
be equivariantly represented by a commutative Lie group,
e.g. 3D rotation decomposition along three orthogonal axes.

Hessian Penalty constraint. Besides learning disentangle-
ment via enforcing the subgroup decomposition, we can also
incorporate other useful disentanglement constraints like
Hessian Penalty (Peebles et al., 2020) to the group represen-
tation. The Hessian Penalty assumes that the Hessian matrix
with respect to a disentangled representation is always zero

since the variation controlled by a dimension should not be
a function of another dimension (independent):

Hij =
∂2f(z)

∂zi∂zj
=

∂

∂zj

(∂f(z)
∂zi

)
= 0, (7)

where z is the disentangled representation, and f(·) is a func-
tion of z. Our Lie algebra parameterization is compatible
with this constraint, and we have the following proposition:

Proposition 2. If AiAj = 0,∀i 6= j, then

Hij =
∂2g(t)

∂ti∂tj
= 0, (8)

where g is the map defined in Eq. 4.

Proof. See Appendix 2.

Note that this is a more strict constraint than Proposition
1 since AiAj = AjAi is implied by AiAj = 0, which
also enforces the commutative group decomposition. This
constraint further ensures that the dynamics caused by a
subgroup is not affected by other subgroups at the group
representation level (independent). Different from the origi-
nal Hessian Penalty paper (Peebles et al., 2020) where the
constraint is implemented on multiple feature maps with an
unbiased stochastic approximator, our method penalizes the
model only on the Lie group structure (using the Lie algebra
basis), which is a different and a simpler implementation.

In summary, the Lie algebra parameterization enables prac-
tical learning by converting an optimization problem on
groups to vector spaces. It also enables new constraints
for encouraging disentanglement by enforcing commutative
group decomposition and Hessian penalty.

4.3. Commutative Lie Group VAE

In this section, we present a simple model to learn disen-
tangled representations using the group-related techniques
proposed in the last section. We first introduce a VAE-
variant (see Appendix 3 for an introduction of VAE) called
bottleneck-VAE which forces a layer of feature in the en-
coder to match a layer of feature in the decoder. The model
is a realization of the maximization of a lower bound of
log p(x), which is presented in the following proposition:

Proposition 3. Suppose two latent variables z and t are
used to model the log-likelihood of data x, then we have:

log p(x) ≥ Lbottleneck(x, z, t)

= Eq(z|x)Eq(t|x,z)log p(x, z|t)
− Eq(z|x)KL(q(t|x, z)||p(t))− Eq(z|x)log q(z|x) (9)

= Eq(z|x)q(t|z)log p(x|z)p(z|t)
− Eq(z|x)KL(q(t|z)||p(t))− Eq(z|x)log q(z|x), (10)
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Figure 2. (a) The overall architecture of our proposed Lie Group VAE (bottleneck-VAE if Dgroup is a general layer; Commutative Lie
Group VAE if constraints from Proposition 1 and 2 are applied). An input image is fed into the encoder Eimg to obtain the encoded
group representation ẑ. The representation fed through a group encoder Egroup (a two-layer MLP) to obtain the Lie algebra coordinates t
using reparameterization trick. The coordinates are then fed through a group decoder (exponential mapping layer) to obtain the group
representation z, which is then fed through a decoder to reconstruct the image. (b) Detailed illustration of the exponential mapping
layer Dgroup. For each coordinate scalar ti we learn a Lie algebra basis Ai (a matrix), where constraints from Proposition 1 and 2 can be
applied as regularizations. � denotes broadcast multiplication, ⊕ sums up the matrices, and expm is the matrix exponential function. The
obtained group representation is flattened to a vector before output.

where Eq. 10 holds because we assume Markov property:
q(t|z) = q(t|x, z), p(x|z, t) = p(x|z).

Proof. See Appendix 4.

The variable z is the feature to be shared in the encoder and
the decoder. In practice, we model p(z|t), p(x|z), q(z|x)
to be deterministic networks (Dgroup, Dimg, Eimg in Fig. 2
(a)) while q(t|z) to be a stochastic network (Egroup in Fig.
2 (a)). The first term in Eq. 10 is implemented as two
reconstruction losses on x and z respectively (lossrec img
and lossrec group in Fig. 2 (a)), while the second term (KL-
divergence) is implemented the same as in a standard VAE.
The third term is the entropy of z when x is fixed, which is
a constant since we model q(z|x) to be a deterministic net-
work, and is not implemented in practice. We forward the
output feature of the encoder Eimg directly to the decoder
Dimg at the probability of 0.2. This forces that both fea-
tures (z and ẑ) are trained to reconstruct the same image so
that they are encouraged to represent the same (high-level)
information.

The Lie group structure is imposed on the (shared) feature
z in the bottleneck-VAE, and it is easily implemented by
constructing the network p(z|t) (Dgroup) to be a Lie algebra
parameterization z = g(t) as defined in Eq. 4. In Fig. 2
(b) we show the details of how this module is implemented.
For each input coordinate tj we learn a Lie algebra basis
element (a matrix) Aj in shape |V | × |V | (recall that V
denotes the vector space on which the group is acting). The
coordinates and basis are aggregated and fed into a matrix
exponential mapping layer, resulting in a group represen-
tation. Popular deep learning toolkits TensorFlow (Abadi
et al., 2015) and Pytorch (Paszke et al., 2019) both offer

in-built differentiable implementations for matrix exponen-
tial map, which are computed by approximation methods
proposed in (Higham, 2009; Bader et al., 2019). We name
a bottleneck-VAE equipped with a Lie group structure as a
Lie Group VAE.

Note that the bottleneck-VAE is essential to the realization
of learning equivariance with a group structure because the
encoder network needs to map the data directly onto a group
structure so that it can be encouraged to learn the correspon-
dance between the data variations and the group transforma-
tions. If there is no such a feature-sharing constraint (using
plain VAE as a backbone), the encoder becomes a regular
neural network and is not trying to learn a equivariance on
the group structure but on the vector space, and the exponen-
tial mapping layer is just to assist the decoder to reconstruct
the input data.

The one-parameter decomposition constraint and the Hes-
sian penalty constraint can be directly applied as regulariza-
tions on Lie algebra basis {Aj}mj=1 (see Proposition 1 and
2). We name a Lie Group VAE equipped with either con-
straint a Commutative Lie Group VAE as both constraints
enforce a commutative Lie group decomposition.

5. Experiments
We conduct experiments by following the general unsuper-
vised disentanglement learning setup, i.e. training models
on a dataset without any supervision and evaluate the quality
of disentanglement by metrics on synthetic datasets and by
latent traversal inspection on real-world datasets. Implemen-
tation details are shown in Appendix 5. Code is available at
https://github.com/zhuxinqimac/CommutativeLieGroupVAE-
Pytorch.
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Models FVM SAP MIG DCI

VAE 69.4±10.9 19.7±10.6 7.8±6.4 8.1±4.1

+bottle 74.6±8.1 29.2±12.1 12.9±6.6 11.6±3.3

+exp 83.6±3.2 40.7±12.2 17.2±6.8 15.1±2.4

Table 1. Ablation study of bottleneck-VAE and exponential map
on DSprites.

0 10 20 30 40 50 60 70
Training Steps

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

K
L-

di
ve

rg
en

ce
 lo

ss

VAE
bottleneck-VAE
Lie Group VAE
β-VAE (β=10)

Figure 3. How the KL-divergence loss (KL(q(t|x)||p(t))) evolves
during training for different models.

5.1. Synthetic datasets

We conduct experiments on the two most popular disen-
tanglement datasets: DSprites (Matthey et al., 2017) and
3DShapes (Kim & Mnih, 2018). The DSprites dataset con-
sists of 64 × 64 2D shapes rendered with 5 independent
generative factors, i.e. shape (3 values), scale (6 values),
orientation (40 values), x position (32 values), and y position
(32 values). The total number of data samples is 737,280,
with each factor combination appears exactly once. The
3DShapes dataset contains 64 × 64 images of 3D shapes
generated from 6 independent factors, floor color (10 val-
ues), wall color (10 values), object color (10 values), scale
(8 values), shape (4 values), orientation (15 values). There
are 480,000 images in total in this dataset. For evaluation,
we report results with various disentanglement metrics for
an overall and robust evaluation. The used metrics include
FactorVAE metric (FVM) (Kim & Mnih, 2018), SAP metric
(Kumar et al., 2018), Mutual Information Gap (MIG) (Chen
et al., 2018), and DCI Disentanglement metric (Eastwood &
Williams, 2018). All the reported scores shown in this paper
are averaged by 10 random runs. For ablation studies, we
randomly split the dataset into training set (9/10) and test
set (1/10) in each run, and compute evaluation scores on the
test set. For the state-of-the-art comparison, we follow the
tradition by training and evaluating on the whole dataset.
We report the mean and standard deviation in all tables.

Effectiveness of the Proposed Components. We first in-
vestigate if the proposed model components can contribute
to the disentanglement learning individually. In Table 1, we

Sizegroup FVM SAP MIG DCI

4 23.6±3.3 6.3±6.0 4.2±3.9 3±0.5

9 57.4±5.8 34.1±12.9 17.3±7.4 12.4±4.4

25 79.8±2.8 39.6±13.4 20.6±8.5 19.9±3.8

64 82.7±3.7 42.2±12.5 22.1±10.1 20.0±6.8

81 84.4±2.6 45.2±10.5 23.0±8.4 19.6±6.3

100 85.5±2.2 50.8±5.0 25.4±6.1 19.7±4.6

Table 2. Ablation study of group size on DSprites.

show how much a VAE can gain from these incorporated
modules in terms of disentanglement scores. In Fig. 3 we
show how the KL-divergence loss evolves. In the table, the
+bottle entry corresponds to the introduced bottleneck-VAE
which extends the plain VAE with an additional constraint by
enforcing a shared layer of features between the encoder and
decoder. Although its disentanglement results are still evi-
dently inferior than other complete models (e.g. see results
in other tables), it is quite surprising such a simple feature-
sharing constraint can boost a VAE by an obvious margin. A
potential explanation is that the bottleneck-VAE constrains
the variations encoded in the latent codes since the model
should be very careful to not change the to-be-shared feature
too much or it becomes harder to reconstruct. This is bene-
ficial to disentanglement since entanglement usually comes
from codes which capture too much information so that
they overlap or intersect with each other. This constraint on
variation encoding can also be observed in Fig. 3 where for
the +bottleneck (blue) line the KL-divergence between the
posterior distribution and the latent prior becomes slightly
smaller than a plain VAE (red). By adding the exponential
mapping layer (Dgroup), which enforces the model to keep
a group structure in the bottleneck, the disentanglement
performance has been boosted to a competing level with
other state-of-the-art methods. This is a key modification
since from Fig. 3 we see the +exp (green) line evolves more
elastically than the VAE baselines, e.g. VAE, +bottleneck,
β-VAE (β=10). It shows that at the beginning the infor-
mation encoded in the latent code is heavily constrained
(moving closer towards the β-VAE) by the group-structure
bottleneck. However because of the adaptivity of the group
structure, more variations can be gradually learned as the
training goes on. On the contrary, the KL losses shown
in other VAE baselines change slowly, indicating the data
variations are hard to be newly discovered during training
in these models.

How the Group Representation Size Affects Disentan-
glement. In Table 2 we show how the disentanglement
scores are affected by the choice of group representation
size. Recall that the groups are represented by invertible
matrices (subgroups ofGL(V )) therefore they all have sizes
of squared numbers. It can be expected that the larger the
group representation is, the more likely the subgroups (in-
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λdecomp FVM SAP MIG DCI

0 83.6±3.2 40.7±12.2 17.2±6.8 15.1±2.4

5 84.0±3.9 45.4±11.5 20.5±6.9 16.8±4.3

20 85.8±6.9 48.7±8.4 23.6±5.0 18.2±3.0

40 85.5±2.2 50.8±5.0 25.4±6.1 19.7±4.6

80 85.5±4.8 47.1±8.6 23.3±6.2 18.3±6.5

Table 3. Ablation study of one-parameter decomposition on
DSprites.

λhessian FVM SAP MIG DCI

0 83.6±3.2 40.7±12.2 17.2±6.8 15.1±2.4

5 83.8±2.4 46.8±12.8 19.8±8.6 17.5±5.6

20 86.1±1.8 54.1±1.2 29.7±3.1 23.4±4.1

40 86.2±1.8 48.2±1.9 25.2±8.4 19.1±4.1

80 85.0±1.6 43.6±11.3 20.1±8.4 17.4±4.2

Table 4. Ablation study of Hessian penalty on DSprites.

dexed by coordinates ti’s) can control different variations
(due to the increased sparsity in a larger space). In the table,
we can see the group representation of size 4 has almost
no capability for disentanglement because a group of 2× 2
matrices represents the linear transformations on a 2D plane,
which is hard to be decomposed into more than two indepen-
dent sub-transformations (e.g. scaling + rotation). When the
representation size exceeds 25 (5× 5), the model can easily
find a decomposition to represent different data variations,
and the disentanglement scores saturate. We use the group
representation size 100 for all other experiments.

Effectiveness of One-parameter Subgroup Decomposi-
tion and Hessian Penalty Constraints. Now we investi-
gate how the induced Lie-group related constraints benefit
disentanglement learning. For each constraint we use a
hyper-parameter λdecomp(λhessian) to modulate the effect.
The results of one-parameter subgroup decomposition is
shown in Table 3, and Hessian Penalty is in Table 4. Both
constraints can benefit disentanglement performance, where
λdecomp reaches the peak at 40 and λhessian at 20. We can
see the Hessian Penalty constraint is more effective than
the subgroup decomposition as the performance gain in the
former one is more significant (54.1 vs 50.8 on SAP and
29.7 vs 25.4 on MIG). This is due to that Hessian Penalty
is a stronger constraint than the subgroup decomposition
since it requires the Lie algebra basis elements to have mu-
tual products of zeros while subgroup decomposition only
requires their commutators to be zeros. This proves that
forcing different subgroups to have independent effect on
the final group representation is very beneficial to capture
factorized data variations. In Fig. 4 we show the scatter plot
of FactorVAE metric against reconstruction loss. We see
our proposed Commutative Lie Group constraints boost the
disentanglement performance at slight cost of reconstruction
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Figure 4. Reconstruction loss vs FactorVAE metric.

Model DSprites 3DShapes

VAE 69.4±10.9 83.6±6.5
β-VAE 74.4±7.7 91 (Kim & Mnih, 2018)
Cascade-VAE 81.74±2.97 -
Factor-VAE 82.15±0.88 89 (Kim & Mnih, 2018)

Ours 86.1±2.0 93.2±4.0

Table 5. Unsupervised disentanglement state-of-the-art compari-
son on DSprites and 3DShapes.

quality, while the β-VAEs sacrifice reconstruction severely.

State-of-the-art Comparison. In Table 5 we compare our
Commutative Lie Group VAEs with other state-of-the-art
models for learning continuous latent variables on DSprites
and 3DShapes datasets. We use the whole dataset to train
and evaluate our models following the tradition of unsuper-
vised disentanglement learning. Since most of the compared
models only report the FVM score, we follow this standard
and report the best model on FVM. We can see our Lie
Group VAE model achieves the best performance among
all compared models. It should be noticed that all other
compared models enforce the statistical independence as-
sumption to achieve disentanglement while our model is
built based on another completely assumption by leveraging
group structures. This indicates that our model has the po-
tential to be further improved if independence assumption
is concurrently enforced. Qualitative latent traversal results
of our Commutative Lie Group VAE on both datasets are
shown in Fig. 5.

5.2. Real-world Datasets

In this section we run our Commutative Lie Group VAE
on real-world datasets including CelebA (Liu et al., 2014),
Mnist (Lecun et al., 1998), and 3DChairs (Aubry et al.,
2014).

CelebA dataset contains 202,599 images of cropped real-
world human faces. We crop the center 128× 128 area and
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Figure 5. Latent traversals of our Commutative Lie Group VAE on
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Figure 6. CelebA traversals compared with FactorVAE (Kim &
Mnih, 2018).

resize the images to 64×64 for this experiment. In Fig. 6 we
show the qualitative results of our model (λhessian = 40)
trained on CelebA, and compare it with the FactorVAE
baseline. For most of the attributes, our model can extract
cleaner semantic variations than FactorVAE. For example,
the background concept captured by FactorVAE is entangled
with smile while in our model it is independently encoded.
Additionally, our model learns to encode the semantics of
forehead hair-style and make-up which are not shown in the
FactorVAE.

Mnist dataset consists of handwritten digits (28×28 images)
in 10 classes. We pad the images to size 32× 32 for easier
usage. We train our model with data of a same class to learn
continuous variations. It is possible to integrate techniques
for learning discrete latent variables (Dupont, 2018; Jeong
& Song, 2019) in our Commutative Lie Group VAE for
unsupervised classification, but we leave it for future work.
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Figure 7. Per-class latent traversals on Mnist dataset.
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Figure 8. Comparing latent traversals of Commutative Lie Group
VAE with CascadeVAE on 3DChairs.

In Fig. 7, we show some interesting semantic variations
discovered by our model. We can see our model learns to
control the circle size in six and nine with a variable, and
also learns to represent the subtle variation of curviness in
one. In four, our model discovers a lifting concept which
controls the level of the horizontal line shown in 4’s.

3DChairs dataset contains 86,366 RGB images of various
chairs of resolution 64 × 64. In Fig. 8, we compare our
model with the state-of-the-art CascadeVAE (Jeong & Song,
2019). Both models achieve similar disentanglement quality,
showing that our model though based on a different assump-
tion of group theory, can still achieve the same-level results
as the state-of-the-art CascadeVAE based on information
theory which models statistical independence.
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6. Conclusion
In this paper we proposed to learn disentangled representa-
tions without supervision by capturing the data variations
with an adaptive group structure. This is based on the idea
that a group structure can represent data variations by group
actions applied to itself. The advantage of using groups over
usual vector spaces is that a group structure can not only
equivariantly represent variations but also be adaptively op-
timized to fit the diversity in data variations. By replacing
general vector representations with group representations,
we can represent a data point with a group element on a
group structure. To enable practical training, we adopted
the Lie algebra parameterization and converted the learning
problem on groups into the learning in linear spaces, which
enables general optimization and sampling. Based on the
parameterization, we introduced two simple commutative
decomposition constraints for encouraging disentanglement,
which are naturally derived from the one-parameter sub-
group decomposition assumption and the Hessian Penalty
assumption. To instantiate the group-based learning method,
we introduced a variant of VAE called bottleneck-VAE, de-
rived from a new lower bound of the data log-likelihood.
We then proposed our (Commutative) Lie Group VAE by
simply integrating an exponential mapping layer (with com-
mutative decomposition constraints) into the decoder of the
bottleneck-VAE. The proposed model achieved state-of-the-
art performance in unsupervised disentanglement learning
without adopting other regular constraints like statistical
independence. Our proposed method is simple, elegant, and
effective, and we believe this model exhibits a new direction
for learning disentangled representations.
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