Supplementary Material
Demystifying Inductive Biases for (Beta-)VAE Based Architectures

Figure:, 1: The SVD decomposition of a VAE decoder (top) and an alternative decoder (bottom) which decodes the same
data X, complies with V' = Z, and also shares diag (Z Tz ) = 1. The difference lies in the rotation induced by U, which

for VAEs (and PCA) aligns the directions of largest variance in X with the cartesian axes.

1. Link to Datasets

https://dx.doi.org/10.17617/3.61

2. Proofs
2.1. The Formal Setting

The simplified objective stated in this paper as
min (HUZVTE(”

2
SUV ) M

st. E; (quj = CaKL- 2

resembles the minimization problem (20) and (21) from
Rolinek et al. (2019). They only optimize for distributing
the latent noise () and the orthogonal matrix V" of the SVD
decomposition of the whole linear decoder and conclude
that for M = ULV T

In every global minimum, the columns of M are
orthogonal.

Which is equivalent to V' being a signed permutation matrix
(Proposition 1 of (Rolinek et al., 2019)). Without loss of
generality, we assume V' = 7 and rearrange the elements of

%) in ascending order and those of (*) in descending order
with respect to o®?,

In the setting of Theorem (1), we consider the mean latent
representation Z to be constrained only by the condition
diag (Z" Z) = 1, which reads as “each active latent vari-
able has unit variance”. Even though, this statement is
unsurprising in the context of VAEs, we offer a quick proof
of how this follows directly from the KL loss in Lemma
1. Additionally, we fully fix the matrix X , which contains
the reconstruction of all data-points. The remaining free-
dom in U and X has the following nature: for each fixed
UT (which rotates X ), the nonzero singular values of X
(scaling factors along individual axes in the latent space) are
fully determined by the diag (Z " Z) = 1 requirement. We
minimize objective (1) under these constraints.

Remark Notice that fixing the reconstructed data-points
ensures that the observed effect is entirely independent of
the deterministic loss. The deterministic loss, is known
to have some PCA-like effects, as it is basically a MSE
loss of a deterministic autoencoder. The additional (and in
fact stronger) effects of the stochastic loss are precisely the
novelty of the following theoretical derivations.

For technical reasons regarding the uniqueness of SVD, we
additionally inherit the assumption of (Rolinek et al., 2019)


https://dx.doi.org/10.17617/3.6i
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that the random variables £(® have distinct variances.

Finally, the orthonormal matrix U acts isometrically and
can be removed from the objective (1), even though it still
plays a vital role in how the problem is constrained. The
reduced objective is further conveniently rewritten as a trace
as:

N2
minE; sz-s(z) =minE; tr (EXTSE),  (3)
> >

where F is the diagonal matrix induced by the vector €.

A visualization of the role of U, ¥ and V in the decoding
process is illustrated in Fig. 1.

2.2. Proof of Theorem 1

We rewrite the objective in order to introduce U, X , and
Z and make use of the constraints diag(Z TZ) =1 and
X = ZXU. We have

EX"SE=EX"(Z"Z + M)XE, 4)
where M = T — Z T Z is a matrix with diag(M) = 0. Also,
we can expand

' zTze=UvUTETZT) (zsU)UT =UXTXUT
)
By combining (4) and (5), we learn that
EX'SE—-EUX'XUTE=FEX"MSE. (6)
By repeating Lemma 2, we learn that diag(EX T MYE) =
0, which allows us to use Lemma 2 yet again, this time

on the left-hand side of (6) and obtain a key intermediate
conclusion:

tr (EXTSE) =tr (EUXTXUTE) 7
This has a lower bound according to a classical trace in-

equality (see Proposition 1), as EUX T XU T E is positive
semi-definite.

tr (EUXTXUTE) > n det (EUXTXUTE)U” ®)
— ndet (EXTXE) v 9)
with equality if and only if
FEUX"XUTE = ). (10)
FAor t{le SVD decomposition X = UxXYx V; , we see that
XTX =Vx¥3Vy and with U’ = UVx we arrive at
U's3U'T = E72 (11)

The left-hand side gives an SVD decomposition of the di-
agonal matrix £~2. The SVD decomposition of a diagonal
matrix is unique up to a signed permutation matrix. The
conclusion of Theorem 1 now follows.

2.3. Auxiliary Statements

In the following lemma, the vectors @ and y correspond
to the mean latent g and the noise standard deviation o
respectively. We allow for scaling the latent space and find
that the KL loss is minimal for unit standard deviation of
the means.

Lemma 1. For vectors * = (xo, ..
(Yo, ---,yn) € R" and

_ : 2,2 2,,2))
c arg;ernrgm; (c x; og (c Yi ))

wxn) € Rn: Yy =

it holds that

c= > (:?) (12)

i

Proof. Tt is easy to inspect that the minimum of
Do (chiz — log (czyf)) with respect to c fulfils the state-
ment. O

Proposition 1 (Trace Inequality). For a positive semi-
definite M € R™*™, that is M 3= 0, it holds that

tr(M) > ndet(M)/™ (13)

with equality if and only if M = X - T for some A > 0.

Proof. Let Ay, ..., A\, denote the eigenvalues of M, then
tr(M) = >, A; and det(M) = [[, \i. Since M = 0,
we have \; > 0 for every ¢ = 1,...,n. Then, due to the
classical AM-GM inequality, we have

1/n
tr(M)=> "X >n- (H )\Z-) = ndet(M)"/",

(14)

with equality precisely if all eigenvalues are equal to the
same value A > 0. Then by the definition of eigenvalues, the
M — AT has zero rank, and equals to zero as required. [

Lemma 2 (“Empty diagonal absorbs”). Ler D € R™*™
be a diagonal matrix and let M € R™*™ be a matrix
with zero elements on the diagonal, that is diag(M) = 0.
Then diag(M D) = diag(DM) = 0 and consequently also
tr(M D) = tr(DM) = 0.

Proof. Follows immediately from the definition of matrix
multiplication. O
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Architecture | dSprites | Shapes3D

B-VAE (B) 8 32
TC-5-VAE (3) 6 32
Factor-VAE (v) 35 7
Slow-VAE (3) 1 1

Table 1: Primary hyperparameters, for other parameters
we used the defaults in the Disentanglement Library or
literature values.

3. Experimental Details
3.1. Architecture for m(w)

The model implemented for m(w) has almost the same ar-
chitecture as the CNN decoder as it is implemented in the
Disentanglement Library (Locatello et al., 2019). The only
differences lies in the input MLP which was extended by
a single neuron hidden layer. This enforces a compression
of the generating factors w(?) to some scalar value based
on which the modifications are rendered. Both m and the
decoders were trained with Adam (5; = 0.9, 3> = 0.999,
€ = 10~7) and 10~ learning rate. To ensure training stabil-
ity, we train the decoders on three times more batches as the
manipulation network and reconstruct five latent samples
per image to get a better estimate of the stochastic losses.
We achieved a better result on Shapes3D when using an
ensemble of four disentangling and four entangling encoder-
decoder pairs instead of single models. In order to stay in the
same value range as the original images, we ensured normal-
ization of the manipulated images X' = x() m(w(®)
by x'?) = x( — 2ReLu(x® — 1) + 2ReLu(—x®).

norm

4. Additional Experiments
4.1. Evaluation on Different Metrics

We have evaluated all architectures on three additional met-
rics. See Tables (2, 3, 4) for the resulting DCI-, FactorVAE-
and SAP-Scores. Figures (4, 5, 6) show the scores for a
line search of the primary hyperparameter of each architec-
ture. The hyperparameters are listed in Table 1. We used
the implementations of the Disentanglement Library. Ad-
ditional information about the distribution of MIG scores
on the modified datasets on Shapes3D are presented in the
histograms of Figure 2. The individual MIG scores per
generating factor for the 5-VAE on Shapes3D are shown in
Figure 3.

4.2. Inspection of Entangled and Disentangled Latent
Embeddings

Over multiple restarts of 5-VAE trainings on the unmod-
ified dataset, we used the runs that achieved highest and
lowest MIG scores. Exemplary, Fig. 7 and Fig. 8 show two
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Figure 2: Histogram of MIG scores for the VAE based
methods on the altered Shapes3D dataset.
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Figure 3: Individual MIG scores for 8-VAE trained on the
original and the altered Shapes3D dataset.

dimensional latent traversals of four disentangled and four
entangled 3-VAE representation respectively. The dimen-
sion of the latent traversal were hand-picked to encode for
the wall hue and the orientation. Interestingly, the disentan-
gled models reliably encode the color in the same way (e.g.
starting from green to cyan). The entangled models reliably
mix the two generating factors in a very similar way: The
color is encoded as the angular component of the two latent
dimensions and the orientation as the radial component.
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Figure 4: DCI scores for scaled literature hyperparameters
over 10 restarts for Shapes3D. Overpruning runs with fewer
active units than generating factors were discarded
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Figure 6: SAP scores for scaled literature hyperparameters
over 10 restarts for Shapes3D. Overpruning runs with fewer
active units than generating factors were discarded

Figure 5: FactorVAE scores for scaled literature hyperpa-
rameters over 10 restarts for Shapes3D. Overpruning runs
with fewer active units than generating factors were dis-
carded

Table 2: DCI Disentanglement Scores for unmodified, modified and noisy datasets. We report the mean and standard
deviation over 10 distinct random seeds for each setting. PCL is the only disentangling non-variational model. The

modification leads to a significant drop in all variational methods.

dSprites Shapes3d
orig. mod. noise | orig. mod. noise
B-VAE 0.114+0.03 0.084+0.11 0.1440.07 | 0.73+0.14 0.43+0.06 0.56 +0.06
Fac. VAE 0.37+0.10 027+0.11 0.24+0.09 | 0.39+£0.18 0.25+0.08 0.57+0.20
TC-3-VAE 0.34+0.06 0.19+0.10 0.27+0.03 | 0.67+£0.08 0.41+£0.05 0.59+0.09
Slow-VAE 0.47+£0.07 0.40+£0.07 0.47+0.08 | 0.65+0.10 0.33+£0.08 0.73£0.09
PCL 0.28+0.03 0.304£0.03 0.2940.06 | 0.70+£0.06 0.67+0.09 0.71+0.07

Table 3: FactorVAE Scores for unmodified, modified and noisy datasets. We report the mean and standard deviation over 10
distinct random seeds for each setting. PCL is the only disentangling non-variational model. The modification leads to a
significant drop in all variational methods.

dSprites Shapes3d
orig. mod. noise | orig. mod. noise
B-VAE 0.4740.07 0.384+0.13 0.50%0.10 | 0.80+0.17 0.54+0.10 0.71 4+ 0.06
Fac. VAE 0.67+0.11 0.62+0.14 0.60+0.11 | 0.63+£0.15 0.48+0.05 0.71+0.15
TC-3-VAE 0.68+£0.09 0.53+0.15 0.60+0.12 | 0.76£0.07 0.57+£0.07 0.71 £0.06
Slow-VAE 0.77+£0.03 0.77+£0.04 0.76+£0.07 | 0.87+0.10 0.62+0.06 0.85=+0.08
PCL 0.774+0.09 0.8240.05 0.7740.08 | 0.80+0.06 0.77+0.07 0.80 % 0.06

Table 4: SAP Scores for unmodified, modified and noisy datasets. We report the mean and standard deviation over 10
distinct random seeds for each setting. PCL is the only disentangling non-variational model. The modification leads to a
significant drop in all variational methods.

dSprites Shapes3d
orig. mod. noise | orig. mod. noise
B-VAE 0.044+0.01 0.0240.02 0.0340.03 | 0.16£0.08 0.0340.03 0.09 & 0.02
Fac. VAE 0.074+0.03 0.0640.03 0.0840.01 | 0.07+0.04 0.04+0.01 0.0840.03
TC-3-VAE 0.08 £0.01 0.06+0.03 0.0540.02 | 0.08£0.02 0.04£0.02 0.06£0.03
Slow-VAE 0.08+0.01 0.074+0.01 0.07£0.01 | 0.094+0.04 0.04£0.01 0.09£0.05
PCL 0.074+0.03 0.104£0.03 0.10£0.03 | 0.07+0.01 0.07+0.01 0.07+0.01
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Figure 7: Latent traversals along two latent dimensions for four different disentangled representations. They encode the wall
hue and orientation separately. The latent coordinates were flipped to match the same alignment.
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Figure 8: Latent traversals along two latent dimensions for four different disentangled representations. They encode a
mixture of wall hue and orientation.



