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A. Appendix
A.1. Extended Theory for Hyperspheres

A.1.1. ASSUMPTIONS

Generative Process Let the generator g : Z → X be
an injective function between the two spaces Z = SN−1
and X ⊆ RK with K ≥ N . We assume that the marginal
distribution p(z) over latent variables z ∈ Z is uniform:

p(z) =
1

|Z| . (8)

Further, we assume that the conditional distribution over
positive pairs p(z̃|z) is a von Mises-Fisher (vMF) distribu-
tion

p(z̃|z) = C−1p eκz
>z̃ (9)

with Cp : =

∫
eκη

>z̃ dz̃, (10)

where κ is a parameter controlling the width of the distri-
bution and η is any vector on the hypersphere. Finally, we
assume that during training one has access to observations
x, which are samples from these distributions transformed
by the generator function g.

Model Let f : X → SN−1r , where SN−1r denotes a hy-
persphere with radius r. The parameters of this model
are optimized using contrastive learning. We associate a
conditional distribution qh(z̃|z) with our model f through
h = f ◦ g and

qh(z̃|z) = C−1q (z)eh(z̃)
>h(z)/τ

with Cq(z) : =

∫
eh(z̃)

> h(z)/τ dz̃,
(11)

where Cq(z) is the partition function and τ > 0 is a scale
parameter.

A.1.2. PROOFS FOR SEC. 3

We begin by recalling a result of Wang & Isola (2020),
where the authors show an asymptotic relation between the
contrastive loss Lcontr and two loss functions, the alignment
loss Lalign and the uniformity loss Luni:

Proposition A (Asymptotics ofLcontr, Wang & Isola, 2020).
For fixed τ > 0, as the number of negative samplesM →∞,
the (normalized) contrastive loss converges to

lim
M→∞

Lcontr(f ; τ,M)− logM

= Lalign(f ; τ) + Luni(f ; τ),
(12)

where

Lalign(f ; τ) := −1

τ
E

(z̃,z)∼p(z̃,z)

[
(f ◦ g)(z)T(f ◦ g)(z)

]
Luni(f ; τ) := E

z∼p(z)

[
log E

z̃∼p(z̃)

[
e(f◦g)(z̃)

T(f◦g)(z)/τ
]]
.

(13)

Proof. See Theorem 1 of Wang & Isola (2020). Note that
they originally formulated the losses in terms of observa-
tions x and not in terms of the latent variables z. How-
ever, this modified version simplifies notation in the follow-
ing.

Based on this result, we show that the contrastive loss Lcontr

asymptotically converges to the cross-entropy between the
ground-truth conditional p and our assumed model condi-
tional distribution qh, up to a constant. This is notable,
because given the correct model specification for qh, it is
well-known that the cross-entropy is minimized iff qh = p,
i.e., the ground-truth conditional distribution and the model
distribution will match.

Theorem 1 (Lcontr converges to the cross-entropy between
latent distributions). If the ground-truth marginal distribu-
tion p is uniform, then for fixed τ > 0, as the number of
negative samples M → ∞, the (normalized) contrastive
loss converges to

lim
M→∞

Lcontr(f ; τ,M)− logM + log |Z| =

E
z∼p(z)

[H(p(·|z), qh(·|z))]
(14)

where H is the cross-entropy between the ground-truth
conditional distribution p over positive pairs and a con-
ditional distribution qh parameterized by the model f ,
and Ch(z) ∈ R+ is the partition function of qh (see Ap-
pendix A.1.1):

qh(z̃|z) = Ch(z)−1eh(z̃)
Th(z)/τ

with Ch(z) : =

∫
eh(z̃)

Th(z)/τ dz̃.
(15)

Proof. The cross-entropy between the conditional distribu-
tions p and qh is given by

E
z∼p(z)

[H(p(·|z), qh(·|z))] (16)

= E
z∼p(z)

[
E

z̃∼p(z̃|z)
[− log qh(z̃|z)]

]
(17)

= E
z̃,z∼p(z̃,z)

[
−1

τ
h(z̃)>h(z) + logCh(z)

]
(18)

=− 1

τ
E

z̃,z∼p(z̃,z)

[
h(z̃)>h(z)

]
+ E

z∼p(z)
[logCh(z)] . (19)
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Using the definition of Ch in Eq. (15) we obtain

=− 1

τ
E

z̃,z∼p(z̃,z)

[
h(z̃)>h(z)

]
(20)

+ E
z∼p(z)

[
log

∫
Z
eh(z̃)

>h(z)/τ dz̃

]
. (21)

By assumption the marginal distribution is uniform, i.e.,
p(z) = |Z|−1. We expand by |Z||Z|−1 and estimate the
integral by sampling from p(z) = |Z|−1, yielding

=− 1

τ
E

z̃,z∼p(z̃,z)

[
h(z̃)>h(z)

]
(22)

+ E
z∼p(z)

[
log |Z| E

z̃∼p(z̃)

[
eh(z̃)

>h(z)/τ
]]

(23)

=− 1

τ
E

z̃,z∼p(z̃,z)

[
h(z̃)>h(z)

]
(24)

+ E
z∼p(z)

[
log E

z̃∼p(z̃)

[
eh(z̃)

>h(z)/τ
]]

+ log |Z|.
(25)

By inserting the definition h = f ◦ g,

=− 1

τ
E

z̃,z∼p(z̃,z)

[
(f ◦ g)(z̃)>(f ◦ g)(z)

]
(26)

+ E
z∼p(z)

[
log E

z̃∼p(z̃)

[
e(f◦g)(z̃)

>(f◦g)(z)/τ
]]

(27)

+ log |Z|, (28)

we can identify the losses introduced in Proposition A,

=Lalign(f ; τ) + Luni(f ; τ) + log |Z|, (29)

which recovers the original alignment term and the unifor-
mity term for maximimizing entropy by means of a von
Mises-Fisher KDE up to the constant log |Z|. According to
Proposition A this equals

= lim
M→∞

Lcontr(f ; τ,M)− logM + log |Z|, (30)

which concludes the proof.

Proposition 1 (Minimizers of the cross-entropy maintain
the dot product). Let Z = SN−1, τ > 0 and con-
sider the ground-truth conditional distribution of the form
p(z̃|z) = C−1p exp(κz̃>z). Let h map onto a hypersphere
with radius

√
τκ.4 Consider the conditional distribution qh

parameterized by the model, as defined above in Theorem 1,
where the hypothesis class for h is assumed to be sufficiently
flexible such that p(z̃|z) and qh(z̃|z) can match. If h is a
minimizer of the cross-entropy Ep(z̃|z)[− log qh(z̃|z)], then
p(z̃|z) = qh(z̃|z) and ∀z, z̃ : κz>z̃ = h(z)>h(z̃).

4Note that in practice this can be implemented as a learnable
rescaling operation of the network f .

Proof. By assumption, qh(z̃|z) is powerful enough to match
p(z̃|z) for the correct choice of h—in particular, for h(z) =√
τκz. The global minimum of the cross-entropy between

two distributions is reached if they match by value and have
the same support. Thus, this means

p(z̃|z) = qh(z̃|z). (31)

This expression also holds true for z̃ = z; additionally using
that hmaps from a unit hypersphere to one with radius

√
τκ

yields

p(z|z) = qh(z|z) (32)

⇔ C−1p eκz
>z = Ch(z)−1eh(z)

>h(z)/τ (33)

⇔ C−1p eκ = Ch(z)−1eκ (34)

⇔ Cp = Ch. (35)

As the normalization constants are identical we get for all
z, z̃ ∈ Z

eκz
>z̃ = eh(z)

>h(z̃) ⇔ κz>z̃ = h(z)>h(z̃). (36)

Proposition 2 (Extension of the Mazur-Ulam theorem to
hyperspheres and the dot product). Let Z = SN−1. If
h : Z → Z maintains the dot product up to a constant
factor, i.e., ∀z, z̃ ∈ Z : κz>z̃ = h(z)>h(z̃), then h is an
orthogonal linear transformation.
Proof. As h maintains the dot product up to a factor, this
also holds true if one rotates the coordinate system by an
arbitrary rotation matrix R ∈ SO(N). Thus, we get

∀R ∈ SO(N),∀z, z̃ ∈ Z : (37)

κz>R>Rz̃ = h(Rz)>h(Rz̃). (38)

We consider the partial derivatives w.r.t. z and obtain:

∀R ∈ SO(N) ∀z, z̃ ∈ Z : (39)

κz̃ = RJ>h (Rz)h(Rz̃). (40)

We can recover the initial dot product by multiplying both
sides of the equation with z> to obtain

∀R ∈ SO(N) ∀z, z̃ ∈ Z : (41)

κz>z̃ = z>RJ>h (Rz)h(Rz̃) (42)

= h(Rz̃)>Jh(Rz)R>z. (43)

From here, we take the partial derivative on both sides, this
time w.r.t. z̃, yielding

∀R ∈ SO(N) ∀z, z̃ ∈ Z : (44)

κz = [RJh(Rz̃)J>h (Rz)R>]z. (45)
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Multiplying with R> from the left and defining z′ := R>z
gives

∀R ∈ SO(N) ∀z, z̃ ∈ Z : (46)

κz′ = [Jh(Rz̃)J>h (R2z′)]z′. (47)

We define a transform from (R, z, z̃) to (a,b, z′): First, we
select R and z s.t. z′ = RT z and b = Rz = R2z′. Then,
we select z̃ s.t. a = Rz̃. With this transform, we rewrite the
aforementioned equation and obtain:

∀a,b, z′ ∈ Z : κz′ = [Jh(a)Jh(b)>]z′, (48)

which can only be satisfied iff

∀a,b ∈ Z : Jh(a)Jh(b)> = κI. (49)

By evaluating this expression for a = b we get

∀b ∈ Z : Jh(b)> = κJ−1h (b). (50)

Inserting this property again in the previous expression
yields

∀a,b ∈ Z : Jh(a)κJh(b)−1 = κI, (51)

and finally:

∀a,b ∈ Z : Jh(a) = Jh(b) (52)

∀a ∈ Z : κJh(a)−1 = J>h (a). (53)

Taking all of this together, we can now prove Theorem 2:

Theorem 2. Let Z = SN−1, the ground-truth marginal be
uniform, and the conditional a vMF distribution (cf. Eq. 2).
Let the mixing function g be differentiable and injective.
If the assumed form of qh, as defined above, matches that
of p, and if f is differentiable and minimizes the CL loss
as defined in Eq. (1), then for fixed τ > 0 and M → ∞,
h = f ◦ g is linear, i.e., f recovers the latent sources up to
orthogonal linear transformations.

Proof. As f minimzes the contrastive loss Lcontr we can
apply Theorem 1 to see that f also minimizes the cross-
entropy between p(z̃|z) and qh(z̃|z) for any point z on Z .
This means, we can apply Proposition 1 to show that the
concatenation h = f ◦ g is an isometry with respect to the
dot product. Finally, according to Proposition 2, hmust then
be an orthogonal linear transformation on the hypersphere.
Thus, f recovers the latent sources up to orthogonal linear
transformations, concluding the proof.

A.2. Extension of theory to subspaces of RN

Here, we show how one can generalize the theory above
from Z = SN−1 to Z ⊆ RN . Under mild assumptions
regarding the ground-truth conditional distribution p and the
model distribution qh, we prove that all minimizers of the
cross-entropy between p and qh are linear functions, if Z is
a convex body. Note that the hyperrectangle [a1, b1]× . . .×
[aN , bN ] is an example of such a convex body.

A.2.1. ASSUMPTIONS

First, we restate the core assumptions for this proof. The
main difference to the assumptions for the hyperspherical
case above is that we assume different conditional distri-
butions: instead of rotation-invariant von Mises-Fisher dis-
tributions, we use translation-invariant distributions (up to
restrictions determined by the finite size of the space) of the
exponential family.

Generative process Let g : Z → X be an injective func-
tion between the two spaces Z ⊆ RN and X ⊆ RK with
K ≥ N and where Z is a convex body (e.g., a hyperrectan-
gle). Further, let the marginal distribution be uniform, i.e.,
p(z) = |Z|−1. We assume that the conditional distribution
over positive pairs p(z̃|z) is an exponential distribution

p(z̃|z) = C−1p (z)e−λδ(z̃,z)

with Cp(z) : =

∫
e−λδ(z,z̃) dz̃,

(54)

where λ > 0 a parameter controlling the width of the distri-
bution and δ is a (semi-)metric. If δ is a semi-metric, i.e.,
it does not fulfill the triangle inequality, there must exist a
metric δ′ such that δ can be written as the composition of a
continuously invertible map j : R≥0 → R≥0 with j(0) = 0
and the metric, i.e., δ = j ◦ δ′. Finally, we assume that
during training one has access to samples from both of these
distributions.

Model Let Z ′ be a subset of RN that is a convex body
and let f : X → Z ′ be the model whose parameters are
optimized. We associate a conditional distribution qh(z̃|z)
with our model f through

qh(z̃|z) = C−1q (z)e−δ(h(z̃),h(z))/τ

with Cq(z) : =

∫
e−δ(h(z̃),h(z))/τ dz̃,

(55)

where Cq(z) is the partition function and δ is defined above.

A.2.2. MINIMIZING THE CROSS-ENTROPY

In a first step, we show the analogue of Proposition A for Z
being a convex body:
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Proposition 3. For fixed τ > 0, as the number of negative
samples M →∞, the Lδ-contr loss converges to

lim
M→∞

Lδ-contr(f ; τ,M)− logM =

Lδ-align(f ; τ) + Lδ-uni(f ; τ),
(56)

where

Lδ-align(f ; τ) :=
1

τ
E

z∼p(z)
z̃∼p(z̃|z)

[δ(h(z̃), h(z)))]

Lδ-uni(f ; τ) := E
z∼p(z)

[
log

(
E

z̃∼p(z̃)

[
e−δ(h(z̃),h(z))/τ

])]
,

(57)

and Lδ-contr(f ; τ,M) is as defined in Eq. (6).

Proof. This proof is adapted from Wang & Isola (2020).
By the Continuous Mapping Theorem and the law of large
numbers, for any x, x̃ and {x−i }Mi=1 it follows almost surely

lim
M→∞

log

(
1

M
e−δ(f(x),f(x̃))/τ)+

1

M

M∑
i=1

e−δ(f(x),f(x
−
i ))/τ

)
= log

(
E

x−∼pdata

[
e−δ(f(x),f(x

−))/τ
])

= log

(
E

z̃∼p(z̃)

[
e−δ(h(z),h(z̃))/τ

])
,

(58)

where in the last step we expressed the sample x and nega-
tive examples x− in terms of their latent factors.

We can now express the limit of the entire loss function as

lim
M→∞

Lδ-contr(f ; τ,M)− logM

=
1

τ
E

(x,x̃)∼ppos
[δ(f(x), f(x̃))]

+ lim
M→∞

E
(x,x̃)∼ppos

{x−i }
M
i=1

i.i.d.∼ pdata

[
log

(
1

M
e−δ(f(x),f(x̃))/τ

+
1

M

M∑
i=1

e−δ(f(x),f(x
−))/τ

)]

=
1

τ
E

(x,x̃)∼ppos
[δ(f(x), f(x̃))]

+ E
(x,x̃)∼ppos

{x−i }
M
i=1

i.i.d.∼ pdata

[
lim
M→∞

log

(
1

M
e−δ(f(x),f(x̃))/τ

+
1

M

M∑
i=1

e−δ(f(x),f(x
−
i ))/τ

)]
.

(59)

Note that as δ is a (semi-)metric, the expression
e−δ(f(x),f(x̃)) is upper-bounded by 1. Hence, according
to the Dominated Convergence Theorem one can switch the
limit with the expectation value in the second step. Inserting
the previous results yields

=
1

τ
E

(x,x̃)∼ppos
[δ(f(x), f(x̃))]

+ E
x∼pdata

[
log

(
E

x−∼pdata

[
e−δ(f(x),f(x

−))/τ
])]

=
1

τ
E

z∼p(z)
z̃∼p(z̃|z)

[δ(h(z), h(z̃))]

+ E
z∼p(z)

[
log

(
E

z̃∼p(z̃)

[
e−δ(h(z),h(z̃))/τ

])]
= Lδ-align(f ; τ) + Lδ-uni(f ; τ).

(60)

Next, we derive a property similar to Theorem 1, which
suggests a practical method to find minimizers of the cross-
entropy between the ground-truth p and model conditional
qh. This property is based on our previously introduced
objective function in Eq. (6), which is a modified version of
the InfoNCE objective in Eq. (1).

Theorem 3. Let δ be a semi-metric and τ, λ > 0 and
let the ground-truth marginal distribution p be uniform.
Consider a ground-truth conditional distribution p(z̃|z) =
C−1p (z) exp(−λδ(z̃, z)) and the model conditional distri-
bution

qh(z̃|z) = C−1h (z)e−δ(h(z̃),h(z))/τ

with Ch(z) : =

∫
Z
e−δ(h(z̃),h(z))/τdz̃.

(61)

Then the cross-entropy between p and qh is given by

lim
M→∞

Lδ-contr(f ; τ,M)− logM + log |Z| =

E
z∼p(z)

[H(p(·|z), qh(·|z)] ,
(62)

which can be implemented by sampling data from the acces-
sible distributions.

Proof. We use the definition of the cross-entropy to write

E
z∼p(z)

[H(p(·|z), qh(·|z)] (63)

= − E
z∼p(z)

[
E

z̃∼p(z̃|z)
[log(qh(z̃|z))]

]
. (64)



Contrastive Learning Inverts the Data Generating Process

We insert the definition of qh and get

= − E
z∼p(z)

[
E

z̃∼p(z̃|z)

[
log(C−1h (z))− 1

τ
δ(h(z̃), h(z)))

]]
(65)

= E
z∼p(z)

[
E

z̃∼p(z̃|z)

[
log(Ch(z)) +

1

τ
δ(h(z̃), h(z)))

]]
.

(66)

As Ch(z) does not depend on z̃ it can be moved out of the
inner expectation value, yielding

= E
z∼p(z)

[
1

τ
E

z̃∼p(z̃|z)
[δ(h(z̃), h(z)))] + log(Ch(z))

]
,

(67)

which can be written as

=
1

τ
E

z∼p(z)
z̃∼p(z̃|z)

[δ(h(z̃), h(z)))] + E
z∼p(z)

[log(Ch(z))] .

(68)

Inserting the definition of Ch gives

=
1

τ
E

z∼p(z)
z̃∼p(z̃|z)

[δ(h(z̃), h(z)))] (69)

+ E
z∼p(z)

[
log

(∫
e−δ(h(z̃),h(z))/τdz̃

)]
. (70)

Next, the second term can be expanded by 1 = |Z||Z|−1,
yielding

=
1

τ
E

z∼p(z)
z̃∼p(z̃|z)

[δ(h(z̃), h(z)))] (71)

+ E
z∼p(z)

[
log

(∫ |Z|
|Z|e

−δ(h(z̃),h(z))/τdz̃

)]
. (72)

Finally, by using that the marginal is uniform, i.e., p(z) =
|Z|−1, this can be simplified as

=
1

τ
E

z∼p(z)
z̃∼p(z̃|z)

[δ(h(z̃), h(z)))] (73)

+ E
z∼p(z)

[
log

(
E

z̃∼p(z̃)

[
e−δ(h(z̃),h(z))/τ

])]
(74)

+ log |Z| (75)
= lim
M→∞

Lδ-contr(f ; τ,M)− logM + log p|Z|. (76)

A.2.3. CROSS-ENTROPY MINIMIZERS ARE ISOMETRIES

Now we show a version of Proposition 1, that is generalized
from hyperspherical spaces to (subsets of) RN .

Proposition 4 (Minimizers of the cross-entropy are isome-
tries). Let δ be a semi-metric. Consider the conditional dis-
tributions of the form p(z̃|z) = C−1p (z) exp(−δ(z̃, z)/λ)
and

qh(z̃|z) = C−1h (z)e−δ(h(z̃),h(z))/τ

with Ch(z) : =

∫
Z
e−δ(h(z̃),h(z))/τdz̃,

(77)

where the hypothesis class for h is assumed to be sufficiently
flexible such that p(z̃|z) and qh(z̃|z) can match for any
point z. If h is a minimizer of the cross-entropy LCE =
Ep(z̃|z)[− log qh(z̃|z)], then h is an isometry, i.e., ∀z, z̃ ∈
Z : λτδ(z, z̃) = δ(h(z), h(z̃)).
Proof. Note that qh(z̃|z) is powerful enough to match
p(z̃|z) for the correct choice of h, e.g. the identity. The
global minimum of cross-entropy between two distributions
is reached if they match by value and have the same support.
Hence, if p is a regular density, qh will be a regular density,
i.e., qh is continuous and has only finite values 0 ≤ qh <∞.
As the two distributions match, this means

p(z̃|z) = qh(z̃|z). (78)

This expression also holds true for z̃ = z; additionally using
the property δ(z, z) = 0 yields

p(z|z) = qh(z|z) (79)

⇔ C−1p (z)e−δ(z,z)/λ = C−1h (z)e−δ(h(z),h(z))/τ (80)

⇔ Cp(z) = Ch(z). (81)

As the normalization constants are identical, we obtain for
all z, z̃ ∈ Z

e−δ(z̃,z)/λ = e−δ(h
∗(z̃),h∗(z))/τ (82)

⇔ δ(z̃, z) =
λ

τ
δ(h∗(z̃), h∗(z)). (83)

By introducing a new semi-metric δ′ := λτ−1δ, we can
write this as δ(z̃, z) = δ′(h(z̃), h(z)), which shows that h
is an isometry. If there is no model mismatch, i.e., λ = τ ,
this means δ(z, z̃) = δ(h(z), h(z̃)).

Note, that this result does not depend on the choice of Z but
just on the class of conditional distributions allowed.

A.2.4. CROSS-ENTROPY MINIMIZATION IDENTIFIES THE
GROUND-TRUTH FACTORS

Before we continue, let us recall a Theorem by Mankiewicz
(1972):

Theorem C (Mankiewicz, 1972). Let X and Y be normed
linear spaces and let V be a convex body in X and W a
convex body in Y . Then every surjective isometry between
V and W can be uniquely extended to an affine isometry
between X and Y .
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Proof. See Mankiewicz (1972).

In addition, it is known that isometries on closed spaces are
bijective:

Lemma A. Assume h is an isometry of the closed space Z
into itself, i.e., ∀z, z̃ : δ(z, z̃) = δ(h(z), h(z̃)). Then h is
bijective.

Proof. See Lemma (2.6) in Całka (1982) for surjectiv-
ity. We show the injectivity by contradiction. Assume
h is not injective. Then we can find a point z̃ 6= z
where h(z) = h(z̃). But then δ(z, z̃) > δ(z, z) and
δ(h(z), h(z̃)) = δ(h(z), h(z)) = 0 by the properties of
δ. Hence, h is injective.

Before continuing, we need to generalize the class of func-
tions we consider as distance measures:

Lemma 1. Let δ′ be a the composition of a continuously
invertible function j : R≥0 → R≥0 with j(0) = 0 and a
metric δ, i.e., δ′ := j ◦ δ. Then, (i) δ′ is a semi-metric and
(ii) if a function h : Rn → Rn is an isometry of a space
with the semi-metric δ′, it is also an isometry of the space
with the metric δ.

Proof. (i) Let z, z̃ ∈ Z . Per assumption j must be strictly
monotonically increasing on R≥0. Since δ is a metric it
follows δ(z, z̃) ≥ 0 ⇒ δ′(z, z̃) = j(δ(z, z̃)) ≥ 0, with
equality iff z = z̃. Furthermore, since δ is a metric it is
symmetric in its arguments and, hence, δ′ is symmetric in
its arguments. Thus, δ′ is a semi-metric.

(ii) h is an isometry of a space with the semi-metric δ′,
allowing to derive that for all z, z̃ ∈ Z ,

δ′(h(z), h(z̃)) = δ′(z, z̃) (84)
j(δ(h(z), h(z̃))) = j(δ(z, z̃)) (85)

and, applying the inverse j−1 which exists by assumption,
yields

δ(h(z), h(z̃)) = δ(z, z̃), (86)

concluding the proof.

By combining the properties derived before we can show
that h is an affine function:

Theorem 4. Let Z = Z ′ be a convex body in RN . Let the
mixing function g be differentiable and invertible. If the
assumed form of qh as defined in Eq. (55) matches that of
p, and if f is differentiable and minimizes the cross-entropy
between p and qh, then we find that h = f ◦ g is affine, i.e.,
we recover the latent sources up to affine transformations.

Proof. According to Proposition 4 h is an isometry and qh is
a regular probability density function. If the distance δ used
in the conditional distributions p and qh is a semi-metric
as in Lemma 1, it follows that h is also an isometry for a
proper metric. This also means that h is bijective according
to Lemma A. Finally, Theorem C says that h is an affine
transformation.

We use the assumption that the marginal p(z) is uniform, to
show

Theorem 5. Let Z be a convex body in RN , h = f ◦ g :
Z → Z , and δ be a metric or a semi-metric as defined in
Lemma 1. Further, let the ground-truth marginal distribu-
tion be uniform and the conditional distribution be as (5).
Let the mixing function g be differentiable and injective. If
the assumed form of qh matches that of p, i.e.,

qh(z̃|z) = C−1q (z)e−δ(h(z̃),h(z))/τ

with Cq(z) : =

∫
e−δ(h(z̃),h(z))/τ dz̃,

(87)

and if f is differentiable and minimizes the Lδ-contr objective
in (6) for M → ∞, we find that h = f ◦ g is invertible
and affine, i.e., we recover the latent sources up to affine
transformations.

Proof. According to Theorem 3 h minimizes the cross-
entropy between p and qh as defined in Eq. (4). Then ac-
cording to Theorem 4, h is an affine transformation.

This result can be seen as a generalized version of Theo-
rem 2, as it is valid for any convex body Z ⊆ RN and
allows a larger variety of conditional distributions. A miss-
ing step is to extend this theory beyond uniform marginal
distributions. This will be addressed in future work.

Under some assumptions we can further narrow down pos-
sible forms of h, thus, showing that h in fact solves the
nonlinear ICA problem only up to permutations and elemen-
twise transformations.

For this, let us first repeat a result from Li & So (1994), that
shows an important property of isometric matrices:

Theorem D. Suppose 1 ≤ α ≤ ∞ and α 6= 2. An n × n
matrix A is an isometry of Lα-norm if and only if A is a
generalized permutation matrix, i.e., ∀z : (Az)i = αizσ(i),
with αi = ±2 and σ being a permutation.

Proof. See Li & So (1994). Note that this can also be
concluded from the Banach-Lamperti Theorem (Lamperti
et al., 1958).

Leveraging this insight, we can finally show:
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Theorem 6. Let Z be a convex body in RN , h : Z → Z ,
and δ be an Lα metric for α ≥ 1, α 6= 2 or the α-th power
of such an Lα metric. Further, let the ground-truth marginal
distribution be uniform and the conditional distribution be
as in Eq. (5), and let the mixing function g be differentiable
and invertible. If the assumed form of qh(·|z) matches that
of p(·|z), i.e., both use the same metric δ up to a constant
scaling factor, and if f is differentiable and minimizes the
Lδ-contr objective in Eq. (6) for M → ∞ we find that h =
f ◦ g is a composition of input independent permutations,
sign flips and rescalings.
Proof. First, we prove the case where both conditional dis-
tributions use exactly the same metric. By Theorem 5 h is an
affine transformation. Moreover, according to Proposition 4
is an isometry. Thus, by Theorem D, h is a generalized
permutation matrix, i.e., a composition of permutations and
sign flips.

Finally, for the case that δ matches the similarity measure in
the ground-truth conditional distribution defined in Eq. (5)
(denoted as δ∗) only up to a constant rescaling factor r, we
know

∀z, z̃ : δ∗(z, z̃) = δ(h(z), h(z̃))

⇔ δ∗(z, z̃) = δ∗
(

1

r
h(z),

1

r
h(z̃)

)
.

(88)

Thus, 1
rh is a δ∗ isometry and the same argument as above

holds, concluding the proof.

A.3. Experimental details

For the experiments presented in Sec. 4.1 we train our fea-
ture encoder for 300 000 iterations with a batch size of 6144
utilizing Adam (Kingma & Ba, 2015) with a learning rate
of 10−4. Like Hyvärinen & Morioka (2016; 2017), for the
mixing network, we i) use 0.2 for the angle of the negative
slope5, ii) use L2 normalized weight matrices with min-
imum condition number of 25 000 uniformly distributed
samples. For the encoder, we i) use the default (0.01) nega-
tive slope ii) use 6 hidden layers with dimensionality [N ·10,
N ·50,N ·50,N ·50,N ·50,N ·10] and iii) initialize the nor-
malization magnitude as 1. We sample 4096 latents from the
marginal for evaluation. For MCC (Hyvärinen & Morioka,
2016; 2017) we use the Pearson correlation coefficient6; we
found there to be no difference with Spearman7.

For the experiments presented in Sec. 4.2.1, we use the
same architecture as the encoder in (Klindt et al., 2021). As

5See e.g. https://pytorch.org/docs/stable/
generated/torch.nn.LeakyReLU.html

6See e.g. https://numpy.org/doc/stable/
reference/generated/numpy.corrcoef.html

7See e.g. https://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.spearmanr.
html

in (Klindt et al., 2021), we train for 300 000 iterations with a
batch size of 64 utilizing Adam (Kingma & Ba, 2015) with
a learning rate of 10−4. For evaluation, as in (Klindt et al.,
2021), we use 10 000 samples and the Spearman correlation
coefficient.

For the experiments presented in Sec. 4.2.2, we train the
feature encoder for 200 000 iterations using Adam with a
learning rate of 10−4. For the encoder we use a ResNet18
(He et al., 2016) architecture followed by a single hidden
layer with dimensionality N · 10 and LeakyReLU activa-
tion function using the default (0.01) negative slope. The
scores on the training set are evaluated on 10% of the whole
training set, 25 000 random samples. The test set consists
of 25 000 samples not included in the training set. For the
last row of Tab. 4 and Tab. 5 we used the best-working
combination of image augmentations found by Chen et al.
(2020a) to sample positive pairs. To be precise, we used a
random crop and resize operation followed by a color dis-
tortion augmentation. The random crops had a uniformly
distributed size (between 8% and 100% of the original im-
age area) and a random aspect ration (between 3/4 and 4/3);
subsequently, they were resized to the original image di-
mension (224× 224) again. The color distortion operation
itself combined color jittering (i.e., random changes of the
brightness, contrast, saturation and hue) with color dropping
(i.e., random grayscale conversations). We used the same
parameters for these augmentations as recommended by
Chen et al. (2020a).

The experiments in Sec. 4.1 took on the order of 5-10 hours
on a GeForce RTX 2080 Ti GPU, the experiments on KITTI
Masks took 1.5 hours on a GeForce RTX 2080 Ti GPU and
those on 3DIdent took 28 hours on four GeForce RTX 2080
Ti GPUs. The creation of the 3DIdent dataset additionally
required approximately 150 hours of compute time on a
GeForce RTX 2080 Ti.

A.4. Details on 3DIdent

We build on the rendering pipeline of Johnson et al. (2017b)
and use the Blender engine (Blender Online Community,
2021), as of version 2.91.0, for image rendering. The scenes
depicted in the dataset show a rotated and translated object
onto which a spotlight is directed. The spotlight is located
on a half-circle above the scene and shines down. The
scenes can be described by 10 parameters: the position of
the object along the X-, Y- and Z-axis, the rotation of the
object described by Euler angles (3), the position of the
spotlight described by a polar angle, and the hue of the
object, the ground and the spotlight. The value range is
[−3, 3] for all position parameters, and is [−π/2, π/2] for
the remaining parameters. The parameters are sampled from
a 10-dimensional unit hyperrectangle, then rescaled to their
corresponding value range. This ensures that the variance

https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
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Table 5. Identifiability up to affine transformations on the training set of 3DIdent. Mean ± standard deviation over 3 random seeds. As
earlier, only the first row corresponds to a setting that matches the theoretical assumptions for linear identifiability; the others show distinct
violations. Supervised training with unbounded space achieves scores of R2 = (99.98± 0.01)% and MCC = (99.99± 0.01)%. The
last row refers to using the SimCLR (Chen et al., 2020a) augmentations to generate positive pairs. The last row refers to using the image
augmentations suggested by Chen et al. (2020a) to generate positive image pairs; for details see Sec. A.3. In contrast to Table 4, the scores
here are reported on the same data the models were trained on.

Dataset Model f Identity [%] Unsupervised [%]
p(·|·) Space qh(·|·) M. R2 R2 MCC

Normal Box Normal 3 5.35± 0.72 97.83± 0.13 98.85± 0.07
Normal Unbounded Normal 7 97.72± 0.02 55.90± 2.22
Laplace Box Normal 7 97.95± 0.05 98.94± 0.03
Normal Sphere vMF 7 66.73± 0.03 42.72± 3.20
Augm. Sphere vMF 7 45.94± 1.80 47.6± 1.45

of the latent factors is the same for all latent dimensions.

To ensure that the generative process is injective, we take
two measures: First, we use a non-rotationally symmetric
object (Utah tea pot, Newell, 1975), thus the rotation infor-
mation is unambiguous. Second, we use different levels of
color saturation for the object, the spotlight and the ground
(1.0, 0.8 and 0.6, respectively), thus the object is always
distinguishable from the ground.

A.4.1. COMPARISON TO EXISTING DATASETS

The proposed dataset contains high-resolution renderings of
an object in a 3D scene. It features some aspects of natural
scenes, e.g. complex 3D objects, different lighting condi-
tions and continuous variables. Existing benchmarks (Klindt
et al., 2021; Burgess & Kim, 2018; Gondal et al., 2019; Dit-
tadi et al., 2021) for disentanglement in 3D scenes differ in
important aspects to 3DIdent.

KITTI Masks (Klindt et al., 2021) only enables evaluating
identification of the two-dimensional position and scale of
the object instance. In addition, the observed segmenta-
tion masks are significantly lower resolution than examples
in our dataset. 3D Shapes (Burgess & Kim, 2018) and
MPI3D (Gondal et al., 2019) are rendered at the same res-
olution (64 × 64) as KITTI Masks. Whereas the dataset
contributed by (Dittadi et al., 2021) is rendered at 2× that
resolution (128× 128), our dataset is rendered at 3.5× that
resolution (224× 224), the resolution at which natural im-
age classification is typically evaluated (Deng et al., 2009).
With that being said, we do note that KITTI Masks is unique
in containing frames of natural video, and we thus consider
it complementary to 3DIdent.

Burgess & Kim (2018), Dittadi et al. (2021), and Gondal
et al. (2019) contribute datasets which contain variable ob-
ject rotations around one, one, and two rotation axes, re-
spectively, while 3DIdent contains variable object rotation
around all three rotation axes as well as variable lighting
conditions. Furthermore, each of these datasets were gen-

erated by sampling latent factors from an equidistant grid,
thus only covering a limited number values along each axis
of variation, effectively resulting in a highly coarse dis-
cretization of naturally continuous variables. As 3DIdent
instead samples the latent factors uniformly in the latent
space, this better reflects the continuous nature of the latent
dimensions.

A.5. Effects of the Uniformity Loss

In previous work, Wang & Isola (2020) showed that a part
of the contrastive (InfoNCE) loss — the uniformity loss —
effectively ensures that the encoded features are uniformly
distributed over a hypersphere. We now show that this part
is crucial to ensure that the mapping is bijective. More
precisely, we demonstrate that if the distribution of the en-
coded/reconstructed latents h(z) has the same support as the
distribution of z, and both distributions are regular, i.e., their
densities are non-zero and finite, then the transformation h
is bijective.

First, we focus on the more general case of a map between
manifolds:

Proposition 5. LetM,N be simply connected and oriented
C1 manifolds without boundaries and h : M → N be a
differentiable map. Further, let the random variable z ∈M
be distributed according to z ∼ p(z) for a regular density
function p, i.e., 0 < p <∞. If the pushforward p#h(z) of
p through h is also a regular density, i.e., 0 < p#h < ∞,
then h is a bijection.

Proof. We begin by showing by contradiction that the Jaco-
bian determinant of h does not vanish, i.e., |det Jh| > 0:

Suppose that the Jacobian determinant |det Jh| vanishes for
some z ∈M. Then the inverse of the Jacobian determinant
goes to infinity at this point and so does the density of h(z)
according to the well-known transformation of probability
densities. By assumption, both p and p#h must be regular
density functions and, thus, be finite. This contradicts the
initial assumption and so the Jacobian determinant |det Jh|
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cannot vanish.

Next, we show that the mapping h is proper. Note that a
map is called proper if pre-images of compact sets are com-
pact (Ruzhansky & Sugimoto, 2015). Firstly, a continuous
mapping betweenM and N is also closed, i.e., pre-images
of closed subsets are also closed (Lee, 2013). In addition,
it is well-known that continuous functions on compact sets
are bounded. Lastly, according to the Heine–Borel theo-
rem, compact subsets of RD are closed and bounded. Taken
together, this shows that h is proper.

Finally, according to Theorem 2.1 in (Ruzhansky & Sugi-
moto, 2015) a proper h with non-vanishing Jacobian deter-
minant is bijective, concluding the proof.

This theorem directly applies to the case of hyperspheres,
which are simply connected and oriented manifolds without
boundary. This yields:

Lemma 2. Let Z be a hypersphere and h : Z → Z be a
differentiable map. Further, let the marginal distribution
p(z) of the variable z ∈ Z be a regular density function, i.e.,
0 < p <∞. If the pushforward p#h of p through h is also
a regular density, i.e., 0 < p#h <∞, then h is a bijection.

Therefore, we can conclude that a loss term ensuring that
the encoded features are distributed according to a regular
density function, such as the uniformity term, makes the
map h bijective and prevents an information loss. Note
that this does not assume that the marginal distribution of
the ground-truth latents p(z) is uniform but only that it is
regular and non-vanishing.

Note that while the proposition shows that the uniformity
loss is sufficient to ensure bijectivity, we can construct coun-
terexamples if its assumptions (like differentiability) are
violated even in just a single point. For instance, the require-
ment of h being fully differentiable is most likely violated
in large unregularized neural networks with ReLU nonlin-
earities. Here, one might need the full contrastive loss to
ensure bijectivity of h.


