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Abstract

The performance of (- Variational-Autoencoders
(B-VAESs) and their variants on learning seman-
tically meaningful, disentangled representations
is unparalleled. On the other hand, there are the-
oretical arguments suggesting the impossibility
of unsupervised disentanglement. In this work,
we shed light on the inductive bias responsible
for the success of VAE-based architectures. We
show that in classical datasets the structure of vari-
ance induced by the generating factors is conve-
niently aligned with the latent directions fostered
by the VAE objective. This builds the pivotal
bias on which the disentangling abilities of VAEs
rely. By small, elaborate perturbations of exist-
ing datasets, we hide the convenient correlation
structure that is easily exploited by a variety of
architectures. To demonstrate this, we construct
modified versions of standard datasets in which (i)
the generative factors are perfectly preserved; (ii)
each image undergoes a mild transformation caus-
ing a small change of variance; (iii) the leading
VAE-based disentanglement architectures fail
to produce disentangled representations while
the performance of a non-variational method
remains unchanged.

1. Introduction

The task of unsupervised learning of interpretable data rep-
resentations has a long history. From classical approaches
using linear algebra e.g. via Principal Component Analysis
(PCA) (Pearson, 1901) or statistical methods such as Inde-
pendent Component Analysis (ICA) (Comon, 1994) all the
way to more recent approaches that rely on deep learning
architectures.

The cornerstone architecture is the Variational Autoencoder
(Kingma & Welling, 2014) (VAE) which clearly demon-
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strates both high semantic quality as well as good perfor-
mance in terms of disentanglement. Until today, derivates of
VAEs (Higgins et al., 2017; Kim & Mnih, 2018a; Chen et al.,
2018; Kumar et al., 2017; Klindt et al., 2021) excel over
other architectures in terms of disentanglement metrics. The
extent of the VAE’s success even prompted recent deeper
analyses of its inner workings (Rolinek et al., 2019; Burgess
et al., 2018; Chen et al., 2018; Mathieu et al., 2018).

If we treat the overloaded term disentanglement to the high-
est of its aspirations, as the ability to recover the true gen-
erating factors of data, fundamental problems arise. As
explained by Locatello et al. (2019), already the concept
of generative factors is compromised from a statistical per-
spective: two (or in fact infinitely many) sets of generative
factors can generate statistically indistinguishable datasets.
Yet, the scores on the disentanglement benchmarks are high
and continue to rise. This apparent contradiction stems from
biases present in used datasets, metrics, and architectures.
It was concluded in Locatello et al. (2020) that

[...] future work on disentanglement learning
should be explicit about the role of inductive bi-
ases and (implicit) supervision [...].

which did not happen for the majority of existing unsu-
pervised approaches. We close this gap for VAE-based
architectures on the two most common datasets, namely
dSprites (Matthey et al., 2017) and Shapes3d (Burgess &
Kim, 2018).

The main hypothesis of this work is that all unsupervised,
VAE-based disentanglement architectures are successful be-
cause they exploit the same structural bias in the data. The
ground truth generating factors are well aligned with the
nonlinear principal components that VAEs strive for. This
bias can be reduced by introducing a small change of the lo-
cal correlation structure of the input data, which, however,
perfectly preserves the set of generative factors. We eval-
uate a set of approaches on slightly modified versions of the
two leading datasets in which each image undergoes a mod-
ification inducing little variance. We report drastic drops of
disentanglement performance on the altered datasets.

On a technical level, we build on the findings by Rolinek
et al. (2019) who argued that VAEs recover the nonlinear
principal components of the data. In other words, they re-
cover a set of scalars that embody the sources of variance
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through a nonlinear mapping, similarly to PCA in the linear
setting. We extend their argument by an additional finding
that further strengthens this connection. The small modifica-
tions of the datasets we propose aim to change the leading
principal components by adding modest variance to a set of
alternative candidates. The “to-be” leading principal compo-
nents are specific to each dataset, but they are automatically
determined in a consistent fashion.

2. Related work

The related work can be categorized into three research ques-
tions: i) defining disentanglement and metrics capturing the
quality of latent representations; ii) architecture develop-
ment for unsupervised learning of disentangled representa-
tions; and iii) understanding the inner workings of existing
architectures, as for example of 3-VAEs. This paper is built
upon results from all three lines of work.

Defining disentanglement. Defining the term disentan-
gled representation is an open question (Higgins et al.,
2018). The presence of learned representations in machine
learning downstream tasks, such as object recognition, nat-
ural language processing, and others, created the need to
“disentangle the factors of variation” (Bengio et al., 2013)
early on. This vague interpretation of disentanglement is
inspired by the existence of a low-dimensional manifold that
captures the variance of higher dimensional data. As such,
finding a factorized, statistically independent representation
became a core ingredient of disentangled representation
learning and dates back to classical ICA models (Comon,
1994; Bell & Sejnowski, 1995).

For some tasks, the desired feature of a disentangled rep-
resentation is that it is semantically meaningful. Promi-
nent examples can be found in computer vision (Shu et al.,
2017; Liao et al., 2020) and in research addressing the inter-
pretability of machine learning models (Adel et al., 2018;
Kim, 2019).

Based on group theory and symmetry transformations, Hig-
gins et al. (2018) provides the “first principled definition
of a disentangled representation”. Closely related to this
concept is also the field of causality in machine learn-
ing (Scholkopf, 2019; Suter et al., 2019), more specifically
the search for causal generative models (Besserve et al.,
2018; 2020). In terms of implementable metrics, a vari-
ety of quantities have been introduced, such as the 5-VAE
score (Higgins et al., 2017), SAP score (Kumar et al., 2017),
DCI scores (Eastwood & Williams, 2018) and the Mutual
Information Gap (MIG, Chen et al. (2018)).

Architecture development. The leading architectures
for disentangled representation learning are based on
VAEs (Kingma & Welling, 2014). Despite originally de-
veloped as a generative modeling architecture, its variants

have proven to excel at representation learning tasks. In
particular, the 5-VAE performs remarkably well. It exposes
the trade-off between reconstruction and regularization via
an additional hyperparameter. Other architectures have been
proposed that additionally encourage statistical indepen-
dence in the latent space, e.g. FactorVAE (Kim & Mnih,
2018b) and 5-TC-VAE (Chen et al., 2018). The DIP-VAE
(Kumar et al., 2017) suggests using moment-matching to
close the distribution gap introduced in the original VAE
paper. Using data with auxiliary labels, e.g. time indices
of time series data, for which the conditional prior latent
distribution is factorized, allowed Khemakhem et al. (2020)
to circumvent the unidentifiability of previous models. Sim-
ilarly, Klindt et al. (2021) used a sparse temporal prior to
develop an identifiable model that also performs well on
natural data. In this work, we also compare to representa-
tions learned by Permutation Contrastive Learning (PCL)
(Hyvarinen & Morioka, 2017). This non-variational method
conducts nonlinear ICA also assuming temporal dependen-
cies between the sources of variance. The PCL objective
is based on logistic regression. Another approach utilizes
weak supervision on GANSs to achieve disentangled repre-
sentations in their underlying latent space (Shu et al., 2019).

Understanding inner workings. With the rising success
and development of VAE based architectures, the question of
understanding their inner working principles became dom-
inant in the community. One line of work tries to answer
the question why these models disentangle at all (Burgess
et al., 2018). Another closely related line of work showed
the tight connection between the vanilla (5-)VAE objective
and (probabilistic) PCA (Tipping & Bishop, 1999) (Rolinek
et al., 2019; Lucas et al., 2019). The role of the regular-
ization in 8-VAEs was explicitly investigated in (Kumar &
Poole, 2020). Building on these findings, novel approaches
for model selection were proposed (Duan et al., 2020), em-
phasizing the value of thoroughly understanding these meth-
ods. On a less technical side, Locatello et al. (2019) con-
ducted a broad set of experiments, questioning the relevance
of the specific model architecture compared to the choice
of hyperparameters and the variance over restarts. They
also formalized the necessity of inductive biases as a strict
requirement for unsupervised learning of disentangled rep-
resentations. Our experiments are built on their codebase.

3. Background
3.1. Quantifying Disentanglement

Among the different viewpoints on disentanglement, we
follow the recent literature and focus on the connection
between the discovered data representation and a set of
generative factors.

Multiple metrics have been proposed to quantify this con-
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nection. Most of them are based on the understanding that,
ideally, each generative factor is encoded in precisely one
latent variable. This was captured concisely by Chen et al.
(2018), who proposed the Mutual Information Gap (MIG) —
the mean difference (over the N,, generative factors) of the
two highest mutual information between a latent coordinate
and the single generating factor, normalized by its entropy.
For the entropy H (w;) of a generating factor and the mutual
information I(w;; ;) between a generating factor and a
latent coordinate, the MIG is defined as

N,
1 <& 1
e 2y (e 0~ 520 )
(1

where k' = argmax,, I (w;, zx). More details about MIG,
its implementation, and an extension to discrete variables
can be found in (Chen et al., 2018; Rolinek et al., 2019).
Multiple other metrics were proposed such as SAP score
(Kumar et al., 2017), FactorVAE score (Kim & Mnih, 2018a)
and DCI score (Eastwood & Williams, 2018) (see the sup-
plementary material of Klindt et al. (2021) for extensive
descriptions).

3.2. Variational Autoencoders and the Mystery of a
Specific Alignment

Variational autoencoders hide many intricacies and attempt-
ing to compress their exposition would not do them jus-
tice. For this reason, we limit ourselves to what is crucial
for understanding this work: the objective function. For a
well-presented description of VAEs, we refer the reader to
(Doersch, 2016).

As is common in generative models, VAEs aim to maximize
the log-likelihood objective

N
> togp (x). @)

in which {x(W}N = X is a dataset consisting of N i.i.d.
samples x(9) of a multivariate random variable X that fol-
lows the true data distribution. The quantity p(x(*)) cap-
tures the probability density of generating the training data
point x(¥) under the current parameters of the model. This
objective is, however, intractable in its general form. For
this reason, Kingma & Welling (2014) follow the standard
technique of variational inference and introduce a tractable
Evidence Lower Bound (ELBO):

E ) logp (x| 2) + Dy (a(z [ x) | p(2)).
3)

Here, z are the latent variables used to generate samples
from X via a parameterized stochastic decoder p(x(*) | z).

The fundamental question of “How do these objectives pro-
mote disentanglement?” was first asked by Burgess et al.
(2018). This is indeed far from obvious; in disentanglement
the aim is to encode a fixed generative factor in precisely one
latent variable. From a geometric viewpoint, this requires
the latent representation to be axis-aligned (one axis corre-
sponding to one generative factor). This question becomes
yet more intriguing after noticing (and formally proving)
that both objective functions (2) and (3) are invariant un-
der rotations for rotationally symmetric latent space priors,
as the ubiquitous p(z) = N(0,1) (Burgess et al., 2018;
Rolinek et al., 2019). In other words, any rotation of a
fixed latent representation results in the same value of the
objective function and yet 3-VAEs consistently produce rep-
resentations that are axis-aligned and in effect are isolating
the generative factor into individual latent variables.

3.3. Resolution via Nonlinear Connections to PCA

A mechanistic answer to the question raised in the previous
subsection was given by Rolinek et al. (2019). The formal
argument showed that under specific conditions which are
typical for 3-VAEs (called polarized regime), the datapoint-
wise linearization of the model performs PCA in the sense
of aligning the “sources of variance” with the local axes.
The resulting alignment often coincides with finding the
components of the datasets ground truth generating fac-
tors. Fig. 1 illustrates the difference between local and
global PCA. Note that the principal directions of a non-
degenerate uniform distribution are the Cartesian axes. PCA
as a linear transformation is aligning the embedding fol-
lowing the overall (global) variance. Nonlinear VAEs are
aligning the latent space according to the local structure (the
local principal components of the almost uniform clusters).
This behavior stems from the convenient but uninformed
choice of a diagonal posterior, which breaks the symmetry
of (2) and (3). This connection with PCA was also reported
by Stuehmer et al. (2020), alternatively formalized by Lucas
et al. (2019) and converted into performance improvements
in an unsupervised setting by Duan et al. (2020). Strictly
speaking, the formal statements of Rolinek et al. (2019) are
limited and only claim that 3-VAEs strive for local orthog-
onality which, in the linear case, is a strong similarity to
PCA.

4. Methods

We first tighten the connection between VAEs and PCA,
secondly introduce the general data generation scheme of
commonly used disentanglement datasets, and lastly turn
this understanding into an experimental setup that allows
for empirical confirmation that the success of VAE based
architectures mostly relies on the local structure of the data.
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Figure 1: Distribution of latent encodings for an input distributed as depicted in the middle (data dimensionality equals latent
dimensionality). The linear VAE’s encoding matches the PCA encoding remarkably well (right); both focus on aligning
with axes based on the global variance. The nonlinear VAE (left) is, however, more sensitive to local variance. It picks up on
the natural axis alignment of the microscopic structure. The insets show the enlarged area and PCA performed only on the
local subset of the point cloud. Our argument in this work is that misaligning the microscopic structure with respect to the
ground truth generating factors leads to decreased convenient bias in the data.

4.1. Theoretical Support of the Connection to PCA

The argument established by Rolinek et al. (2019) is techni-
cally incomplete to justify the equivalence of linear VAEs
and PCA. Strictly speaking, the core message of that work is
that VAE decoders tend to be locally orthogonal. The actual
alignment of the latent space is insufficiently described by
that finding. However, Lucas et al. (2019) argue for the sim-
ilarity of linear VAEs to probabilistic PCA. We now show
a more technical connection between classical PCA and
linear VAEs which allows for easier understanding of the
consequent subsections. We try to stay close to the language
of Rolinek et al. (2019) and partially reuse their arguments.

The canonical implementation of the 5-VAE uses a normal
posterior with diagonal covariance matrix and a rotationally
symmetric p(z) = N(0, 1) latent prior. This, together with
a Gaussian decoder model, turns the ELBO (3) into the
tractable loss function

£ =, (£ +pe)) )

. N
‘Crec = HDQCQ(EDCS@(XU))) — X(Z)

1 02 2 N2
£KL:§Z(M( )j + ol )j — log(o )j)—l)
J

for an encoder Enc,, parameterized by ¢, a decoder Decy
parameterized by 6, and z() = Enc,,(x) = p® (x(?)) +
e®, e ~ N(0,6*(x™)). Since z(*) is unbiased
around p(? (x()), we find that

Lree = Ei (Lhcx?) + LM D)) (8)

L3227 (x) = | Decy (Ene, (x7) — Deco (u?)|
2
Lk .

rec

(x) =||Deco () — x¥

We hereby assume linear models p(® = Mpx®,
Decy(z") = Mpz?) and denote the SVD decomposition
of Mpas Mp =UXV .
We can now state a constraint optimization problem of a
simplified VAE objective as
2
min E, <HUZVT5(’) ) ©6)
5,0,V

st. E; (ﬁ(;i@) = CaKL- (7

where only the stochastic part of the reconstruction loss
is minimized and c~kr1, is a constant. The term Lkp,
is the KL loss in the polarized regime, where a'(i)2 <
- log(a(i)Z) (element-wise):

Lax =Y (1]~ log(@])) . )

J

The *decoder matrix’ of the classical PCA contains the eigen-
vectors of the covariance matrix C'. By SVD decomposing
the zero-mean data matrix X = Ux Y x V; , we find

C=X"X=VxX%Vy. 9)

For encoding data with PCA, the eigenvectors of Vx are typ-
ically sorted according to their eigenvalue by a permutation
matrix P, which leads to the PCA decoder as

Mpca = Vy S5 P. (10)

To tighten the connection between VAEs and PCA, we com-
pare Mp = USV T to Mpoa = Vi X% P.

Theorem 1 (Linear VAEs perform PCA) In a setting
that precisely isolates the freedom in choosing U, ¥, and
V', and under mild non-degeneracy assumptions (full de-
scription is available in the supplementary material), the
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Figure 2: Illustrations for linear and nonlinear embeddings. From left to right: (i) a 3 dimensional point cloud and the
corresponding two-dimensional PCA manifold (blue surface) with the canonical principal components (red/blue curves),
(ii) a nonlinear two-dimensional manifold with a latent traversal, (iii) a locally perturbed two-dimensional manifold with its
principal components which are rotated with respect to (ii), (iv) the goal of our modifications is to move each datapoint

closer to this entangled manifold.

following holds: For any X € R™*™, the solution to (6, 7)

2
), (an

V* is a signed permutation matrix,

U*=Vy.

S*, U*,V* — argminFE, (HUEVTEW
SUV

satisfies (in a “PCA-like” way)

It was known for long that linear autoencoders, trained
on L? reconstruction loss, span the same space as PCA
(Bourlard & Kamp, 1988; Baldi & Hornik, 1989). The addi-
tional similarity that VAEs produce orthogonal mappings,
like PCA, was presented by (Rolinek et al., 2019). With
the final connection presented here, even the alignment of
the embedding is shown to be identical. For the sake of
brevity, the proofs of the statements can be found in the
supplementary material.

Although this does not directly translate to a universal state-
ment about the linearization of a nonlinear model, it pro-
vides an intuition for that case as well. An important obser-
vation is that the alignment of the latent space is mostly
driven by the distribution of the latent noise. When gen-
eralizing this statement to the linearization of a nonlinear
decoder, the effect of the noise stays local. As a conse-
quence, local changes of the data distribution can potentially
lead to a disruptive change in the latent alignments, with-
out inducing large global variance. This idea is depicted in
Fig. 2.

4.2. Linear vs. Nonlinear Embeddings

One less obvious observation is that the “isolation” of dif-
ferent sources of variance relies on the non-linearity of
the decoder. The region in which the linearization of the
decoder around a fixed p(¥)(x(?)) is a reasonable approxi-

mation suggests a certain radius of the relevant local struc-
ture. Since in many datasets the local principal components
are well aligned with the intuitively chosen generating fac-
tors, 3-VAEs recover sound global principal components. If,
however, the local structure obeys a different “natural” align-
ment, the VAE could prefer it, and in return not disentangle
the ground truth generating factors.

4.3. The Generative Process

The standard datasets for evaluating disentanglement all
have an explicit generation procedure. Each data point
x(?) € X is an outcome of a generative process g applied
to input w(?) € M. Imagine that g is a function rendering
a simple scene from its specification w containing as its
coordinates the background color, foreground color, object
shape, object size, etc. By design, the individual genera-
tive factors are statistically independent in V. All in all,
the dataset X = (X(l),X(Q), ... ,x(”)) is constructed with
x() = g(w(?), where g is a mapping from the generative
factors to the corresponding data points.

In this paper, we design a modification g of the generative
procedure g that changes the local structure of the dataset
X, whilst barely distorts each individual data point. In
particular, for each x e x , we have under some distance
measure d(-, -), that

d(x",g(w)) <e. (12)

How to design g such that despite an e-small modification,
VAE-based architectures will create an entangled represen-
tation? Following the intuition from Sec. 3.3, Fig. 1 and
Fig. 2, we misalign the local variance with respect to the
generating factors in order to promote an alternative (en-
tangled) latent embedding. This is precisely the step from
(iii) to (iv) in Fig. 2.

To avoid hand-crafting this process, we can exploit the fol-
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Figure 3: A schematic visualization of the image generation process. Starting from ground truth generating factors w, two
(B-VAE encoder-decoder pairs are initialized such that one (top) produces entangled and the other (bottom) disentangled
representations. Another decoder-like network m is trained to produce additive manipulations to the original images x. The
encoders are frozen and fed with the original images. The set of ground truth generating factors w stays untouched by the

modification.

lowing observation. VAE-based architectures suffer from
large performance variance over e.g. different random ini-
tializations. This hints at an existing ambiguity: two or
more candidates for the latent coordinate system are com-
peting minima of the optimization problem. Some of these
solutions perform well, others are “bad” in terms of dis-
entanglement — they correspond to (ii) and (iii) in Fig. 2
respectively. Below, we elaborate on how to foster the en-
tangling and diminish the disentangling solutions.

Our modifications are not an implementation of (Locatello
et al., 2019, Theorem 1). We do not modify the set of gen-
erative factors, but slightly alter the generating process
to target a specific subtlety in the inner working of VAEs.

Given any dataset, our modification process has three steps:

(i) Find the most disentangled and the most entangled
latent space alignment that a 5-VAE produces over
multiple restarts.

(i1) Optimize a generator that manipulates images to foster
and diminish their suitability for the entangled and
disentangled model respectively.

(iii) Apply the manipulation to the whole dataset and com-
pare the performance of models trained on the original
and the modified dataset.

4.4. Choice of Fostered Latent Coordinate System

Over multiple restarts of 5-VAE, we pick the model with
the lowest MIG score. This gives us an entangled alignment
that is expressible by the architecture. Although any choice
of metric is valid for this model selection (e.g. UDR (Duan
et al., 2020)), we chose MIG for the sake of simplicity. The
latent variables of each of the models capture the nonlinear
principal components of the data. Similarly to PCA, we can
order them according to the variance they induce. The order

is inversely reflected by the magnitude of the latent noise
(

values. We find the j’th principal components s ji) as
sgi) (x(i)) = enc (x(i)) k() (13)

L) — 2

arg min <0'l > (14)
1g{kO® kM kG-D}
This procedure of sorting the most important latent coordi-
nates is consistent with (Higgins et al., 2017) and (Rolinek
et al.,, 2019). The analogy to PCA is that the mapping
51 (x(9) gives the j’th coordinate of x(*) in the new (non-
linear) coordinate system.

4.5. Dataset Manipulations

We will now describe the modification procedure assuming
the data points are r X r images. The manipulated data-point

@ is of the form x' ¥ = x®) 4 em (w(i)) where the map-
ping m: R — R" x R is constrained by ||m(w(®)||o, < 1

X/
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for every w(?). Then inequality (12) is naturally satisfied
for the maximum norm.

The abstract idea of how to achieve a change of the latent
embedding coordinate systems can be visualized using the
intuition following from Eq. (14). We can think of two
VAE latent spaces where one is considered disentangled
{2, o(D}) and the other is entangled ({2} }), as
two sets of nonlinear principal directions, and the variance
each of the dimensions capture is reflected in the magnitude
of 0. We are aiming to alter the dataset such that its
entangled representation is superior over the disentangled
representation, in the sense of being cheaper to decode
with respect to the reconstruction loss. In other words,
projecting the dataset to the manifold supported by zgj}t

should result in a lower loss in Eq. (5) than projecting it to

the manifold supported by zéll A naive way of doing so is

by moving each image closer to its projections on the first
principal components of the entangled representation and
further away from those of the disentangled representation.
Instead of hand-crafting this operation, we can optimize for
it directly.

This idea can be turned into an end-to-end trainable archi-
tecture as depicted in Fig. 3. We want to change the dataset
such that it is more convenient to encode it in an entangled
way. Starting with two pretrained models, we fix their en-
coders and keep feeding them the original images. This
ensures that the latent encoding stays unchanged, as we
want to compare their suitability for reconstruction. The
decoders are trained to minimize the reconstruction loss
given the entangled representation:

0%, = argmin L (x’(i), z()) |

Oent

0% = argmin [dis ( (i), z(i)) .

rec
Oais

We initialize this network with the parameters of the disen-
tangled model 04;5, @qis and the entangled model Ogpt, Pent
respectively. We introduce a network to learn the additive
manipulation, m.,, with parameters 1. The parameters are
trained to minimize the reconstruction loss of the entangled
VAE and to increase the loss of the disentangled VAE via
its effect on the dataset:

P = argdljnin (Ef;‘(f ( 1) @) ) £dis (x/(i), z(i)>) .

It is worth noting that both latent spaces were suitable for
reconstructing the images of the original dataset. The major
play that the network m,, has, is to utilize the different
ways the noise was distributed across the latent space.

5. Experiments

To experimentally validate the soundness of the manipula-
tions, we need to demonstrate the following:

1. Effectiveness of manipulations. Disentanglement
metrics should drop on the altered datasets across VAE-
based architectures. We do not expect to see changes
on non variational methods.

2. Comparison to a trivial modification. Instead of the
proposed method, we modify with uniform noise of
the same magnitude. The disentanglement scores for
the algorithms on the resulting datasets should not
drop significantly, as this change does not alleviate the
existing bias.

3. Robustness. The new datasets should be hard to dis-
entangle even after retuning hyperparameters of the

original architectures.
n : H : n

k:h‘h-

e

R -

Figure 4: From left to right: Original images, additive ma-
nipulations and the altered images. Top row shows an ex-
ample of dSprites, the bottom for Shapes3D.

5.1. Effectiveness of Manipulations

We deploy the suggested training for the manipulations on
two datasets: Shapes3D and dSprites, leading to manipula-
tions as depicted in Fig. 4. In terms of models, we trained
four VAE-based architectures (Higgins et al., 2017; Kim
& Mnih, 2018a; Chen et al., 2018; Klindt et al., 2021), a
regular autoencoder (Hinton & Salakhutdinov, 2006), and
(as non-variational methods) PCL (Hyvarinen & Morioka,
2017) as well as the weakly supervised GAN from (Shu
et al., 2019) in the full sharing setting. We evaluate on
both the original and manipulated datasets. Regularization
strengths are used as reported in the literature (or better
tuned values), and other hyperparameters are taken from
the disentanglement library (Locatello et al., 2019). For the
sake of simplicity and clarity, we restricted the latent space
dimension to be equal to the number of ground truth genera-
tive factors. Most of the architectures have been shown to be
capable of pruning the latent space as a consequence of their
intrinsic regularization (Stuehmer et al., 2020). While being
a perk in real world application scenarios, this behaviour
can lead to over- or under-pruning and thereby cloak the
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Table 1: MIG scores for unmodified, modified, and noisy datasets. We report the mean and standard deviation over 10
distinct random seeds for each setting. The regular autoencoder serves as a baseline (random alignment). PCL and the
weakly supervised GAN from (Shu et al., 2019) are the only disentangling non-variational model. The modification leads to

a significant drop in all variational methods.

dSprites Shapes3d

orig. mod. noise \ orig. mod. noise
AE 0.09+0.06 0.05+0.02 0.06+0.03 | 0.064+0.03 0.05+0.03 0.07=+0.03
B-VAE 0.234+0.08 0.07+0.09 0.14+0.07 | 0.60+0.31 0.094+0.14 0.66 +0.05
Fac. VAE 0.27+£0.11 0.204+0.12 0.16+0.08 | 0.27+0.18 0.07£0.05 0.33+0.20
TC-8-VAE 0.25+0.08 0.144+0.10 0.20+0.04 | 0.58+0.20 0.24+0.16 0.60+0.11
Slow-VAE 0.394+0.08 0.27+0.08 0.37+0.09 | 0.53+£0.19 0.134+0.08 0.60 £0.10
PCL 0.21£0.03 0.244+0.07 0.24+0.07 | 0.44+0.06 0.47+0.08 0.40+0.07
Weak sup. GAN  0.45+0.05 0.36+0.02 0.36+0.01 | 0.69+£0.12 0.66+0.12 0.77+0.13

actual difference in the alignment of the latent space. The
resulting MIG scores are listed in Tab. 1, other metrics
are listed in the supplementary materials. Over all varia-
tional models, the disentanglement quality is significantly
reduced. Interestingly, even for SlowVAE, an architecture
that supposedly circumvents the non-identifiability problem
by deploying a sparse temporal prior, the disentanglement
reduces. This indicates that the architecture still builds upon
the local data structure more than on the weak supervision
induced by the temporal sparsity. PCL and the weakly
supervised GAN, as non-variational methods, perform
similarly well on the original and the modified architec-
ture, which is a strong indicator that due to the constraint
(12), the main sources of global variance remain unaltered.
The modifications indeed only attack the subtle bias VAEs
exploit.

5.2. Noisy Datasets

We replace our modification by contaminating each image
with uniform pixel-wise noise [—¢, €]. The value of ¢ is fixed
to the level of the presented manipulations (0.1 for dSprites
and 0.175 for Shapes3D). The results are also listed in Tab.
1. The lack of structure in the contamination does not affect
the performance in a guided way and leads to very little
effect on Shapes3D. The impact on dSprites is, however,
noticeable. Due to the comparatively small variance among
dSprites images, the noise conceals the variance from the
less important generating factors (such as e.g. orientation).

5.3. Robustness over Hyperparameters

We run a line search over the primary hyperparameter for
each architecture. The results are illustrated in Fig. 5. Over-
all our modifications seem mostly robust for adjusted hy-
perparameters. Significant increase in the regularization
strength allowed for some recovery. More thorough analysis
revealed that this effect starts only once the models reach
a level of over-pruning, which is a behavior well known to

practitioners. We discard the runs that over pruned the la-
tent space (number of active coordinates, i.c. E (6) < 0.8,
sinks below the dimensionality of the ground truth generat-
ing factors). This effect goes along with decreased recon-
struction quality and intrinsically prevents the models from
recovering all true generating factors and as such renders
these cases uninteresting.
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0.4 0.44
0.2 02

-0.2 024
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0.25 Factor-VAE 0.5 Slow-VAE
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Figure 5: MIG scores for scaled literature hyperparameters
over 10 restarts for Shapes3D. Overpruning runs with fewer
active units than generating factors were discarded

6. Conclusion

We have shown that the success of 5-VAE based architec-
tures is mostly based on the structured nature of the datasets
they are being evaluated on. Small perturbations of the
dataset can alleviate this structure and decrease the bias that
such architectures exploit. Interestingly, even architectures
that are proven to be identifiable, like the Slow-VAE, still
owe their success to the same bias. PCL and the weakly su-
pervised GAN, however, as non-variational methods, were
unaffected by the small perturbation.

It remains an open question whether the same local structure
can reliably be found in real world data on which such archi-
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tectures could be deployed. If so, fostering the sensitivity
of future architectures towards the natural alignment of data
could result in a transparent advance of unsupervised rep-
resentation learning. It would be interesting to investigate
and compare the different nonlinear embeddings VAE based
architectures find. There are hints of clearly distinct local
minima of the optimization problem; their suitability for
downstream applications remains unexplored.
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