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Abstract
Hamiltonian Monte Carlo (HMC), built based on
the Hamilton’s equation, has been witnessed great
success in sampling from high-dimensional pos-
terior distributions. However, it also suffers from
computational inefficiency, especially for large
training datasets. One common idea to overcome
this computational bottleneck is using stochas-
tic gradients, which only queries a mini-batch of
training data in each iteration. However, unlike
the extensive studies on the convergence analy-
sis of HMC using full gradients, few works fo-
cus on establishing the convergence guarantees
of stochastic gradient HMC algorithms. In this
paper, we propose a general framework for prov-
ing the convergence rate of HMC with stochastic
gradient estimators, for sampling from strongly
log-concave and log-smooth target distributions.
We show that the convergence to the target distri-
bution in 2-Wasserstein distance can be guaran-
teed as long as the stochastic gradient estimator
is unbiased and its variance is upper bounded
along the algorithm trajectory. We further apply
the proposed framework to analyze the conver-
gence rates of HMC with four standard stochastic
gradient estimators: mini-batch stochastic gra-
dient (SG), stochastic variance reduced gradient
(SVRG), stochastic average gradient (SAGA), and
control variate gradient (CVG). Theoretical re-
sults explain the inefficiency of mini-batch SG,
and suggest that SVRG and SAGA perform bet-
ter in the tasks with high-precision requirements,
while CVG performs better for large dataset. Ex-
periment results verify our theoretical findings.

1. Introduction
Monte Carlo Markov Chain (MCMC) methods have been
witnessed great success in many machine learning applica-
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tions such as Bayesian inference, reinforcement learning,
and computer vision. In the past decades, many MCMC
algorithms, such as random walk Metropolis (Mengersen
et al., 1996), ball walk (Lovász & Simonovits, 1990), hit
and run (Smith, 1984), Langevin dynamics (LD) based al-
gorithms (Langevin, 1908; Parisi, 1981), and Hamiltonian
Monte Carlo (HMC) (Duane et al., 1987), have been in-
vented and studied. Among them HMC has been recognized
as the most effective MCMC algorithm due to its rapid mix-
ing rate and small discretization error. In practice, HMC has
been deployed as the default sampler in many open packages
such as Stan (Carpenter et al., 2017) and Tensorflow (Abadi
et al., 2016). In specific, HMC simulates the trajectory of a
particle in the Hamiltonian system, which is described by
the following Hamilton’s equation

dq(t)

dt
=
∂H(q(t),p(t))

∂p

dp(t)

dt
= −∂H(q(t),p(t))

∂q
,

(1.1)

where q and p are position and momentum variables, and
H(q,p) is the so-called Hamiltonian function, which is
typically defined as the sum of the potential energy f(q)
and the kinetic energy ‖p‖22/2. In each step, HMC solves
(1.1) using the sample generated in the last step as the ini-
tial position q(0) and an independently generated Gaussian
random vector as the initial momentum p(0), then outputs
the solution at a certain time τ , i.e., q(τ), as the next sam-
ple. It is well known that if the Hamilton’s equation can be
exactly solved and the potential energy function f(x) ad-
mits certain good properties, the sample sequence generated
by HMC asymptotically converges to the target distribu-
tion π ∝ exp(−f(x)) (Lee et al., 2018; Chen & Vempala,
2019). However, it is generally intractable to exactly solve
(1.1), and numerical integrators are needed to solve it ap-
proximately. One of the most popular HMC algorithms
adopts the leapfrog integrator for solving (1.1) following
by a Metropolis-Hasting (MH) correction step (Neal et al.,
2011). Aside from the algorithmic development, the con-
vergence rate of HMC has also been extensively studied in
recent literature (Bou-Rabee et al., 2018; Lee et al., 2018;
Mangoubi & Smith, 2017; Durmus et al., 2017; Mangoubi
& Vishnoi, 2018; Chen & Vempala, 2019; Chen et al., 2019),
which demonstrate its superior performance compared with
other MCMC methods.
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However, as the data size grows rapidly nowadays, the stan-
dard HMC algorithm suffers from huge computational cost.
For a Bayesian inference problem, the energy function f(x)
(a.k.a., negative log-posterior in Bayesian learning prob-
lem) is formulated as the sum of the negative log-likelihood
functions over all observations (i.e., f(x) =

∑n
i=1 fi(x)).

When the number of observations (i.e., n) becomes ex-
tremely large, the standard HMC algorithm may fail as
it requires to query the entire dataset to compute the full
gradient∇f(x). To overcome the computational burden, a
common idea is to leverage stochastic gradient in each up-
date, i.e., we only compute the gradient approximately using
a mini-batch of training data, which gives rise to stochas-
tic gradient HMC (SG-HMC) (Chen et al., 2014)1. This
idea has also triggered a bunch of work focusing on improv-
ing the scalability of other gradient-based MCMC methods
(Welling & Teh, 2011; Chen et al., 2015; Ma et al., 2015;
Baker et al., 2018). Despite the efficiency improvements
for large-scale Bayesian inference problems, SG-HMC has
many drawbacks. The variance of stochastic gradients may
lead to inaccurate solutions to the Hamilton’s equation (1.1).
Additionally, it is no longer tractable to perform MH correc-
tion step since (1) the proposal distribution of HMC does
not have an explicit formula and is not time-reversible, and
(2) one cannot exactly query the entire training dataset to
compute the MH acceptance probability. These two short-
comings prevent SG-HMC from achieving as accurate sam-
pling as the standard HMC (Betancourt, 2015; Bardenet
et al., 2017; Dang et al., 2019), and hurdle the application
of SG-HMC in many sampling tasks with a high-precision
requirement.

Despite the pros and cons of SG-HMC discussed in the
aforementioned works, most of them are empirical studies.
Unlike stochastic gradient Langevin dynamics (SGLD) and
stochastic gradient underdamped Langevin dynamics (SG-
ULD)2 that have been extensively studied in theory, little
work has been done to provide a theoretical understanding
of SG-HMC. It remains illusive whether SG-HMC can be
guaranteed to converge and how it performs in different
regimes. Moreover, there has also emerged many other
stochastic gradient estimators that exhibit smaller variance
than the standard mini-batch stochastic gradient estimator,
such as stochastic variance reduced gradient (SVRG) (John-
son & Zhang, 2013), stochastic averaged gradient (SAG)
(Defazio et al., 2014), and control variates gradient (CVG)
(Baker et al., 2018). These stochastic gradient estimators

1In fact, in addition to making use of stochastic gradients, Chen
et al. (2014) also introduces a friction term and an additional Brow-
nian term to mitigate the bias and variance brought by stochastic
gradients.

2In some existing works this algorithm is also referred to as
SGHMC (Zou et al., 2018a; Gao et al., 2018b;a). We highlight that
their SGHMC algorithm is different from the SG-HMC algorithm
studied in this paper, which we will clearly discuss in Section 2.

have been successfully incorporated into Langevin based
algorithms for faster sampling (Dubey et al., 2016; Chatterji
et al., 2018; Baker et al., 2018; Brosse et al., 2018; Zou
et al., 2018a; Li et al., 2018). It is unclear whether these es-
timators can be adapted in the HMC algorithm to overcome
the drawbacks of SG-HMC.

In this paper, we propose a general framework for prov-
ing the convergence rate of HMC with stochastic gradients
for sampling from strongly log-concave and log-smooth
distributions. At the core of our analysis is a sharp charac-
terization of the solution to the Hamilton’s equation (1.1)
obtained using stochastic gradients, which is in the order of
O(
√
η), where η is the step size of the numerical integrator.

Under the proposed proof framework, the convergence rate
of HMC with a variety of stochastic gradient estimators can
be derived. We summarize the main contributions of our
paper as follows:

• We develop a general framework for characterizing
the convergence rate of HMC algorithm when using
stochastic gradients. In particular, we prove that as
long as the stochastic gradient is unbiased, and its vari-
ance along the algorithm trajectory is upper bounded
(not require a uniform upper bound), the stochastic
gradient HMC algorithm provably converges to the
target distribution π ∝ exp(−f(x)) in 2-Wasserstein
distance with a sampling error up to O(

√
η).

• We apply four commonly used stochastic gradient es-
timators to the HMC algorithm for sampling from the
target distribution of form π ∝ exp(−

∑n
i=1 fi(x)),

which gives rise to four variants of stochastic gradient
HMC algorithms, including SG-HMC, SVRG-HCM,
SAGA-HMC, and CVG-HMC. We establish their con-
vergence guarantees under the proposed framework.
Our analysis suggests that in order to achieve ε/

√
n-

sampling error in 2-Wasserstein distance, the gradi-
ent complexity3 of SG-HMC, CVG-HMC, SVRG-
HMC and SAGA-HMC are Õ(n/ε2), Õ(1/ε2 + 1/ε),
Õ(n2/3/ε2/3 + 1/ε), and Õ(n2/3/ε2/3 + 1/ε) respec-
tively. This explains the inefficiency of SG-HMC ob-
served in prior work, and reveals the prospects of CVG-
HMC, SVRG-HMC and SAGA-HMC for large-scale
sampling problems.

• We carry out numerical experiments on both synthetic
and real-world dataset. The results show all stochastic
gradient HMC algorithms converge but SG-HMC has
a significantly larger bias compared with other algo-
rithms. Additionally, SVRG-HMC performs the best
when the sample size is small while CVG-HMC be-
comes more efficient and effective when the sample

3The gradient complexity is defined by the number of stochastic
gradient evaluations to achieve the target accuracy.
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size increases. This well corroborates our theoretical
findings.

Notation. Given two scalars a and b, we use a ∧ b to de-
note min{a, b} and use a ∨ b to denote max{a, b}. Given
a vector x ∈ Rd, we define by ‖x‖2 =

√
x2

1 + · · ·+ x2
d its

Euclidean norm. We use O(·) and Ω(·) notations to hide
constant factors and use Õ(·) to hide the poly-logarithmic
factors in O(·) notation. Given two sequences {xk} and
{yk}, we further define xk = Θ(yk) if xk = Ω(yk)
and xk = O(yk). We Given two distributions µ and
ν, the 2-Wasserstein distance is defined by W2

2 (µ, ν) =
infγ∈Γ(µ,ν)

∫
‖x− y‖22dγ(x,y).

2. Additional Related Work: Langevin
Dynamics Based Algorithms

2.1. Mathematical Description of Langevin Dynamics.

Aside from the HMC algorithm, another important fam-
ily of MCMC methods is built upon the Langevin dynam-
ics, including both overdamped Langevin dynamics (LD)
(Roberts & Tweedie, 1996) and underdamped Langevin
dynamics (ULD) (Chen et al., 2017). Formally, the over-
damped Langevin dynamics can be described by the follow-
ing stochastic differential equation (SDE):

dxt = −∇f(xt)dt+
√

2dBt, (2.1)

where Bt is the Brownian term. The underdamped Langevin
dynamics takes the form of the following SDE,

dvt = −γvtdt− u∇f(xt) +
√

2γudBt

dxt = vtdt,
(2.2)

where xt and vt are the position and velocity variables
at time t respectively, γ > 0 is the “friction” parameter,
and u > 0 is referred to the “inverse mass” parameter.
Notably, both overdamped and underdamped Langevin dy-
namics converges to the (marginal) stationary distribution
π ∝ e−f(x). The goal of Langevin dynamics based algo-
rithms is to approximately solve the SDEs in (2.1) and (2.2).
As a comparison, the focus of HMC based algorithms is to
solve the ODE (1.1), which could be done more accurately
or even exactly.

2.2. Existing Convergence Results of Langevin
Dynamics Based Algorithms

The convergence rate of Langevin dynamics based algo-
rithms have been widely studied for various machine learn-
ing problems such as sampling (Chen et al., 2015; Li et al.,
2016; Dubey et al., 2016; Chen et al., 2017; Dalalyan &
Karagulyan, 2019; Li et al., 2018; Cheng et al., 2018; Zou
et al., 2018b;a; Shen & Lee, 2019; Zou et al., 2019; Dalalyan

et al., 2020; Simsekli et al., 2020) and nonconvex optimiza-
tion (Raginsky et al., 2017; Zhang et al., 2017; Xu et al.,
2018; Ma et al., 2018; Gao et al., 2018a;b; Chau & Ra-
sonyi, 2019; Deng et al., 2020; Zou et al., 2020). Among
them, the most relevant works to this paper are focusing
on establishing the convergence rate of Langevin dynamics
based algorithm for sampling from strongly log-concave and
log-smooth distributions (Dalalyan & Karagulyan, 2019;
Dalalyan, 2017; Chen et al., 2017; Baker et al., 2018; Zou
et al., 2018a; Chatterji et al., 2018). In particular, based
on the overdamped Langevin dynamics, Dalalyan & Karag-
ulyan (2019); Dalalyan (2017) established the convergence
guarantee of Langevin Monte Carlo (LMC, Euler discretiza-
tion of (2.1) using full gradient) and stochastic gradient
Langevin dynamics (SGLD, Euler discretization of (2.1) us-
ing stochastic gradients). Zou et al. (2018b) further showed
that using SVRG or subsampled SVRG gradient estima-
tor can help improve the convergence rate for both LMC
and SGLD. Baker et al. (2018) proposed to use a control-
variate gradient estimator in SGLD and also demonstrated
its efficiency in terms of the sample size. Based on the un-
derdamped Langevin dynamics, Chen et al. (2015) showed
that using naive Euler discretization on (2.2) cannot give
faster convergence rate than LMC/SGLD and instead one
may need to use a high-order discretization mechanism.
However, Chen et al. (2017) showed that part of (2.2) can
be solved analytically and proposed an accurate first-order
discretization method for solving (2.2), which provably
achieves faster convergence rate than LMC. Following this
line of research, Zou et al. (2018a); Chatterji et al. (2018)
considered using the SVRG and CVG estimators in the al-
gorithm developed by Chen et al. (2017), which can also
help reduce the discretization error and thus lead to faster
convergence rates.

2.3. Comparison between Langevin Dynamics and
HMC based algorithms

We would like to highlight that these two types of algo-
rithms (especially ULD based algorithms vs. HMC based
algorithms) are different in terms of both algorithm designs
and their underlying SDE/ODE (see (1.1) and (2.2) for their
formulas). In particular, HMC-based algorithms focus on
solving the Hamilton’s equation (which is an ODE) in each
proposal while ULD based algorithms are derived from the
discretization of an SDE. From the algorithmic perspective,
HMC based algorithms have a double loop structure: the
inner loop solves the ODE and makes a proposal, the outer
loop updates the proposals until convergence. ULD-based
algorithms exhibit a single loop structure and are designed
as a discretization of the underlying SDE.

To better position our algorithms and results, we also sum-
marize the gradient complexities of the HMC based algo-
rithms and Langevin dynamics based algorithms in Table



On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients

Table 1. Comparison of different stochastic sampling algorithms,
where the target distribution is π ∝ e−

∑n
i=1 fi(x) and the target

sampling error is ε/
√
n in 2-Wasserstein distance. Besides, the

gradient complexities for SG-ULD, CV-ULD, SGLD, SVRG-LD,
and SAGA-LD are derived in Chatterji et al. (2018), the gradient
complexity of SVRG-ULD is derived in Zou et al. (2018a).

Algorithm Complexity Type

SGLD (Welling & Teh, 2011) Õ
(
n
ε2

)
LD

SVRG-LD (Dubey et al., 2016) Õ
(
n
ε

)
LD

SAGA-LD (Dubey et al., 2016) Õ
(
n
ε

)
LD

SG-ULD (Chen et al., 2017) Õ
(
n
ε2

)
ULD

SVRG-ULD (Zou et al., 2018a) Õ
(
n2/3

ε2/3
+ 1

ε

)
ULD

CV-ULD (Chatterji et al., 2018) Õ
(

1
ε3

)
ULD

SG-HMC Õ
(
n
ε2

)
HMC

SVRG-HMC Õ
(
n2/3

ε2/3
+ 1

ε

)
HMC

SAGA-HMC Õ
(
n2/3

ε2/3
+ 1

ε

)
HMC

CVG-HMC Õ
(

1
ε2

)
HMC

1, where SG-ULD, SVRG-ULD, CVG-ULD are referred to
as the algorithms that apply the discretization approach in
(Chen et al., 2017) on (2.2) using SG, SVRG, and CVG esti-
mators respectively; SAGA-LD and SVRG-LD are referred
to as the algorithms that apply Euler discretization on (2.2)
using SVRG and SAGA estimators respectively.

Here we calibrate the bounds proved in the original pa-
pers to fit into our setting (i.e., the target distribution is
π ∝ e−

∑n
i=1 fi(x) and the target sampling error is ε/

√
n)4.

First, when comparing between different HMC based al-
gorithms, it can be seen that SG-HMC has the worst de-
pendency on both dataset size n and accuracy parameter ε.
Moreover, if the dataset size satisfies n = Ω(ε−2), CVG-
HMC enjoys better gradient complexity than both SVRG-
HMC and SAGA-HMC, which suggests that CVG-HMC
performs better for very large datasets. On the other hand, if
ε = O(n−1/2), SVRG-HMC and SAGA-HMC will outper-
form CVG-HMC, implying that SAGA-HMC and SVRG-
HMC are better for sampling with high-precision require-
ments. Then we will compare the HMC based algorithms
with Langevin dynamics based algorithms. Clearly, it can
be seen that when using the same stochastic gradient esti-
mator, the complexity bound of SG-HMC is the same as
those of SG-ULD and SGLD, the complexity bounds of
SVRG-HMC and SAGA-HMC are the same as that of SVR-
ULD and better than those of SAGA-LD and SVRG-LD,
and the complexity bound of CVG-HMC is better than that
of CV-ULD.

4This is to make the Wasserstein metric invariant under differ-
ent scalings (Lee et al., 2018). Some of related work consider aver-
aged log-likelihood functions (i.e., π ∝ exp(−n−1 ∑n

i=1 fi(x)))
and set the target sampling error as ε.

3. HMC with Stochastic Gradients
LetH(q,p) = f(q)+‖p‖22/2 be the Hamiltonian function,
then the Hamilton’s equation (3.1) can be formulated as.

dq(t)

dt
= p(t),

dp(t)

dt
= −∇f(q(t)). (3.1)

Let {x(0),x(1), . . . ,x(t), . . . } be the sequence of generated
samples by HMC. Given x(t), an idealized HMC generates
the next sample x(t+1) by solving the differential equation
(3.1) at a certain time τ (i.e., q(τ)) with initial position
q(0) = x(t) and initial momentum p(0) ∼ N(0, I) being
independently drawn from the standard Gaussian distribu-
tion. In practice, one typically applies the leapfrog numer-
ical integrator to solve (3.1). In particular, the numerical
integrator first divides the time interval [0, τ ] into K sub-
intervals with length equaling to η = τ/K. Let p0 = p(0)
and q0 = q(0), the one-step second-order leapfrog update
for (qk,pk) is defined as follows

pk+1/2 = pk −
η

2
∇f(qk)

qk+1 = qk + ηpk+1/2

pk+1 = pk+1/2 −
η

2
∇f(qk+1).

(3.2)

Similarly, stochastic gradient HMC can be designed by
replacing the full gradient ∇f(qk) and ∇f(qk+1) with
stochastic gradient estimators. Let g(q, ξ) be an unbi-
ased stochastic gradient estimator of ∇f(q), where ξ repre-
sents randomness. Then reformulating (3.2) and replacing
∇f(qk) and ∇f(qk+1) with stochastic gradients yields

qk+1 = qk + ηpk −
η2

2
g(qk, ξk)

pk+1 = pk −
η

2
g(qk, ξk)− η

2
g(qk+1, ξk+1/2),

(3.3)

where η is the step size of leapfrog integrator and the ran-
domness ξk and ξk+1/2 are independent. Here we use
ξk+1/2 rather than ξk+1 to guarantee that the randomness
at two subsequent leapfrog updates are independent. We
summarize the entire algorithm in Algorithm 1. qK can
be seen as an approximate solution to (3.1), which will be
passed to the next proposal of HMC.

4. General Convergence Results for
Stochastic Gradient HMC Algorithms

In this section, we will present the general theoretical results
on the convergence rate of HMC with stochastic gradients.
Before presenting the main theory, we first make the follow-
ing assumptions on the potential energy function f(·) and
the stochastic gradient estimator g(·, ·).

Assumption 4.1 (Strongly Convex). There exists a positive
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Algorithm 1 Noisy Gradient Hamiltonian Monte Carlo
1: input: Step size η, number of leapfrog stepsK, number

of HMC proposals T , initial point x(0)

2: for t = 0, . . . , T do
3: Set q0 = x(t)

4: Sample p0 from N(0, I)
5: for k = 0, . . . ,K − 1 do
6: qk+1 = qk + ηpk − η2

2 g(qk, ξk)
7: pk+1 = pk − η

2 g(qk, ξk)− η
2 g(qk+1, ξk+1/2)

8: end for
9: Set x(t+1) = qK

10: end for
11: output: x(T )

constant µ such that for any x,y ∈ Rd,

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖22.

Assumption 4.2 (Smoothness). There exists a positive con-
stant L such that for any x,y ∈ Rd,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2.

The above two assumptions on the target distribution are
commonly made in the convergence analysis of sampling
algorithms (Chen et al., 2017; Erdogdu et al., 2018; Chen
et al., 2019; Dalalyan & Karagulyan, 2019).

Assumption 4.3 (Bounded Variance). For any qk in the
leapfrog update, the variance of the unbiased stochastic
gradient estimator g(qk, ξk) is upper bounded by

E
[
‖g(qk, ξk)−∇f(qk)‖22

]
≤ σ2,

where the expectation is taken over both qk and ξk.

We remark that while this assumption is made on the algo-
rithm path which we will verify it for several widely used
stochastic gradient estimators in Section 5. In other words,
this assumption is only needed for the general convergence
analysis. When specializing to a specific algorithm with
certain stochastic gradient estimator, it can be proved.

Now we are ready to present our main result, which char-
acterizes the convergence rate of Algorithm 1 for sampling
from strongly log-concave and log-smooth distribution π.

Theorem 4.4. Under Assumptions 4.1, 4.2, and 4.3, let
x∗ = arg minx f(x), D = ‖x(0) − x∗‖22, and µt be the
distribution of the iterate x(t), if the step size satisfies η =
O(L1/2σ−2κ−1 ∧ L−1/2) and K = 1/(4

√
Lη), the output

of Algorithm 1 satisfies

W2(µT , π) ≤
(
1− (128κ)−1

)T/2
(2D + 2d/µ)1/2

+ Γ1η
1/2 + Γ2η,

where κ = L/µ is the condition number of f(x) and the
constants Γ1 and Γ2 satisfy,

Γ2
1 = O

(
L−3/2σ2κ2

)
Γ2

2 = O
(
κ2
(
LD + κd+ L−1/2σ2η

))
.

Remark 4.5. Theorem 4.4 provides a general convergence
result for HMC with stochastic gradients. The first term
in the upper bound represents the mixing of HMC, the sec-
ond term represents the error brought by the variance of
stochastic gradients, and the last term is mainly from the
discretization error of the numerical integrator. Clearly,
stochastic gradient HMC provably converges with a sam-
pling error governed by the step size and the variance of
stochastic gradients along the Markov chain (in a rate of
O(ση1/2)). In order achieve the target sampling error
ε, one may have to choose a sufficiently small step size
η, and run T = O(log(1/ε)) HMC proposals for mix-
ing. Then the total number of iterations in Algorithm 1
is TK = Õ(L−1/2η−1).

Note that the sampling error proved in Theorem 4.4 depends
on the magnitude of the variance (Γ1 ∼

√
σ2), and different

stochastic gradient estimators may lead to different conver-
gence rates. Intuitively speaking, smaller variance leads to
smaller parameter Γ1, implying that we can use larger step
size to achieve the same accuracy. This in turn speeds up
the convergence of HMC since the iteration complexity is
proportion to η−1. In the next section, we will apply the
general convergence result in Theorem 4.4 to some specific
stochastic gradient estimators and establish the correspond-
ing convergence guarantees.

5. Application to Commonly Used Stochastic
Gradient Estimators

Note that given n observations, the target distribution can be
described as π ∝ exp(−f(x)) with f(x) =

∑n
i=1 fi(x),

where fi(·) corresponds to the i-th observation. In each
step, we will only query a subset of observations to esti-
mate the gradient and update the variables accordingly. In
this section, we will prove the convergence rates of HMC
with four commonly used stochastic gradient estimators, in-
cluding mini-batch stochastic gradient (SG), stochastic vari-
ance reduced gradient (SVRG) (Johnson & Zhang, 2013),
stochastic average gradient (SAGA) (Defazio et al., 2014),
and control variates gradient (CVG) (Baker et al., 2018). We
list these four stochastic gradient estimators in Algorithm 2.

5.1. Review of Stochastic Gradient Estimators

The mini-batch stochastic gradient samples a mini-batch
of training examples Ik of size |Ik| = B to compute the
stochastic gradient and is identical to that used in SGLD
(Welling & Teh, 2011). The SVRG and SAGA estimators
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follow from (Dubey et al., 2016). SVRG estimator adopts a
reference gradient∇f(q̃) associate with a reference point q̃,
both of which are updated in a low frequency (updated every
N leapfrog steps). In each update, we will sample a fresh
mini-batch of training examples and leverage∇f(q̃) and q̃
as control variate to help reduce the variance. SAGA estima-
tor maintains a table G that stores all stochastic gradients
{fi(x)}k=1,...,n. In each iteration, it queries a mini-batch of
training examples Ik and computes the stochastic gradient
by combining the mini-batch stochastic gradients on the
new examples and the most recent history gradients in the
table, including the stochastic gradients for new examples
{Gi}i∈Ik and the sum of all stochastic gradients in the ta-
ble (i.e., g̃k =

∑n
i=1 Gi). Afterward, the newly computed

mini-batch stochastic gradient will be used to update the
table. Similar to the SVRG estimator, CVG estimator also
maintains a reference point q̂, which is typically set to be an
approximate minimizer of the function f(x), and queries a
new mini-batch of training examples to compute the stochas-
tic gradient jointly. Different from the SVRG estimator that
slowly updates the reference point, the reference point q̂
adopted in CVG is fixed during the entire algorithm.

Algorithm 2 Stochastic Gradient Estimators
1: input: Current point qk, index of the HMC proposal t,

random sampled mini-batch Ik
Mini-batch Stochastic gradient

2: g(qk, ξk) = n
B

∑
i∈Ik ∇fi(qk)

Stochastic variance reduced gradient
3: if k +Kt mod N = 0 then
4: g(qk, ξk) = f(qk), q̃ = qk
5: else
6: g(qk, ξk) = n

B

∑
i∈Ik

[
∇fi(qk)−∇fi(q̃)

]
+ f(q̃)

7: end if
Stochastic averaged gradient

8: if k +Kt = 0 then
9: g(qk, ξk) = ∇f(qk), G = {∇fi(qk)}i=1,...,n

10: else
11: g̃k =

∑n
i=1 Gi, Gi ← ∇fi(qk) for all i ∈ Ik,

12: g(qk, ξk) = n
B

∑
i∈Ik

[
∇fi(qk)−Gi

]
+ g̃k,

13: end if
Control variate gradient

14: g(qk, ξk) = ∇f(q̂) + n
B

∑
i∈Ik [∇fi(qk)−∇fi(q̂)]

15: output: g(qk, ξk)

5.2. Convergence Results of Specific Stochastic
Gradient HMC Algorithms

Note that the convergence guarantee of stochastic gradient
HMC in Theorem 4.4 is established based on Assumption
4.3. Therefore, in order to prove the convergence rates for
HMC equipped with the aforementioned stochastic gradi-
ent estimators, it suffices the verify Assumption 4.3 and

characterize the magnitude of the variance parameter σ.
In the subsequent analysis, we will use a stronger version
of Assumption 4.2 by requiring all component functions
{fi(x)}ni=1 are L/n-smooth.

Assumption 5.1. For any x,y ∈ Rd and i ∈ [n], there
exists a positive constant L such that

‖∇fi(x)−∇fi(y)‖2 ≤
L

n
‖x− y‖2.

This Assumption has also been made in many prior works
(Baker et al., 2018; Chatterji et al., 2018; Brosse et al.,
2018) for studying the convergence of stochastic gradient
Langevin MCMC algorithms. Note that Assumption 5.1
immediately implies Assumption 4.2 and thus the result in
Theorem 4.4 applies. We would also like to point out that
we only need all component functions to be smooth but not
necessarily to be strongly convex. Additionally, we follow
the similar setting in Baker et al. (2018); Chatterji et al.
(2018) that assumes L/n and µ/n are in the constant order,
which implies that L, µ = O(n)

By combining Algorithm 1 and the corresponding stochastic
gradient estimator presented in Algorithm 2, we can obtain
four specific stochastic gradient HMC algorithms, namely
SG-HMC, SVRG-HMC, SAGA-HMC and CVG-HMC. We
assume that the initial point x(0) satisfies ‖x(0) − x∗‖22 ≤
d/µ. Note that this can be achieved by running SGD for
roughly O(n) steps (Baker et al., 2018; Brosse et al., 2017).
In the sequel, we will provide the convergence guarantees
for these four algorithms.

Mini-batch stochastic gradient HMC (SG-HMC). The
following theorem characterizes the convergence results of
SG-HMC in 2-Wasserstein distance.

Theorem 5.2. Under Assumptions 4.1 and 5.1, assume
‖x(0) − x∗‖22 ≤ d/µ and let µt be the distribution of x(t),
then if the step size satisfies η = O(L−1/2∧dµ−1Γ−1

1 ) and
set K = 1/(4

√
Lη), the output of SG-HMC satisfies

W2

(
µT , π

)
≤ 2

√
d

µ

(
1− (128κ)−1

)T/2
+ Γ1η

1/2 + Γ2η,

where the constants Γ1 and Γ2 satisfy,

Γ2
1 = O

(
L−1/2B−1κ3d+ L−3/2B−1κ2n2d

)
Γ2

2 = O
(
κ3d+ L−1/2B−1n2κ2dη

)
.

Gradient complexity of SG-HMC. Similar to (Chatterji
et al., 2018; Baker et al., 2018; Brosse et al., 2018), we
assume L = O(n) for simplicity. This further implies that
K = O(n−1/2η−1) and η = O(L−1/2) = O(n1/2). Then
if ignoring the dependency on the condition number κ and
dimension d but only pay attention to the dependency on ε,
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B, and η, the sampling error—corresponding to the last two
terms of the bound—is O(n1/4B−1/2η1/2). Let the target
sampling error be ε/

√
n for arbitrary ε ∈ (0, 1), it suffices

to set η = Θ(n−3/2Bε2). Note that HMC requires to make
T = O(log(1/ε)) proposals to ensure good mixing. As
a result, the gradient complexity of SG-HMC is KTB =
Õ(n−1/2η−1B) = Õ(nε−2).

Stochastic variance reduced gradient HMC (SVRG-
HMC). We deliver the convergence rate of SVGR-HMC in
the following theorem.

Theorem 5.3. Under the same assumptions made in The-
orem 5.2 and let µt be the distribution of x(t). Then if
η = O(L−1 ∧ dµ−1Γ−1

1 ) and set K = 1/(4
√
Lη), the

output of SVRG-HMC satisfies

W2

(
µT , π

)
≤ 2

√
d

µ

(
1− (128κ)−1

)T/2
+ Γ1η

1/2 + Γ2η,

where the constants Γ1 and Γ2 satisfy,

Γ2
1 = O

(
L1/2B−1N2κ3dη2

)
Γ2

2 = O
(
κ3d+ L3/2B−1N2κ3dη3

)
.

Gradient complexity of SVRG-HMC. We first set
BN = Θ(n), then Theorem 5.3 suggests that the sam-
pling error of SVRG-HMC is O(n5/4B−3/2η3/2 + η).
Then it suffices to set the step size η = Θ

(
n−7/6Bε2/3 ∧

n−1/2ε
)

to guarantee ε/
√
n-sampling error, which further

implies that the gradient complexity of SVRG-HMC is
KTB = Õ

(
n2/3ε−2/3 + Bε−1

)
, where we use the fact

that T = O(log(1/ε)) and K = O(n−1/2η−1). Then we
can set the batch size B = O(n2/3ε1/3 ∨ 1) and get a
O(n2/3ε−2/3 + ε−1) gradient complexity for SVRG-HMC.

Stochastic averaged gradient HMC (SAGA-HMC). We
present the convergence rate of SAGA-HMC in the follow-
ing theorem.

Theorem 5.4. Under the same assumptions made in The-
orem 5.2. Let µt be the distribution of x(t), then if
η = O(L−1 ∧ dµ−1Γ−1

1 ) and set K = 1/(4
√
Lη), the

output of SAGA-HMC satisfies

W2

(
µT , π

)
≤ 2

√
d

µ

(
1− (128κ)−1

)T/2
+ Γ1η

1/2 + Γ2η,

where the constants Γ1 and Γ2 satisfy,

Γ2
1 = O

(
L1/2B−3n2κ3dη2

)
Γ2

2 = O
(
κ3d+ L3/2B−3n2κ3dη3

)
.

Gradient complexity of SAGA-HMC. Theorem 5.4
suggests that the sampling error of SAGA-HMC is
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Figure 1. Sampling error of SG-HMC, CVG-HMC, SVRG-HMC,
SAGA-HMC, SVRG-ULD, and CVG-ULD on synthetic data. X-
axis represents the error between the estimated mean x̂ and the
true one x̄, Y-axis represents the total number of steps.

O(n5/4B−3/2η3/2 + η), which is identical to that of
SVRG-HMC. Then we can similarly set the step size
η = Θ

(
n−7/6Bε2/3 ∧ ε

)
to guarantee ε/

√
n-sampling

error, and further set B = O(n2/3ε1/3 ∨ 1) to get a
Õ
(
n2/3ε−2/3 + ε−1

)
gradient complexity for SAGA-HMC.

Control variates gradient HMC (CVG-HMC). Note that
control variates gradient adopts a fixed reference point q̂
in the entire algorithm. In the following analysis, we will
simply set q̂ = x(0), which also satisfies that ‖q̂− x∗‖22 ≤
d/µ. The following theorem characterizes the convergence
results of CVG-HMC in 2-Wasserstein distance.

Theorem 5.5. Under the same Assumptions made in The-
orem 5.2. Let µt be the distribution of x(t), then if
η = O(L−1 ∧ dµ−1Γ−1

1 ) and set K = 1/(4
√
Lη), the

output of CVG-HMC satisfies

W2

(
µT , π

)
≤ 2

√
d

µ

(
1− (128κ)−1

)T/2
+ Γ1η

1/2 + Γ2η,

where the constants Γ1 and Γ2 satisfy,

Γ2
1 = O

(
L−1/2B−1κ3d

)
and Γ2

2 = O
(
κ3d
)
.

Gradient complexity of CVG-HMC. Theorem 5.5
shows that the sampling error of CVG-HMC is
O(n−1/4B−1/2η1/2 + η), which implies that we can set
the step size as η = Θ

(
n−1/2Bε2 ∧ n−1/2ε

)
to achieve

ε/
√
n-sampling error in 2-Wasserstein distance. Then simi-

larly, by settingB = O(ε−1) we can derive that the gradient
complexity of CVG-HMC is KTB = Õ

(
ε−2
)
.

6. Experiments
In this section, we will evaluate the empirical performance
of the aforementioned four stochastic gradient HMC algo-
rithms, including SG-HMC, SVRG-HMC, SAGA-HMC
and CVG-HMC, on both synthetic and real-world datasets.
Moreover, we will also include SVRG-ULD and CVG-ULD
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Figure 2. Experimental results of Bayesian logistic regression on Covtype dataset. (a)-(b): Sampling error of SG-HMC, CVG-HMC,
SVRG-HMC, SVG-ULD, and SVRG-ULD, function of the number of iterations. (c)-(d): Negative log-likelihood on the test dataset for
SG-HMC, CVG-HMC, SVRG-HMC, SVG-ULD, and SVRG-ULD, function of the number of iterations.

for comparison since they have been demonstrated to per-
form well in both theory and experiment (Zou et al., 2018a;
Chatterji et al., 2018).

6.1. Sampling from Multivariate Gaussian Distribution

We first evaluate the performances of these four stochastic
gradient HMC algorithms for sampling from a multivariate
Gaussian distribution. Specifically, given n mean vectors
{µi}ni=1 and positive definite matrices {Σi}ni=1, we set each
component function as fi(x) = (x − µi)>Σi(x − µi)/2.
Then it can be seen that each component distribution, i.e.,
πi ∝ exp(−fi(x)) is a Gaussian distribution with mean µi
and covariance matrix Σ−1

i , and thus the target distribution
π ∝ exp(−f(x)) is also a Gaussian distribution. In our
experiment, we generate two synthetic dataset with size
n = 500 and n = 5000. For HMC based algorithms,
We run all four algorithms using the same step size (η =
{2×10−3, 3×10−4} for n = {500, 5000}) and mini-batch
size B = 16 with 2 × 104 steps (2000 proposals with 10
internal leapfrog steps each). For ULD based algorithms,
we follow the same configuration in Chen et al. (2017);
Chatterji et al. (2018) by setting the friction parameter as
γ = 1/n and the inverse mass parameter as u = 2. The
mini-batch size and iteration number are identical to those
of HMC based algorithms, and the step size are tuned such
that the algorithm can converge fast.

In order to characterize the convergence performance in
terms of the distance between distributions, we run all of
these four algorithms for 105 times in parallel, which gives
105 independent samples at each iteration. Since it is not
computation efficient to exactly compute the 2-Wasserstein
distance, we instead evaluate the error between the estimated
mean x̂ and the true one x̄ (which can be exactly computed
based on {µi}ni=1 and {Σi}ni=1). We display the experi-
mental results in Figure 1. Besides, we also characterize the
estimation errors of the second moment z̄ = Ex∼π[x� x],
which are reported in Table 1. It can be observed that all
these four stochastic gradient HMC converges, while the
mini-batch stochastic gradient leads to significantly larger
sampling error than other three stochastic gradient estima-

Table 2. Error of estimating the quantity z̄ = Ex∼π[x� x]

Algorithm (HMC) SG SVRG SAGA CVG

Error (‖ẑ− z̄‖2) 0.070 0.0022 0.0018 0.0017

tors. Additionally, when n increases, the performance of
CVG become closer to those of SVRG-HMC and SAGA-
HMC. These observations align well with our theoretical
results on the HMC based algorithms stated in Table 1.
Moreover, we also observe that SVRG-HMC and SAGA-
HMC can outperform SVRG-ULD on small dataset, though
in theory they have the same gradient complexity.

6.2. Bayesian Logistic Regression

We then perform Bayesian logistic regression to evaluate
the empirical performances of all stochastic gradient HMC
algorithms. In particular, let {zi, yi}ni=1 be the observed
training data, where zi ∈ Rd and yi are the feature vector
and label of the i-th observation respectively. The likeli-
hood function given the observation {zi, yi} is modeled
by p(yi|zi,x) = 1/

(
1 + exp(−yix>zi)

)
. Then assum-

ing that the model parameter x follows from a Gaussian
prior p(x) = N(0, λ−1I). We aim to sample the posterior
p
(
x|{zi, yi}ni=1

)
= p(x)

∏n
i=1 p(yi|zi,x). Therefore, it

can be derived that the negative log-posterior function is
f(x) =

∑n
i=1 fi(x) with the component function fi(x) de-

fined by fi(x) = log
(
1 + exp(−yix>zi)

)
+ λ‖x‖22/(2n).

We carry out the experiments on Covtype dateset 5, which
has 581012 instances with 54 attributes. We further extract
two training dataset with size n = {500, 5000} from the
original dataset, and take the rest for test. Similar to the ex-
periments on the synthetic data, we use the same mini-batch
size (B = 16) and step size (η = {2× 10−3, 4× 10−4} for
n = {500, 5000}) for SH-HMC, SVRG-HMC, and CVG-
HMC 6. For ULD based algorithms we use the same batch
size and tune the step size such that they converge fast.

5Available at https://archive.ics.uci.edu/ml/datasets/covertype
6We point out that SAGA-HMC is extremely inefficient in gen-

erating independent samples in a parallel manner since it requires
huge memory cost. So we do not include SAGA-HMC in this part.
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Moreover, we run all algorithms for 2× 104 times in paral-
lel and obtain 2×104 independent samples at each iteration.
Given the generated samples, we compute the mean (in or-
der to increase the precision of the estimation, we further
apply moving average with size 100, so in total we use
2×106 samples) and compared it to the ground truth, which
is obtained by running standard HMC algorithms (using full
gradient and MH correction), and display the errors in Fig-
ures 2(a) and 2(b). It can be clearly observed that SG-HMC
performs significantly worse than other algorithms. Besides,
we also observe SVRG-HMC slightly outperforms CVG-
HMC, SVRG-ULD, and CVG-ULD on the small dataset,
which is consistent with the observation on the synthetic
dataset. Moreover, given the estimated mean at different
iterations, we evaluate the negative log-likelihood of all al-
gorithms on the test dataset. The results are displayed in
Figures 2(c) and 2(d). The plots show that the output of
SG-HMC has a significantly larger bias than those of other
algorithms, while SVRG-HMC, CVG-HMC, CVG-ULD,
and SVRG-ULD give similar results. This again explains
the inefficiency of SG-HMC and verifies our theory.

7. Conclusion and Future Work
In this paper, we provided a general framework for proving
the convergence rate of HMC with stochastic gradients. Our
result shows that as long as the variance of stochastic gra-
dient is upper bounded along the Markov chain, stochastic
gradient HMC algorithms with properly chosen step size
provably converge to the target distribution. We applied the
general convergence result to four specific stochastic gradi-
ent HMC algorithms: SG-HMC, CVG-HMC, SVRG-HMC
and SAGA-HMC, and established their convergence guar-
antees. The results explain the inefficiency of SG-HMC,
and reveal the potential prospects of the applications of
CVG-HMC, SVRG-HMC, and SAGA-HMC.

One interesting future direction is to explore whether adding
Metropolis-Hasting (MH) correction in certain ways to the
stochastic HMC algorithm can help mitigating the bias
caused by stochastic gradients in theory, which is supported
by some empirical evidence (Dang et al., 2019).

Acknowledgement
We would like to thank the anonymous reviewers for their
helpful comments. DZ is supported by the Bloomberg Data
Science Ph.D. Fellowship. QG is partially supported by
the National Science Foundation CAREER Award 1906169.
The views and conclusions contained in this paper are those
of the authors and should not be interpreted as representing
any funding agencies.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,
M., et al. Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

Baker, J., Fearnhead, P., Fox, E. B., and Nemeth, C. Con-
trol variates for stochastic gradient MCMC. Statis-
tics and Computing, 2018. ISSN 1573-1375. doi:
10.1007/s11222-018-9826-2.

Bardenet, R., Doucet, A., and Holmes, C. On markov chain
monte carlo methods for tall data. The Journal of Machine
Learning Research, 18(1):1515–1557, 2017.

Betancourt, M. The fundamental incompatibility of scalable
Hamiltonian monte carlo and naive data subsampling.
In International Conference on Machine Learning, pp.
533–540, 2015.

Bou-Rabee, N., Eberle, A., and Zimmer, R. Coupling and
convergence for Hamiltonian monte carlo. arXiv preprint
arXiv:1805.00452, 2018.

Brosse, N., Durmus, A., Moulines, É., and Pereyra, M. Sam-
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Figure 3. Visualization of the marginal distributions of samples generated by SG-HMC, CVG-HMC, SVRG-HMC, and SAGA-HMC.
(a)-(d): Marginal distribution of x7 (e)-(f): Marginal distribution of x8.

A. Additional Experiments
We further conduct the Bayesian logistic regression experiments on the Pima dataset, which consists of 768 instances with 9
attributes (including an additional bias coordinate). In order the demonstrate the distributional convergence of all stochastic
gradient HMC algorithms, we plot the marginal distributions of samples obtained by the algorithms and compare them
with the true one (obtained by running full-gradient HMC with MH correction) in Figure 3. Here we pick the 7-th and 8-th
coordinates (x7 and x8) of the model parameter for plotting the distributions. It can be seen that all the four algorithms can
well recover the target distribution, although there is some slight mismatch for SG-HMC. This is consistent with our general
result in Theorem 4.4.

B. Proof of the Main Results
In order to simplify the proof, we define the following operators that will be frequently leveraged in the remaining part of
this paper. Specifically, given the iterate (qk,pk) and step size η, the operator Sη is defined as

Sηqk = qk+1 = qk + ηpk −
η2

2
g(qk, ξk)

Sηpk = pk+1 = pk −
η

2
g(qk, ξk)− η

2
g
(
qk + ηpk − η2g(qk, ξk)/2, ξk+1/2

)
,

where the randomness ξk and ξk+1/2 are independently drawn. Accordingly, the operator Gη is defined in a way that
GηqK = Eξk

[Sηqk] and Gηpk = Eξk,ξk+1/2
[Sηqk], which computes the mean of the trajectory induced by Sη . It is worth

noting that Gηqk is identical to one-step HMC using full gradient, while Gηpk is not since the Sηpk contains double
randomness. The operatorHη is defined as the solution of ODE (3.1) after time η, i.e., let (q(0),p(0)) = (pk,qk), we have

Hηqk = qk +

∫ η

0

p(t)dt

Hηpk = pk −
∫ η

0

∇f(q(t))dt

Then the proof roadmap of Theorem 4.4 are divided into three steps. In particular, in the first two steps, we will assume that
the second moments of qk and pk are upper bounded along the interpolation of the training trajectory. More specifically, the
first two steps are 1) we will prove the error bound of the approximated solution of the Hamilton’s equation (3.1) found using
stochastic gradient; 2) We will combine the error bound obtained in Step 1) and the contraction results of the Hamilton’s
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equation (3.1) to prove the convergence of stochastic gradient descent. Then in the third step, we will explicitly prove the
upper bounds on the second moments of qk and pk to validate the results we obtained in the first two steps.

For the step 1), the following Lemma provides the approximation error of the solution to (3.1) solved with stochastic
gradients, which is the key to guarantee the convergence of stochastic gradient HMC algorithms.

Lemma B.1. For any t ≤ T , let {(qk,pk)}k=1,...,K be all iterates in the leapfrog update starting from x(t), define by

Ep = max
k,τ

E[‖max
s≤η
Hspk‖22] and Eq = max

k,τ
E[max

s≤η
‖∇f(Hspk)‖22].

Then under Assumptions 4.2 and 4.3, if Kη ≤ 1/(4L1/2), the discretization error E[‖Skη z0 − Hkηz0‖22] can be upper
bounded as follows,

E[‖Skη z0 −Hkηz0‖22] ≤ γ1L
−1/2η + γ2

(
L−1/2η + L−1

)
η2,

where γ1 and γ2 are defined as follows,

γ1 =
σ2

2L
, γ2 =

η2L2Ep
36

+
η2Lσ2

8
+ 8L(η2Eq + 2Ep).

In step 2), we first present the following lemma that gives an tight contraction bound on the Hamilton’s equation (3.1).
equation (3.1).

Lemma B.2 (Lemma 6 in Chen & Vempala (2019)). Under Assumptions 4.2 and 4.1, let q(0) and q′(0) be two different
initial positions and p(0) = p′(0) be the initial velocities. Then for any t ≤ 1/(2

√
L), it holds that

‖Htq(0)−Htq′(0)‖22 ≤
(
1− µt2/4)‖q(0)− q′(0)‖22.

Based on the above two lemmas, we further provide the following lemma that gives the convergence rate of stochastic
gradient HMC under the assumption that Ep and Eq defined in Lemma B.1 are upper bounded.

Lemma B.3. Under Assumptions 4.1, 4.2, and 4.3, if set the step size η ≤ 1/(4K
√
L), it holds that

E[‖x(t) − xπ‖22] ≤
(
1− (128κ)−1

)tE[‖x(0) − xπ‖22] + 16512κ2
[
γ1L

−1/2η + 2γ2L
−1η2

]
,

where xπ denotes the random vector following the target distribution π, the parameters γ1 and γ2 are defined as follows,

γ1 =
σ2

2L
, γ2 =

η2L2Ep
36

+
η2Lσ2

8
+ 8L(η2Eq + 2Ep),

where Eq and Ep are defined in Lemma B.1.

Then we are ready to complete step 3) by showing that the quantities Ep and Eq are upper bounded. We clearly state this in
the following lemma.

Lemma B.4. Under Assumptions 4.1, 4.2, and 4.3, and assume that L ≥ 4, then if the step size satisfies η =
O(L1/2σ−2κ−1 ∧ L−1/2), the constants Ep and Eq defined in Lemma B.1 can be upper bounded by

Ep ≤ 12(2DL+ 5κd+ d/2 +Kη2σ2)

Eq ≤ 30L(2DL+ 5κd+ d/2 +Kη2σ2),

where D = ‖x(0) − x∗‖22 and x∗ = arg minx f(x).

Proof of Theorem 4.4. Now we can simply combine Lemmas B.3 and B.4 to complete the proof of Theorem 4.4. Addition-
ally, by Young’s inequality we have

E[‖x(0) − xπ‖22] ≤ 2‖x(0) − x∗‖22 + 2E[‖x∗ − xπ‖22]

≤ 2(D + d/µ),

where D = ‖x(0) − x∗‖22 and the second inequality follows from Proposition 1 in (Durmus et al., 2019) that shows that
E[‖x∗ − xπ‖22] ≤ d/µ. Then we are able to complete the proof.
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C. Proof of Theorems in Section 5
In order to prove the theorems in Section 5, it suffices to verify that the variance along the Markov chain is upper bounded.
Then in the subsequent proof for each theorem, we will first present a lemma that characterizes the variance of the
corresponding stochastic gradient estimator, and then complete the proof using the general result in Theorem 4.4.

C.1. Proof of Theorem 5.2

The following lemma provides an upper bound on the variance of the mini-batch stochastic gradient along the entire Markov
Chain generated by SG-HMC.

Lemma C.1. Under Assumption 5.1, if the initial point x(0) satisfies ‖x(0) − x∗‖22 ≤ d/µ, it holds that

E[‖gSG(qk, ξk)−∇f(qk)‖22] ≤ 1072Lκd+ 4n2E[‖∇fi(q∗)‖22]

B
,

where D = ‖x(0) − x∗‖22.

Proof of Theorem 5.2. Based on Lemma C.1, we are able to complete the proof of Theorem 1 using the general results in
Theorem 4.4. Specifically, Theorem 4.4 states that for a stochastic gradient estimator with variance upper bounded by σ2

along the iteration trajectory, the output of Algorithm 1 satisfies

W2

(
P (x(t)), π

)
≤
(
1− (128κ)−1

)T/2 · (2d/µ+ 2D
)1/2

+ Γ1η
1/2 + Γ2η,

where

Γ2
1 = O

(
κ2σ2

L3/2

)
Γ2

2 = O
(
κ2(κd+ L−1/2σ2η)

)
. (C.1)

Plugging the bound on σ2 proved in Lemma C.1 and using the assumption in Theorem 5.2 that D ≤ L/µ, we have(
2d/µ+ 2D

)1/2 ≤ 2
√
d/µ

Γ2
1 = O

(
L−1/2κ3d+ L−3/2κ2n2d

B

)
Γ2

2 = O

(
κ3d+

L−1/2n2κ2dη

B

)
.

This completes the proof.

C.2. Proof of Theorem 5.3

Lemma C.2 (Upper bound of the variance of SVRG estimator). Under assumptions 5.1, it holds that

E
[
‖gSVRG(qk, ξk)−∇f(qk)‖22

]
≤ 672N2L2η2κd

B
,

where Ep and Eq are defined in Lemma D.2.

Proof of Theorem 5.3. Similar to the proof of Theorem 5.2, we only need to combine the upper bound of the variance of
stochastic gradients proved in Lemma C.2 and the general convergence results in Theorem 4.4. Specifically, by Theorem 4.4
we know that

W2

(
P (x(t)), π

)
≤
(
1− (128κ)−1

)T/2 · (2d/µ+ 2D
)1/2

+ Γ1η
1/2 + Γ2η,
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with Γ1 and Γ2 defined in Theorem 4.4. Then applying Lemma C.2, we obtain

Γ2
1 = O

(
L1/2N2κ3dη2

B

)
Γ2

2 = O

(
κ3d+

L3/2N2κ3dη3

B

)
.

This completes the proof.

C.3. Proof of Theorem 5.4

Lemma C.3 (Upper bound of the variance of SAG estimator). Under assumptions 5.1, it holds that

E
[
‖gSAG(qk, ξk)−∇f(qk)‖22

]
≤ 672η2n2L2κd

B3
,

where D = ‖x(0) − x∗‖22.

Proof of Theorem 5.3. Similar to the proof of Theorem 5.2, we only need to combine the upper bound of the variance of
stochastic gradients proved in Lemma C.3 and the general convergence results in Theorem 4.4. Specifically, by Theorem
4.4, we know that

W2

(
P (x(t)), π

)
≤
(
1− (128κ)−1

)T/2 · (2d/µ+ 2D
)1/2

+ Γ1η
1/2 + Γ2η,

with Γ1 and Γ2 defined in Theorem 4.4. Then applying C.3 and using the fact that Kη ≤ 1/(2
√
L), we obtain

Γ2
1 = O

(
L1/2N2κ3dη2

B

)
Γ2

2 = O

(
κ3d+

L3/2n2κ3dη3

B3

)
.

This completes the proof.

C.4. Proof of Theorem 5.5

Lemma C.4 (Upper bound of the variance of CV estimator). Under assumptions 5.1, it holds that

E
[
‖gCV(qk, ξk)−∇f(qk)‖22

]
≤ 688Lκd

B
,

Proof of Theorem 5.5. Similar to the proof of Theorem 5.2, we only need to combine the upper bound of the variance of
stochastic gradients proved in Lemma C.4 and the general convergence results in Theorem 4.4. Specifically, by Theorem 4.4
we know that

W2

(
P (x(t)), π

)
≤
(
1− (128κ)−1

)T/2 · (2d/µ+ 2D
)1/2

+ Γ1η
1/2 + Γ2η,

with Γ1 and Γ2 defined in Theorem 4.4. Then applying Lemma and C.2 and using the fact that Kη ≤ 1/(2
√
L), we obtain

Γ2
1 = O

(
L−1/2κ3d

B

)
Γ2

2 = O
(
κ3d
)
.

This completes the proof.
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D. Proof of Lemmas in Appendix A
D.1. Proof of Lemma B.1

We first present the following lemma that states the difference between the operator Sη and gη .

Lemma D.1. Under Assumptions 4.2 and 4.3, for any (qk,pk), it holds that

E[‖Sηqk − Gηqk‖22] ≤ η4σ2

4

E[‖Sηpk − Gηpk‖22] ≤ η2(4σ2 + η4L2σ2)

4
,

where the first expectation is taken over the randomness of qk and ξk and the second expectation is taken over pk, ξk and
ξk+1/2

The following Lemma characterizes the upper bound of the one-step error between the operators Gη andHη .

Lemma D.2. Let Ep and Eq be defined in Lemma B.1. Then under Assumptions 4.2 and 4.3, it holds for all (qk,pk) that

E[‖Gηqk −Hηqk‖22] ≤ L2η6

36
Ep.

E[‖Gηpk −Hηpk‖22] ≤ η6L2σ2

8
+ 8η4L2(η2Eq + 2Ep),

where constants Ep and Eq are defined in Lemma B.1.

We further present the following lemma that gives an contraction bound of (3.1) for both position and momentum variables.

Lemma D.3. Under Assumptions 4.2, let q(0) and q′(0) be two different initial positions, p(0) and p′(0) be two different
initial velocities, then for any t ≥ 0 it holds that

‖Htq(0)−Htq′(0)‖22 + L−1‖Htp(0)−Htp′(0)‖22 ≤ e2
√
Lt
[
‖q(0)− q′(0)‖22 + L−1‖p(0)− p′(0)‖22

]
Now we are ready to complete the proof of Lemma B.1.

Proof of Lemma B.1. Let zk = (qk, L
−1/2pk) = Skη z0, we will focus on proving the upper bound of E[‖Skη z0 −Hkηz0‖22].

In particular, we have

Ek := E[‖Skη z0 −Hkηz0‖22] = E
[
‖Skη z0 − GηSk−1

η z0 + GηSk−1
η z0 −Hkηz0‖22

]
= E

[
‖Skη z0 − GηSk−1

η z0‖22
]︸ ︷︷ ︸

I1

+E
[
‖GηSk−1

η z0 −Hkηz0‖22
]︸ ︷︷ ︸

I2

,

where the second equality is due to the fact that E[Skη z0|Sk−1
η z0] = GηSk−1

η z0. Then we will upper bound the two terms I1
and I2 separately. Regarding I1, note that Sk−1

η z0 = (qk−1, L
−1/2pk−1), applying Lemma D.1 gives

I1 = E[‖Sηqk−1 − Gηqk−1‖22] + L−1E[‖Sηpk−1 − Gηpk−1‖22] ≤ η4σ2

4
+
η2(4σ2 + η4L2σ2)

4L
:= γ1η

2,

where

γ1 := 2L−1σ2 ≥ η2σ2

4
+

4σ2 + η4L2σ2

4L
,

where the inequality follows from the assumption that η ≤ L−1/2. Regarding I2, we can further expand it as follows,

I2 = E
[
‖GηSk−1

η z0 −HηSk−1
η z0 +HηSk−1

η z0 −Hkηz0‖22
]

≤
(
1 + 1/α

)
E
[
‖GηSk−1

η z0 −HηSk−1
η z0‖22

]
+
(
1 + α

)
E
[
‖HηSk−1

η z0 −Hkηz0‖22
]︸ ︷︷ ︸

I3

,
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where the last inequality follows from Young’s inequality and α > 0 is a constant that will be specified later. The first term
on the R.H.S. of the above inequality can be further bounded using Lemma D.2. Note that Sk−1

η z0 = (qk−1,pk−1/L), we
have(

1 + 1/α
)
E
[
‖GηSk−1

η z0 −HηSk−1
η z0‖22

]
≤ (1 + 1/α)E

[
‖Gηqk−1 −Hηqk−1‖22 + 1/L‖Gηpk−1 −Hηpk−1‖22

]
≤
(
1 + 1/α

)
γ2η

4,

where

γ2 =
η2L2Ep

36
+
η2Lσ2

8
+ 8L(η2Eq + 2Ep).

Moreover, in terms of I3, we have the following based on Lemma D.3,

I3 = E
[
‖HηSk−1

η z0 −HηHk−1
η z0‖22

]
≤ e2L1/2ηE

[
‖Sk−1

η z0 −Hk−1
η z0‖22

]
≤ e2L1/2ηEk−1.

Combining the above results, the discretization error Ek can be recursively upper bounded as follows,

Ek ≤ I1 + I2 ≤ γ1η
2 + (1 + 1/α)γ2η

4 + e2L1/2η+αEk−1.

Therefore, based on the above recursive upper bound, it can be derived that

Ek ≤ e2L1/2ηk+αkE0 +

k−1∑
t=0

e(2L1/2η+α)t
[
γ1η

2 + (1 + 1/α)γ2η
4
]

≤ e(2L1/2η+α)k

2L1/2η + α

[
γ1η

2 + (1 + 1/α)γ2η
4
]
,

where the second inequality follows from the fact that E0 = 0. Then we can set α = 2L1/2η. Assume that kη ≤ 1/(4L1/2),
we have

Ek ≤
e4L1/2ηk

4L1/2η

[
γ1η

2 + (1 + L−1/2η−1)γ2η
4
]
≤ γ1L

−1/2η + 2γ2L
−1η2.

This completes the proof.

D.2. Proof of Lemma B.3

Proof of Lemma B.3. By Lemmas B.1 and B.2, set Kη = 1/(4
√
L), for any two different initial positions q0 and q′0 with

the same initial velocities, we have

E[‖SKη q0 −HKη q′0‖22] = E[‖SKη q0 −HKη q0 +HKη q0 −HKη q′0‖22]

≤ (1 + β)‖HKη q0 −HKη q′0‖22 + (1 + 1/β)E[‖SKη q0 −HKη q′0‖22]

≤ (1 + β)
(
1− 1/(64κ)

)
E[‖q0 − q′0‖22]

+ (1 + 1/β)
[
γ1L

−1/2η + 2γ2L
−1η2

]
.

Then we can set β = 1/(128κ) and obtain

E[‖SKη q0 −HKη q′0‖22] ≤
(
1− (128κ)−1

)
E[‖q0 − q′0‖22]

+ 129κ
[
γ1L

−1/2η + 2γ2L
−1
)
η2
]
. (D.1)

Then we can consider a reference sequence {x̂(t)}t=0,...,T with x̂(0) ∼ π and

x̂(t+1) = HKη x̂(t),
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where the initial momentum variable is the same as that used to compute x(t+1). Then it can be readily verify that all iterates
in such sequence follows the stationary distribution π. Therefore, applying (D.1) for T times gives

E[‖x(T ) − x̂(T )‖22] ≤
(
1− (128κ)−1

)TE[‖x(0) − x̂(0)‖22] + 16512κ2
[
γ1L

−1/2η + 2γ2L
−1η2

]
. (D.2)

Note that x̂(T ) and x̂(t) are both following the target distribution π, we are able to complete the proof.

D.3. Proof of Lemma B.4

We first provide the following two useful lemmas that will be used during the proof.

Lemma D.4. Under Assumptions 4.1, 4.2 and 4.3, for any inner loop of Algorithm 1, given the initial quantities q0 and p0,
it holds that for any k ≤ K,

E[f(qk)] ≤ 3

(
f(q0) +

‖p0‖22
2

)
+ 3Kη2(σ2 − Lf(q∗))

E[‖∇f(qk)‖2] ≤ 3L

(
f(q0) +

‖p0‖22
2

)
+ 3LKη2(σ2 − Lf(q∗))− Lf(q∗)

E[‖pk‖22] ≤ 6

(
f(q0) +

‖p0‖22
2

)
+ 6Kη2(σ2 − Lf(q∗))− 2f(q∗).

Lemma D.5. Under assumptions 4.2, if η ≤ 1/
√
L, then it holds that for any (qk,pk),

max
τ≤η
‖Hτpk‖22 ≤ ‖pk‖22 + 2f(qk)− 2f(q∗)

max
τ≤η
‖∇f(Hτqk)‖22 ≤ 2L

(
‖pk‖22 + 2f(qk)− 2f(q∗)

)
+ 2‖∇f(qk)‖22.

Proof of Lemma B.4. Instead of directly proving the upper bounds of Ep and Eq, we will prove the upper bound of
E[f(x(t))] for all t ≥ 0. Then applying Lemma D.4 and D.5, the upper bounds of Ep and Eq can be proved accordingly.

In particular, we will use mathematical induction prove the upper bounds of E[f(x(t))]. In particular, we will prove the
hypothesis that E[f(x(t))]− f(x∗) ≤ L

[
2D+ 5d/µ

]
based on the assumption that E[f(x(τ))] ≤ L

[
2D+ 5d/µ

]
holds for

all τ ≤ t. Then let Ef := L
[
2D + 5d/µ

]
, by Lemma D.4, applying q0 = x(t−1), we get

E[f(qk)]− f(q∗) ≤ 3

(
f(q0)− f(q∗) +

‖p0‖22
2

)
+ 3Kη2σ2

≤ 3(Ef + d/2 +Kη2σ2)

E[‖∇f(qk)‖22] ≤ 3L

(
f(q0)− f(q∗) +

‖p0‖22
2

)
+ 3LKη2σ2

≤ 3L(Ef + d/2 +Kη2σ2)

E[‖pk‖22] ≤ 6

(
f(q0)− f(q∗) +

‖p0‖22
2

)
+ 6Kη2σ2

≤ 6(Ef + d/2 +Kη2σ2).

Then recall the definitions of Ep and Eq in Lemma B.1, by Lemma D.5, the quantities Ep and Eq can be upper bounded by

Ep ≤ E[‖pk‖22] + 2E[f(qk)]− 2f(q∗) ≤ 12(Ef + d/2 +Kη2σ2) = O(κd+Kη2σ2)

Eq ≤ 2L
(
E[‖pk‖22] + 2E[f(qk)]− 2f(q∗)

)
+ 2E[‖∇f(qk)‖22]

≤ 30(Ef + d/2 +Kη2σ2) = O(Lκd+ LKη2σ2).

These are exactly the results we want to prove in this lemma. In what follows we will use these bounds to complete the
induction of E[f(x(t))]. In order to upper bound E[f(x(t))], we can leverage Assumption 4.2 and resort to bounding the
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R.H.S. of the following inequality

E[f(x(t))] ≤ LE[‖x(t) − x∗‖22]

2
+ f(x∗). (D.3)

Let xπ ∼ π ∝ e−f(x), applying Young’s inequality gives

E[‖x(t) − x∗‖22] = E[‖x(t) − xπ + xπ − x∗‖22] ≤ 2
[
E[‖x(t) − xπ‖22] + E[‖xπ − x∗‖22]

]
. (D.4)

By Proposition 1 in (Durmus et al., 2019), we know that E[‖xπ − x∗‖22] ≤ d/µ. Then applying Lemma B.3, we know that

E[‖x(t) − xπ‖22] ≤ E[‖x(0) − xπ‖22] + 16512κ2
[
γ1L

−1/2η + 2γ2L
−1η2

]
≤ 2E[‖x(0) − x∗‖22] + 2E[‖x(π) − x∗‖22] + 16512κ2

[
γ1L

−1/2η + 2γ2L
−1η2

]
≤ 2E[‖x(0) − x∗‖22] +

2d

µ
+ 16512κ2

[
γ1L

−1/2η + 2γ2L
−1η2

]
,

where γ1 = O(σ2L−1) and γ2 = O(Lκd+ σ2) are defined in Lemma B.1. Therefore, as long as the step size satisfies

η ≤ min

{
d

16512γ1κL1/2
,

(
d

33124γ2κ

)1/2}
= O

(
dL1/2

σ2κ
∧ d1/2

L1/2κd1/2 + κ1/2σ

)
,

we have

E[‖x(t) − xπ‖22] ≤ 2E[‖x(0) − x∗‖22] +
4d

µ
. (D.5)

Then plugging the above bound into (D.4) and (D.3), we get

E[f(x(t))] ≤ L
[
E[‖x(t) − xπ‖22] + d/µ

]
+ f(x∗)

≤ L
[
2D + 5d/µ

]
+ f(x∗),

where D = ‖x(0) − x∗‖22 is an absolute constant. This verifies the hypothesis for x(t) and thus we are able to complete the
proof.

E. Proof of Lemmas in Appendix C
E.1. Proof of Lemma C.1

We first present the following lemma that characterizes the bound on the second moment of qk − x∗.

Lemma E.1. Under Assumptions 4.2, 4.1, and 4.3, letD = ‖x(0)−x∗‖22. Then for any qk with k ≤ K, ifKη ≤ 1/(2
√
L),

it holds that

E[‖qk − x∗‖22] ≤ L−1
[
Ep + η2(σ2 + Eq)

]
+ 8D +

20d

µ
.

Proof of Lemma C.1. During the proof we will use g(qk, ξk) to denote the mini-batch stochastic gradient gSG(qk, ξk) for
simplicity. Based on the definition, we have

E[‖g(qk, ξk)−∇f(qk)‖22] = E
[∥∥∥∥ nB ∑

i∈Ik

∇fi(qk)−∇f(qk)

∥∥∥∥2

2

]
≤ 1

B
E
[
‖n∇fi(qk)−∇f(qk)‖22

]
.

By assumption 5.1, we know that nfi(x) and f(x) are L-smooth, thus by Young’s inequality, it holds that

‖n∇fi(qk)−∇f(qk)‖22 ≤ 2‖n∇fi(qk)‖22 + 2‖∇f(qk)‖22
≤ 2‖n∇fi(qk)− nfi(q∗)‖22 + 2n2‖∇fi(q∗)‖22 + 2‖∇f(qk)‖22
≤ 2L2‖qk − q∗‖22 + 2n2‖∇fi(q∗)‖22 + 2‖∇f(qk)‖22.
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By Lemma E.1 and the fact that D ≤ d/µ, we further have

E[‖n∇fi(qk)−∇f(qk)‖22] ≤ 2L2E[‖qk − q∗‖22] + 2n2E[‖∇fi(q∗)‖22] + 2Eq

≤ 2L
[
Ep + η2(σ2 + Eq)

]
+ 56Lκd+ 2n2E[‖∇fi(q∗)‖22] + 2Eq

where the expectation is taken over both the randomness of qk and i. Then it follows that

E[‖g(qk, ξk)−∇f(qk)‖22] ≤
2L
[
Ep + η2(σ2 + Eq)

]
+ 56Lκd+ 2n2E[‖∇fi(q∗)‖22] + 2Eq

B
. (E.1)

Let σ2
max = arg maxk E[‖g(qk, ξk)−∇f(qk)‖22]. Then by Lemma B.4 and Assumption 4.3, assume that L ≥ 1 and define

by Ē = 12(2LD + 5κd+ d/2) ≤ 96κd, where we use the fact that D ≤ d/µ, we know that

Ep ≤ Ē + 12Kη2σ2
max

Eq ≤ LĒ + 12LKη2σ2
max. (E.2)

Note that Kη ≤ 1/(2
√
L), plugging the above inequalities into (E.1) gives

σ2
max ≤

2L
[
Ep + η2(σ2

max + Eq)
]

+ 56Lκd+ 2n2E[‖∇fi(q∗)‖22] + 2Eq

B

≤ 28L1/2σ2
maxη + 5LĒ + 56Lκd+ 2n2E[‖∇fi(q∗)‖22]

B
.

Then if η ≤ BL−1/2/56, the above inequality yields that

σ2
max ≤

10LĒ + 112Lκd+ 4n2E[‖∇fi(q∗)‖22]

B

≤ 1072Lκd+ 4n2E[‖∇fi(q∗)‖22]

B
,

where the last inequality follows from the fact that Ē ≤ 96κd. This completes the proof.

E.2. Proof of Lemma C.4

Proof of Lemma C.4 . By the definition of the control variate gradient estimator, we have

E[‖g(qk, ξk)−∇f(qk)‖22] = E
[∥∥∥∥ nB ∑

i∈Ik

[∇fi(qk)−∇fi(q̂)] +∇f(q̂)−∇f(q)

∥∥∥∥2

2

]

≤ n2

B
E
[
‖∇fi(qk)−∇fi(q̂) +∇f(q̂)−∇f(q)‖22

]
≤ n2

B
E
[
‖∇fi(qk)−∇fi(q̂)‖22

]
≤ L2

B
E[‖qk − q̂‖22], (E.3)

where the last inequality is by Assumption 5.1. By Lemma E.1 and Young’s inequality, we know that

E[‖qk − q̂‖22] ≤ 2E[‖qk − q∗‖22] + 2‖q̂− q∗‖22
≤ 2L−1

[
Ep + η2(σ2 + Eq)

]
+ 54d/µ+ 2‖q̂− q∗‖22,

where we use the fact that D ≤ d/µ. Note that we set x(0) = q̂, which implies that ‖q̂− q∗‖22 = D. Then plugging the
above inequality into (E.3) yields

E[‖g(qk, ξk)−∇f(qk)‖22] ≤
2L
[
Ep + η2(σ2 + Eq)

]
+ 56Lκd

B
.
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Note that the above inequality holds for any qk, then set σ2
max = maxk E[‖g(qk, ξk)−∇f(qk)‖22]. By (E.2) and using the

fact that Kη ≤ 1/(2
√
L), we further have

σ2
max ≤

16L1/2σ2
maxη + 3LĒ + 56Lκd

B
.

Then if η ≤ BL−1/2/32, the above inequality yields

σ2
max ≤

6LĒ + 112Lκd

B
≤ 688Lκd

B
,

where the second inequality is due to the fact that Ē ≤ 96κd. This completes the proof.

E.3. Proof of Lemma C.2

Proof of Lemma C.2. In order to simplify the proof, we will use the short-hand notation g(qk, ξk) to denote the SVRG
estimator gSVRG(qk, ξk). Recall that

g(qk, ξk) =
n

B

∑
i∈Ik

[
∇fi(qk)−∇fi(q̃)

]
+∇f(q̃).

Then based on the definition of the variance, we have

E
[
‖g(qk, ξk)−∇f(qk)‖22

]
= E

[∥∥∥∥ nB ∑
i∈Ik

[
∇fi(qk)−∇fi(q̃)

]
+∇f(q̃)−∇f(qk)

∥∥∥∥2

2

]

≤ n2

B
E
[
‖∇fi(qk)−∇fi(q̃)‖22

]
,

where the expectation is taken over both the random choice of i ∈ [n] and the randomness of q̃ and qk. Then by Assumption
5.1, we have

E
[
‖∇fi(qk)−∇fi(q̃)‖22

]
≤ L2

n2
E[‖qk − q̃‖22]. (E.4)

Note that q̃ is the iterate computed before qk. Assume its index is k′, we have k′ ≥ k −N + 1 due to the definition of the
SVRG estimator. Then, based on the update form (3.3), we have

E[‖qk − q̃‖22] = E
[∥∥∥∥ k−1∑

s=k′

ηps −
η2

2
g(qs, ξs)

∥∥∥∥2

2

]

≤ N
k−1∑
s=k′

E
[∥∥ηps − η2g(qs, ξs)/2

∥∥2

2

]
≤ 2N

k−1∑
s=k′

E
[
η2‖ps‖22 + η4‖g(qs, ξs)‖22

]
, (E.5)

where the first and second inequalities are due to Young’s inequality. Note that we have E[‖ps‖22] ≤ Ep and

E[‖g(qs, ξs)‖22] = 2E[‖g(qs, ξs)−∇f(qs)‖22] + 2E[‖∇f(qs)‖22] ≤ 2E[‖g(qs, ξs)−∇f(qs)‖22] + 2Eq, (E.6)

where the first inequality is by Young’s inequality and the second one is by the definition of Eq . Then plugging this back to
(E.4) gives

E
[
‖g(qk, ξk)−∇f(qk)‖22

]
≤ 2NL2

B

k−1∑
s=k′

{
η2Ep + 2η4

[
‖g(qs, ξs)−∇f(qs)‖22 + Eq

]}
.
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Note that the above inequality holds for all k, then define σ2
max := maxk E

[
‖g(qk, ξk)−∇f(qk)‖22

]
, we have

σ2
max ≤

2N2L2

B

[
η2Ep + 2η4

(
σ2

max + Eq
)]
.

By (E.2) and the fact that Kη ≤ 1/(2
√
L), the above inequality implies that

σ2
max ≤

2N2L2

B

[
η2(Ē + 12Kη2σ2

max) + 2η4
(
σ2

max + LĒ + 12LKη2σ2
max

)]
≤ 2N2L2

B

[
2η2Ē + 10η3L−1/2σ2

max

]
,

where Ē = 12(2LD + 5κd+ d/2) ≤ 96κd. Then if η3 ≤ B/(40N2L3/2), we have

σ2
max ≤

8N2L2Ēη2

B
≤ 768N2L2η2κd

B
,

where the last inequality follows from the fact that Ē ≤ 96κd . This completes the proof.

E.4. Proof of Lemma C.3

Proof of Lemma C.3. Similar to the proof of Lemma C.2, we denote by g(qk, ξk) = gSAG(qk, ξk) in the subsequent proof.
Recall that

g(qk, ξk) =
1

B

∑
i∈Ik

[
∇fi(qk)−Gi

]
+ g̃k.

Then the variance can be formulated as

E[‖g(qk, ξk)−∇f(qk)‖22] = E
[∥∥∥∥ nB ∑

i∈Ik

[
∇fi(qk)−Gi

]
+ g̃k −∇f(qk)

∥∥∥∥]

≤ n2

B
E[‖∇fi(qk)−Gi + g̃k −∇f(qk)‖22]

≤ n2

B
E[‖∇fi(qk)−Gi‖22],

the first inequality is due to the fact that the estimation variance of sampling without replacement is always less than that of
sampling with replacement, and the second inequality is due to the fact that Ei[∇fi(q)−Gi] = ∇f(qk)− g̃k. Based on
the construction of the SAG estimator in Algorithm 2, we know that Gi = ∇fi(qu) for some u ≤ k. Then by Assumption
5.1, it follows that

E[‖g(qk, ξk)−∇fi(qu)‖22] ≤ L2E[‖qk − qu‖22]

B
. (E.7)

Then based on the update rule of qk, following (E.5) gives

‖qk − qu‖22 = E
[∥∥∥∥ k−1∑

s=u

ηps −
η2

2
g(qs, ξs)

∥∥∥∥2

2

]

≤ 2(k − u)

k−1∑
s=u

E
[
η2‖ps‖22 + η4‖g(qs, ξs)‖22

]
.

Define σ2
max := maxk E

[
‖g(qk, ξk)−∇f(qk)‖22

]
, we have the following based on (E.6),

E[‖g(qs, ξs)‖22] ≤ 2σ2
max + 2Eq.

Then using the fact that E[‖ps‖22] ≤ Ep, it follows that

‖qk − qu‖22 ≤ 2(k − u)2η2(Ep + 2η2σ2
max + 2η2Eq).



On the Convergence of Hamiltonian Monte Carlo with Stochastic Gradients

Plugging the above inequality into (E.7) yields

E[‖g(qk, ξk)−∇f(qk)‖22] ≤ L2E[‖qk − qu‖22]

B

≤ 2η2L2(Ep + 2η2σ2
max + 2η2Eq)E[(k − u)2]

B
.

Let q = 1 − (1 − 1/n)B be the probability of choosing one particular index, by Dubey et al. (2016) we know that
E[(k − u)2] ≤ 2q−2 (see proof of Theorem 2 in Dubey et al. (2016) for more detail). Moreover, it is easy to verify that
q ≥ B/(2n), which implies that

E[‖g(qk, ξk)−∇f(qk)‖22] ≤ 2η2L2(Ep + 2η2σ2
max + 2η2Eq)n

2

B3
.

Note that the above holds for any qk, then applying (E.2) and the fact that Kη ≤ 1/(2
√
L) gives

σ2
max ≤

2η2n2L2
(
(1 + 2η2L)Ē + (12Kη2 + 12LKη4 + 2η2)σ2

max

)
B3

≤
2η2n2L2

(
2Ē + 10ηL−1/2σ2

max

)
B3

.

Then if the step size satisfies η3 ≤ B3/(40n2L3/2), we have

σ2
max ≤

8η2n2L2Ē

B3
≤ 768η2n2L2κd

B3
,

where the last inequality follows from the fact that Ē ≤ 96κd. This completes the proof.

F. Proof of Lemmas in Appendices D and E
F.1. Proof of Lemma D.1

Proof of Lemma D.1. In terms of qk, based on Assumption 4.3, we have

E[‖Sηqk − Gηqk‖22] =
η4

4
E[‖g(qk, ξk)−∇f(qk)‖22] ≤ η4σ2

4
.

In terms of pk, we have

E[‖Sηqk − Gηqk‖22] =
η2

4
E[‖g(qk, ξk) + g(qk+1, ξk+1/2)− Eξk,ξk+1/2

[g(qk, ξk) + g(qk+1, ξk+1/2)]‖22]

≤ η2

2

[
E[‖g(qk, ξk)−∇f(qk)‖22]︸ ︷︷ ︸

I1

+ E[g(qk+1, ξk+1/2)− Eξk,ξk+1/2
[g(qk+1, ξk+1/2)]‖22]︸ ︷︷ ︸

I2

]
,

where the inequality is based on Young’s inequality. Then we will bound the two terms on the R.H.S. separately. It is clearly
that by Assumption 4.3, we have

I1 ≤ σ2.

Additionally, in terms of I2, since ξk and ξk+1 are independent, we have the following by the law of total variance

I2 = Eqk,ξk

[
Eξk+1/2|ξk

[‖g(qk+1, ξk+1/2)− Eξk+1/2|ξk
[g(qk+1, ξk+1/2)]‖22]

]︸ ︷︷ ︸
I3

+ Eqk,ξk

[
‖Eξk+1/2|ξk

[g(qk+1, ξk+1/2)]− Eξk,ξk+1/2
[g(qk+1, ξk+1/2)]‖22]

]︸ ︷︷ ︸
I4

.
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By Assumption 4.3, we have

I3 ≤ σ2.

In terms of I4, note that Eξk+1/2|ξk
[g(qk+1, ξk+1/2)] = ∇f(qk+1), we have

I4 ≤ E
[
‖∇f(qk+1)− Eξk

[∇f(qk+1)]‖22
]

≤ 2E
[
‖∇f(qk+1)− Eξk

[∇f(qk+1)]‖22
]

≤ 2E
[
‖∇f(qk+1)−∇f(Eξk

[qk+1])]‖22
]

≤ 2L2E
[
‖qk+1 − Eξk

[qk+1]]‖22
]
,

where the second inequality is by Young’s inequality, the third one is due to the fact that∇f(qk+1) is an unbiased estimator
of Eξk

[∇f(qk+1)] and the last inequality is by Assumption 4.2. Then by Assumption 4.3 and the definition of Sη , we have

E
[
‖qk+1 − Eξk

[qk+1]]‖22
]
≤ η4σ2

4
.

Therefore, combining the above results gives

Eξk
[‖Sηqk − Gηqk‖22] ≤ η2

2
(I1 + I2) ≤ η2

4

(
4σ2 + η4L2σ2

)
,

which completes the proof.

F.2. Proof of Lemma D.2

Proof of Lemma D.2. We first prove the first result in this lemma. By the definitions of Hη and Gη, note that
Eξk

[g(qk, ξk)] = ∇f(qk), defining (q(0),p(0)) = (pk,qk), we have

Gηqk −Hηqk = ηpk −
η2

2
∇f(qk)−

∫ η

0

p(t)dt

=

∫ η

0

∫ t

0

[∇f(q(s))−∇f(q(0))]dsdt.

Therefore, by Assumption 4.2, we have

‖Gηqk −Hηqk‖22 ≤
[ ∫ η

0

∫ t

0

‖∇f(q(s))−∇f(q(0))‖2dsdt
]2

≤ L2

[ ∫ η

0

∫ t

0

‖q(s)− q(0)‖2dsdt
]2

.

Note that dq(s)/ds = p(s) and s ≤ η, thus it holds that ‖q(s)− q(0)‖2 ≤ smaxτ∈[0,η] ‖p(τ)‖2. Then, we have

E[‖Gηqk −Hηqk‖22] ≤ L2E
[[ ∫ η

0

∫ t

0

‖q(s)− q(0)‖2dsdt
]2]

≤ L2η6

36
E[ max
τ∈[0,η]

‖p(τ)‖22]

≤ L2η6

36
Ep.

Then we will prove the upper bound of E‖Gηpk −Hηpk‖22]. We first introduce an intermediate momentum variable p̂k+1

defined by

p̂k+1 = pk −
η

2
∇f(qk)− η

2
∇f
(
qk + ηpk − η2∇f(qk)/2

)
.
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It can be observed that p̂k+1 is exactly the momentum variable obtained after one step full-gradient update of HMC. Then,
by Young’s inequality, we have

E[‖Gηpk −Hηpk‖22] ≤ 2E[‖Gηpk − p̂k+1‖22]︸ ︷︷ ︸
I1

+2E[‖Hηpk − p̂k+1‖22]︸ ︷︷ ︸
I2

.

Then regarding I1, note that Eξk
[g(qk, ξk)] = ∇f(qk) and Eξk+1/2|ξk

[g(qk+1, ξk+1/2)] = ∇f(qk+1), we have

I1 =
η2

4
E
[∥∥∇f(qk) + Eξk,ξk+1/2

[g(qk+1, ξk+1/2)]−∇f(qk)−∇f
(
qk + ηpk − η2∇f(qk)/2

)∥∥2

2

]
≤ η2

4
E
[∥∥Eξk

[∇f(qk+1)]−∇f
(
qk + ηpk − η2∇f(qk)/2

)∥∥2

2

]
.

Note that qk+1 = qk + ηpk − η2g(qk, ξk)/2, by Assumptions 4.2 and 4.3 we further have

E
[
‖Eξk

[∇f(qk+1)]−∇f
(
qk + ηpk − η2∇f(qk)/2

)
‖22
]
≤ E

[
‖∇f(qk+1)−∇f

(
qk + ηpk − η2∇f(qk)/2

)
‖22
]

≤ η4L2

4
E
[
‖g(qk, ξk)−∇f(qk)‖22

]
≤ η4L2σ2

4
.

This immediately implies that

I1 ≤
η6L2σ2

16
.

In terms of I2, we can follow the similar idea used in the proof of Lemma 9.1 in (Mangoubi & Vishnoi, 2018). In particular,
we further define an intermediate point p̃k+1 as follows

p̃k+1 = pk − η∇f(qk)− η2

2
∇2f(qk)pk.

Therefore, by triangle inequality and Young’s inequality, I2 can be upper bounded by

I2 ≤ 2E[‖p̃k+1 − p̂k+1‖22] + 2E[‖Hηpk − p̂k+1‖22].

Based on the definition of p̃k+1 and p̂k+1, we have

‖p̃k+1 − p̂k+1‖2 =
η

2

∥∥∇f(qk + ηpk − η2∇f(qk)/2)−∇f(qk)− η∇2f(qk)pk
∥∥

2

≤ η

2

(
‖∇f(qk + ηpk − η2∇f(qk)/2)−∇f(qk + ηpk)‖2

+ ‖∇f(qk + ηpk)−∇f(qk)− η∇2f(qk)pk‖2
)
.

Based on Assumption 4.2, we have

‖∇f(qk + ηpk − η2∇f(qk)/2)−∇f(qk + ηpk)‖2 ≤
η2L‖∇f(qk)‖2

2

Additionally, we have

‖∇f(qk + ηpk)−∇f(qk)− η∇2f(qk)pk‖2 =

∥∥∥∥ ∫ η

0

[
∇2f(qk + tpk)−∇2f(qk)

]
pkdt

∥∥∥∥
2

≤
∫ η

0

∥∥[∇2f(qk + tpk)−∇2f(qk)]pk
∥∥

2
dt

≤ 2ηL‖pk‖2
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where the last inequality follows from Assumption 4.2. Combining the above two inequalities gives

E[‖p̃k+1 − p̂k+1‖22] ≤ E
[
η4(Lη‖∇f(qk)‖2 + 4L‖pk‖)2

16

]
≤ η6(L2Eq + 16L2Ep)

8
.

Then we will be proving the upper bound of ‖Hηpk − p̂k+1‖2. In specific, note that (q(0),p(0)) = (qk,pk), we have

‖Hηpk − p̂k+1‖2 =

∥∥∥∥∫ η

0

∫ t

0

[
∇2f(q(s))p(s)−∇2f(q(0))p(0)

]
dsdt

∥∥∥∥
2

≤
∫ η

0

∫ t

0

∥∥∇2f(q(s))p(s)−∇2f(q(0))p(0)
∥∥

2
dsdt.

We further have∥∥∇2f(q(s))p(s)−∇2f(q(0))p(0)
∥∥

2
≤
∥∥∇2f(q(s))

(
p(s)− p(0)

)∥∥
2

+
∥∥[∇2f(q(s))−∇2f(q(s))

]
p(0)

∥∥
2

≤ L‖p(s)− p(0)‖2 + 2L‖p(0)‖2.

Note that s ≤ η, we further have

E[
∥∥∇2f(q(s))p(s)−∇2f(q(0))p(0)

∥∥2

2
] ≤ 2s2L2E[max

τ≤η
‖∇f(q(τ))‖22] + 4L2E[‖p(0)‖22]

≤ 2η2L2Eq + 4L2E2
p .

Combining the above results we have

E[‖Hηpk − p̂k+1‖22] ≤ η4
(
η2L2Eq + 2L2Ep

)
.

Then, we can bound I2 as follows,

I2 ≤ 2E[‖p̃k+1 − p̂k+1‖22] + 2E[‖Hηpk − p̂k+1‖22]

η6(L2Eq + 16L2Ep)

4
+ 2η4

(
η2L2Eq + 2L2Ep

)
≤ 4η4(η2L2Eq + 2L2Ep).

Then, it follows that

E[‖Gηpk −Hηpk‖22] ≤ 2(I1 + I2) ≤ η6L2σ2

8
+ 8η4L2(η2Eq + 2Ep),

which completes the proof.

F.3. Proof of Lemma D.3

Proof of Lemma D.3. By (3.1), let q(t) = Htq(0) and p(t) = Htp(0), we have

d
[
‖q(t)− q′(t)‖22 + L−1‖p(t)− p′(t)‖22

]
dt

= 2〈q(t)− q′(t),p(t)− p′(t)〉+ 2L−1〈p(t)− p′(t),∇f(q′(t))−∇f(q(t))〉
≤ 4‖q(t)− q′(t)‖2‖q(t)− q′(t)‖
≤ 2
[
L1/2‖q(t)− q′(t)‖22 + L−1/2‖p(t)− p′(t)‖22

]
= 2L1/2

[
‖q(t)− q′(t)‖22 + L−1‖p(t)− p′(t)‖22

]
,

where the first inequality is based on Assumption 4.2 and Cauchy-Schwarz inequality, and the second inequality is due
the fact that 2ab ≤ βa2 + β−1b2 holds for all a, b and β > 0. Solving the above inequality directly implies the desired
result.
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F.4. Proof of Lemma D.4

Proof of Lemma D.4. Recall the update rules of qk and pk

qk+1 = qk + ηpk −
η2

2
g(qk, ξk)

pk+1 = pk −
η

2
g(qk, ξk)− η

2
g(qk+1, ξk+1/2).

Then motivated by the fact that the Hamiltonian energy maintains invariant along the continuous-time evolution (3.1), we
will leverage the energy function f(qk+1) + ‖pk+1‖22/2 to prove the desired upper bounds. Based on the update rule of
pk+1 and qk+1, by Assumption 4.2 we have

f(qk+1) ≤ f(qk) + 〈∇f(qk),qk+1 − qk〉+
L‖qk+1 − qk‖22

2

= f(qk) + η〈∇f(qk),pk − ηg(qk, ξk)/2〉+
η2L‖pk − ηg(qk, ξk)/2‖22

2
;

‖pk+1‖22 =

∥∥∥∥pk − η

2
g(qk, ξk)− η

2
g(qk+1, ξk+1/2)

∥∥∥∥2

2

= ‖pk‖22 − η〈pk,g(qk, ξk) + g(qk+1,xk+1/2)〉+
η2

4

∥∥g(qk, ξk) + g(qk+1, ξk+1/2)
∥∥2

2
.

Then taking expectation over the randomness ξk and ξk+1/2 conditioned on qk and pk, we have

E[f(qk+1)] +
E[‖pk+1‖22]

2

≤ f(qk) + η〈∇f(qk),pk − η∇f(qk)/2〉+
η2LE[‖pk − ηg(qk, ξk)/2‖22]

2

+
‖pk‖22

2
− η

2

〈
pk,∇f(qk) + E[∇f(qk+1)]

〉
+
η2

8
E
[∥∥g(qk, ξk) + g(qk+1, ξk+1/2)

∥∥2

2

]
= f(qk) +

‖pk‖22
2
− η2‖∇f(qk)‖22

2
+
η

2

〈
pk,∇f(qk)− E[∇f(qk+1)]

〉
+
η2LE[‖pk − ηg(qk, ξk)‖22]

2
+
η2

8
E
[∥∥g(qk, ξk) + g(qk+1, ξk+1/2)

∥∥2

2

]
. (F.1)

Then we first focus on the term
〈
pk,∇f(qk)− E[∇f(qk+1)]

〉
, which can be upper bounded as follows,〈

pk,∇f(qk)− E[∇f(qk+1)]
〉
≤ ‖pk‖2‖∇f(qk)− E[∇f(qk+1)]‖2
≤ ‖pk‖2E[‖∇f(qk)−∇f(qk+1)‖2]

≤ ηL‖pk‖2E
[
‖pk − ηg(qk, ξk)/2‖2

]
≤ ηL

2

(
‖pk‖22 + E[‖pk − ηg(qk, ξk)/2‖22]

)
,

where the first inequality is by Cauchy-Schwartz inequality, the second inequality is by triangle inequality, the third
inequality is based on Assumption 4.2 and the last one follows from Young’s inequality. We next focus on bounding
E
[∥∥g(qk, ξk) + g(qk+1, ξk+1/2)

∥∥2

2

]
, which relies on the following inequality.

E[‖∇f(qk+1)‖22] ≤ E
[(
‖∇f(qk)‖2 + ‖∇f(qk+1)−∇f(qk)‖2

)2]
≤ E

[(
‖∇f(qk)‖2 + ηL‖pk − ηg(qk, ξk)/2‖2

)2]
= ‖∇f(qk)‖22 + 2ηLE

[
‖∇f(qk)‖2 · ‖pk − g(qk, ξk)/2‖2

]
+ η2L2E[‖pk − g(qk, ξk)/2‖22]

≤ (1 + ηL)‖∇f(qk)‖22 + (ηL+ η2L2)E[‖pk − g(qk, ξk)/2‖22], (F.2)
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where the first inequality is by triangle inequality, the second one follows from Assumption 4.2, and the last one follows
from Young’s inequality. Based on the above inequality, we further have

E
[∥∥g(qk, ξk) + g(qk+1, ξk+1/2)

∥∥2

2

]
≤ 2E

[∥∥g(qk, ξk)‖22 + ‖g(qk+1, ξk+1/2)
∥∥2

2

]
≤ 2
[
‖∇f(qk)‖22 + 2σ2 + E[‖∇f(qk+1)‖22]

]
= 4
[
‖∇f(qk)‖22 + σ2

]
+ 2E[‖∇f(qk+1)‖22 − ‖∇f(qk)‖22]

≤ 4
[
‖∇f(qk)‖22 + σ2

]
+ 2ηL‖∇f(qk)‖22

+ 2(ηL+ η2L2)E[‖pk − g(qk, ξk)/2‖22].

where the first inequality follows from Young’s inequality, the second follows from Assumption 4.3, and the last follows
from (F.2). Plugging the above results into (F.1), we get

E[f(qk+1)] +
E[‖pk+1‖22]

2

≤ f(qk) +
‖pk‖22

2
− η2‖∇f(qk)‖22

2
+ η2L

(
‖pk‖22 + E[‖pk − ηg(qk, ξk)/2‖22]

)
+
η2LE[‖pk − ηg(qk, ξk)‖22]

2
+
η2

8

(
4
[
‖∇f(qk)‖22 + σ2

]
+ 2ηL‖∇f(qk)‖22

+ 2(ηL+ η2L2)E[‖pk − g(qk, ξk)/2‖22]
)

= f(qk) +
‖pk‖22

2
+ η2L‖pk‖22 +

(
3η2L

2
+
η2(ηL+ η2L2)

4

)
E[‖pk − ηg(qk, ξk)‖22]

+
η3L‖∇f(qk)‖22

4
+
η2σ2

2
.

Moreover, by Young’s inequality and Assumption 4.3, we have

E[‖pk − ηg(qk, ξk)‖22] ≤ 2‖pk‖22 + 2η2E[‖g(qk, ξk)‖22]

≤ 2‖pk‖22 + 2η2‖∇f(qk)‖2 + 2η2σ2.

Therefore, assume η ≤ min{1/(2
√
L), 1/2}, we have

E[f(qk+1)] +
E[‖pk+1‖22]

2
≤ f(qk) +

‖pk‖22
2

+ 3η2L‖pk‖22 + 4η3L‖∇f(qk)‖22 + η2σ2.

Note that for convex and smooth function f(·), we have ‖∇f(qk)‖22 ≤ L(f(qk)− f(q∗)), therefore,

E[f(qk+1)] +
E[‖pk+1‖22]

2
≤ f(qk) +

‖pk‖22
2

+ 3η2L‖pk‖22 + 4η2L
[
f(qk)− f(q∗)

]
+ η2σ2,

which further implies that

E[f(qk+1)− f(q∗)] +
E[‖pk+1‖22]

2
≤
(
1 + 4η2L

)(
f(qk)− f(q∗) +

‖pk‖22
2

)
+ η2σ2

Then, assume that 4Kη2L ≤ 1, we have (1 + 4η2L)K ≤ e ≤ 3, which implies that for all k ≤ K,

E[f(qk)− f(q∗)] +
E[‖pk‖22]

2
≤
(
1 + 4η2L

)k(
f(q0)− f(q∗) +

‖p0‖22
2

)
+ η2

k−1∑
s=0

(
1 + 4η2L

)s
σ2

≤ 3

(
f(q0)− f(q∗) +

‖p0‖22
2

)
+ 3Kη2σ2.
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Using the fact that ‖∇f(qk)‖22 ≤ L(f(qk)− f(q∗)), the above inequality further implies that

E[f(qk)] ≤ 3

(
f(q0)− f(q∗) +

‖p0‖22
2

)
+ 3Kη2σ2

E[‖∇f(qk)‖22] ≤ 3L

(
f(q0)− f(q∗) +

‖p0‖22
2

)
+ 3LKη2σ2

E[‖pk‖22] ≤ 6

(
f(q0)− f(q∗) +

‖p0‖22
2

)
+ 6Kη2σ2.

This completes the proof.

F.5. Proof of Lemma D.5

Proof of Lemma D.5. RegardingHτpk, we have

‖Hτpk‖22 = ‖pk‖22 + 2f(qk)− 2f(Hτqk) ≤ ‖pk‖22 + 2f(qk)− 2f(q∗).

Then for any k ≤ K, we have

max
τ≤η
‖∇f(Hτqk)‖2 ≤ max

τ≤η
‖∇f(Hτqk)−∇f(qk)‖2 + ‖∇f(qk)‖2

≤ Lmax
τ≤η
‖Hτqk − qk‖2 + ‖∇f(qk)‖2

≤ Lηmax
τ≤η
‖Hτpk‖2 + ‖∇f(qk)‖2

≤ Lη
√
‖pk‖22 + 2f(qk)− 2f(q∗) + ‖∇f(qk)‖2.

Thus, note that η ≤ 1/
√
L, we have

max
τ≤η
‖∇f(Hτqk)‖22 ≤ 2L

(
‖pk‖22 + 2f(qk)− 2f(q∗)

)
+ 2‖∇f(qk)‖22.

This completes the proof.

F.6. Proof of Lemma E.1

Proof of Lemma E.1. Note that q0 = x(t) for some t ≥ 0. Then based on (D.5) (which holds for any t ≥ 0), we obtain

E[‖q0 − x∗‖22] ≤ 2E[‖x(t) − xπ‖22] + 2E[‖xπ − x∗‖22]

≤ 8D +
20d

µ
,

where the last inequality follows from Proposition 1 in (Durmus et al., 2019) that E[‖xπ−x∗‖22] ≤ d/µ andD = ‖x0−x∗‖22.
Then based on the update rules of qk, by Young’s inequality we have

E[‖qk − x∗‖22] ≤ 2E[‖qk − q0‖22] + 2E[‖q0 − x∗‖22]

= 2η2E
[∥∥∥∥ k−1∑

s=0

ps −
η

2
g(qs, ξs)

∥∥∥∥2

2

]
+ 4D +

12d

µ
.

Then regarding the first term on the R.H.S. of the above inequality, we further have

E
[∥∥∥∥ k−1∑

s=0

ps −
η

2
g(qs, ξs)

∥∥∥∥2

2

]
≤ 2k

[ k−1∑
s=0

‖ps − ηg(qs, ξs)‖22/2
]

≤ 4kη2

[ k−1∑
s=0

E[‖ps‖22] + η2E[‖g(qs, ξs)‖22]/4

]

≤ 4kη2

[
kEp +

k−1∑
s=0

η2E[‖g(qs, ξs)‖22]/4

]
.
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Note that

E[‖g(qs, ξs)‖22] = E[‖g(qs, ξs)−∇f(qs)‖22] + E[‖∇f(qs)‖22] ≤ σ2 + Eq.

Then it follows that

E[‖qk − x∗‖22] ≤ 4k2η2
[
Ep + η2(σ2 + Eq)

]
+ 8D +

20d

µ
.

Note that kη ≤ Kη ≤ 1/(2
√
L), we further have

E[‖qk − x∗‖22] ≤ L−1
[
Ep + η2(σ2 + Eq)

]
+ 8D +

20d

µ
,

which completes the proof.


