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Abstract

Multi-state models can capture the different patterns of disease evolution. In particular,
the illness-death model is used to follow disease progression from a healthy state to an
intermediate state and to a death-related final state. We aim to use those models in order
to adapt treatment decisions according to the evolution of the disease. In state-of-the-art
methods, the risks of transition are modeled via (semi-) Markov processes and transition-
specific Cox proportional hazard (P.H.) models. We propose a neural network architecture
called IDNetwork (Illness-Death Network) that relaxes the linear Cox P.H. assumption and
integrates a large number of patients’ characteristics. Our method significantly improves
the predictive performance compared to state-of-the-art methods on a simulated data set,
on two clinical trials for patients with colon cancer and on a real-world data set in breast
cancer.
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1. Introduction

Disease prognosis is of major importance for physicians when making medical decisions and
requires specialized algorithms to estimate the risks of a patient. In this line of work and
within event history analysis, we propose a novel algorithm for individual prognostication
in a three states model: the illness-death model.

Event history analysis, also known as survival analysis, aims at predicting the time
until the occurrence of a future event(s) of interest conditionally to individual covariates.
Classical models rely on strong assumptions. The Cox proportional hazard (P.H.) model
(Cox, 1972) relies on linear effects of the covariates and shows limitations in real-world
data. To address this challenge, new machine learning algorithms have been developed.

* Co-author

© 2021 A. Cottin, N. Pécuchet, M. Zulian, A. Guilloux & S. Katsahian.



IDNETWORK: A DEEP ILLNESS-DEATH NETWORK BASED ON MULTI-STATE PROCESS

For a unique event of interest, neural networks have been introduced by Faraggi and Simon
(1995), and developed more recently by Katzman et al. (2018); Kvamme et al. (2019); Fotso
(2018), among others, with significant improvements in predictive performance as compared
to the Cox P.H. model. Lee et al. (2018) extended survival networks to handle competing
events (see Kalbfleisch and Prentice (2011), chapter 8). To the best of our knowledge, no
non-linear methods, especially deep neural networks, have been explicitly introduced for
multi-state analysis and in particular for an illness-death process.

In the present work, we focus on the illness-death model which is a multi-state model
(Webster, 2019) composed of three states: “healthy”; “relapsed” or “diseased”; “dead”.
Illness-death model is the most frequent structure used to follow the evolution of cancer pa-
tients as in ovarian cancer (Eulenburg et al., 2015) or in chronic myeloid leukemia (Iacobelli
and Carstensen, 2013).

Most of the previous work describes the risk of transiting using (semi-) Markov processes
and transition-specific Cox P.H. models (De Wreede et al., 2010). We here propose a deep
learning architecture, IDNetwork (Illness-Death Network), which models the probabilities
of occurrence of the transitions with no linear assumption.

We contribute to (i) derive a new form of the log-likelihood of an illness-death process,
(ii) build the network architecture IDNetwork, (iii) implement in Python the pipeline of our
method including performance criteria evaluation. We conduct experiments on a simulated
non-linear data set and on real data sets of patients with colon cancer and with breast
cancer. We show that IDNetwork achieves better performance compared to state-of-the-art
methods.

2. Methodology

An illness-death process (Andersen et al., 2012) E is a continuous-time stochastic process
that describes the states occupied by a patient over time with three states 0: healthy, 1:
relapse, and 2: death. It is characterized by three transitions: from 0 to 1 (0 — 1), from 0
to 2 (0 — 2), from 1 to 2 (1 — 2), where transitions from state 0 are competing, transitions
0 — 1 and 1 — 2 are successive. See an illustration in Figure 1. We assume that at time 0
all the patients are in state 0.

foi(t)
State 0 State 1
Event-free \ Relapse
State 2
t
foo(8) fia(t —To | To, Do = 1)
Death

Figure 1: Hlustration of an illness-death process.



IDNETWORK: A DEEP ILLNESS-DEATH NETWORK BASED ON MULTI-STATE PROCESS

2.1. Formalism

Throughout the following sections, we note (k,1) € {(0,1),(0,2),(1,2)}. The illness-death
process is characterized by three random variables (r.v.) T}, associated with each of the
three transitions, that represent the transition times from state k to [ (k # [). Subjects
leaving state 0 will enter either state 1 at time Ty; or state 2 at time Tps. For subjects
entered in state 1 at Tp1, they will enter in state 2 at time Tp; + T12. The process can be
summarized by two r.v. Ty, T5. We define the exit time from state 0

Ty = %%{E(t) # 0} = min (To1, To2)

together with Dy that indicates the entered state (Dy = 1 or 2), and the entry time to state
2

T = mf{E(t) = 2} = To + 1{Do = 1}T12

that characterizes the total survival time.

In general, the process associated with each of the three transitions might depend on
the time of arrival in the state (Markov process) or on the time since the entry to the
state (Semi-Markov process). Here, for transition 0 — 1 and 0 — 2, we consider time non-
homogeneous markovian processes. For transition 1 — 2, we perform a time transformation,
following Andersen et al. (2012), and we consider a time homogeneous semi-markovian
process (the probability of transiting from state 1 to state 2 at time ¢ depends only on the
duration d =t — T already spent in 1). Wherever convenient, we use the duration variable
d instead of . Under these assumptions, we aim to model the transition-specific density
probabilities over time. We define fy1, fo2 as the infinitesimal probabilities of experiencing
respectively transitions 0 — 1, 0 — 2,

1
t)=1lim-P(t <Ty <t+h,Dy=1), forl=1,2.
fOl() hli}r%)h, ( > 40 > + s 70 )7 or )
We define Fy1, Fyo their cumulative counterparts such that
t
Fo(t)=P(To < t, Do =1) = / fa(t)dt, for 1 = 1,2,
0
expresses the probability that a transition 0 — [ occurs on or before time t. We also define
fo(t) = for(t) + foa(t) (vesp. Fo(t) = Fpi(t) + Foa(t)) as the infinitesimal probability of
leaving state 0 at time ¢ (resp. on or before time ¢). For transition 1 — 2, the functions of
interest are defined conditionally to Ty, Do = 1. To simplify the notations, we drop this

conditioning in the definitions. We define f15 as the infinitesimal probability of experiencing
transition 1 — 2, such that for fi2(d) := fi2(d |To, Do = 1),

1
d)=1lm-P(d<Ty -To <d+h
fi2(d) = lim (d<T-To <d+h),
We define Fiy as its cumulative counterpart such that, for Fia(d) := Fi2(d|Ty, Do = 1),

d
Fiao(d) =P(To — Ty < d) = /O fi2(d)dd,
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expresses the probability that a transition 1 — 2 occurs on or before time d conditionally
to Ty, Do = 1. Fy1, Fpz and Fio are commonly referred to cumulative incidence functions
(CIFs) in the literature (Meira-Machado and Sestelo, 2019) and are our main functions of
interest to predict.

We formulate our illness-death process through these probabilities. However illness-
death processes are conventionally defined through transition intensities (Andersen and
Borgan, 1984). Both formalisms are related.

2.2. A piecewise-constant approach

We now assume that the transition-specific density probabilities are piecewise constant,
following Kvamme and Borgan (2019) and Friedman et al. (1982). This is an approximation
and it is well-established that the approximation error can be bounded when the true
functions are smooth (Triebel, 1983). Most of the existing survival networks assume discrete
time modelization in order to simplify the optimization of the likelihood (see Section 3.2).
However, the approximation error that arise when a discrete-time method is used can be
reduced with piecewise constant approximations, with no supplementary computational
costs.

First, we define 7 as the maximum horizon time window. We divide the time axis into K
disjoint time intervals: v; = [ag,a1), -+, vk = [ax—1,aK), with ap = 0 and ax = 7. For
any time s € [0, 7[, we denote by Uk(s) the time interval to which s belongs. Assuming that
the density probabilities are constant within each interval, we can express fo; (I = 1,2), fi2
as step functions such that fo(t) = for(vk)) and fi2(d) = fi2(vay). We refer the reader
to Appendix A for the exact expressions of Fy; (I = 1,2), Fi2 under the piecewise constant
assumption.

In real clinical data the r.v. Ty, T can take values after 7 (a patient can leave state 0 or
state 1 after 7). Hence, under the piecewise constant assumption, the following equations
are satisfied

K K
> folor)lorl + 1= Fo(r) =1, > fra(ve)loxl + 1 = Fra(r) =1, (1)
k=1 k=1
where |vg| is the length of interval vg. See Lee et al. (2018); Kvamme and Borgan (2019)
for similar remarks.

2.3. Illness-death data

In clinical settings, patient characteristics are observed as P-dimensional covariates. In
addition, right-censoring has to be taken into account. Let C be a non-negative censoring
r.v. independent of (Tp,Ts) that precludes its observation. Let Ty = min(Tp, C) and
Ty = min(Ty, C) be the observed event times. Together with these times, we observe
binary labels indicating the status of the transitions: dy = 1{Do =1,Tp < C} (I = 1,2),
012 = do1 1{T> < C}, where §; = 1 indicates an entry in state [ from k and d; = 0 indicates
a censored transition.

We observe n independent and identically distributed r.v. in RF x Ry x {0, 1} x {0, 1} x
R4 x {0,1}:

D; = {Xiv (T375617532)7 (Tg, 11'2)}1 D

<i<n
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where X; = (Xil, e ,Xip)T is a vector of P covariates observed at baseline. From these
observations and for each subject i, we aim to estimate the true transition specific density
probabilities conditionally to the clinical features X; in order to predict the individual CIFs.
We note fo(.|X:) (I =1,2), fi2(.|X;) and their cumulative counterpart Fy;(.|X;) (I =1,2),
Fia(|]X5).

2.4. Definition of the log-likelihood

Under the assumption of a piecewise constant model, we show that the conventional illness-
death log-likelihood (Andersen et al., 2012) ¢ can be rewritten in terms of the density
probabilities. We define ¢ by dividing the contributions in two distinct parts:

n

z:%zmﬁei]. ()

=1

56 is the log contribution of patient ¢ from state 0. From state 0, patient ¢ with an event
at time T can contribute in three ways. He can (i) experience a transition 0 — 1; (ii)

experience a transition 0 — 2; (iii) be censored at Tg. Thus £} is given by

b= {561 log (for (v |Xi))} + (1 — (81 + 0b)) log (1 — Fo(Tg | X))
I=1,2

On the other hand, ¢ is the log contribution of patient i from the time he has entered state
1 (only for i such that 63, = 1). Following the previous reasoning, ¢} is given by

01 = 831815 10g (f12 (v, 75—z 1Xi)) + 0 (1 — 01p) log (1 — Fio(T3 — T |Xi))~

3. Description of IDNetwork

IDNetwork is a deep learning architecture tuned to estimate the step probability functions
fo1, fo2, fi2 over the interval [0, 7] by capturing possible non-linear relations between co-
variates and transition probabilities.

3.1. Network architecture

Inspired by the work of Lee et al. (2018), we develop an architecture (see an illustration in
Figure 2) with three task-specific sub-networks that are related to the three transitions of
an illness-death process. Multi-task learning is done with hard parameter sharing (Ruder,
2017) in order to extract common and specific patterns from the patient’s characteristics
(ie. the baseline covariates). It is composed of a first subnetwork shared between the
three transitions and of three transition-specific subnetworks. Two different softmax output
layers are used to transform the transition-specific subnetworks outputs into time-dependent
probabilities.

Input layer The input layer is composed of the matrix X of P baseline covariates for the
n individuals.
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Transition specific
subnetwork 1
(0 — 1)

FC layer
Yo1
FC layer
e . Softmax layer ,z & \T
Transition specific Y (for, foz) Concatenated output
subnetwork 2 > FC layer —]
0 — 2) Joint distribution
of Tp:
KO layer FC layer (fm(vk \X))
Z Yo2 0<k<K+1
X —» : —> : —
FC layer FC layer (foz(vk ‘X)>0<k§K+1
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1 = 2) ( : X )
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FC layer Softmax layer | »
Yiz fi2
—> : —>

: FC layer
FC layer

Figure 2: IDNetwork architecture. “FC layer” refers to fully-connected layer.

Covariates shared subnetwork The shared subnetwork takes as input the input layer
and contains L fully connected hidden layers with [ units. Its output is a vector z =
g™Pu (X)) in R! that captures shared patterns between the three transitions (¢g™P" is a non
linear activation function).

Transition-specific subnetworks FEach transition-specific subnetwork takes as input
z and contains L* fully-connected hidden layers with (¥ units. Its output is a vector
yi = ¢" (z), that is a transition-specific transformation of the shared features (¢g* is a
non linear activation function). Given the unbalanced number of observations for the three
transitions that may exist in real data, the range of model complexity is different for each of
the three transitions. To find the best configuration, we set the structure of each subnetwork
independently (see Appendix F).

Probabilistic output layers The output of the network is composed of two probabilistic
layers that map the transition-specific outcomes yg; into time-dependent probabilities. The
first layer is related to the exit from state 0 (ie. the competing transitions 0 — 1 and 0
— 2). The second layer is related to the marginal transition 1 — 2. The two layers are
independent as the first layer learns the joint distribution of T and the second layer learns
the marginal distribution of Ty — Ty|Tp, Dy = 1.

Under the constraint of Equation (1), we consider a supplementary interval vg i1 =
[T,+00). Consequently, we fulfill the constraint by defining 1 — Fy (7') = fo (UK+1), 1-
Fio (7’) = f1o (UK+1). Hence, each output of the network is a fully-connected layer which
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(i) use a linear activation function g"¢a* to transform (yo1, yo2)? (resp. y12) into a vector
b0 = (¢o1, d02)’ € R2(K+1) (resp. a vector ¢1o € REFD) and then (ii) use a weighted
softmax activation function oy (resp. o2) to transform ¢g (resp. ¢12) into probabilities and
provide an estimation of fo1, fo2 (resp. fi2) in each time interval. Thus, the output layers
are characterized by the vectors

fo = (fou, f'02)T =09 (ghnear ((Y01,YO2)T)> =00 ((¢01, ¢02)"),

fio =09 (ghnear (Y12)> = 09 (¢12),

where fi; = ( fkl(vk | X )) and o(, oo are two softmax functions weighted by the
0<k<K+1

length of the time intervals such that

exp [ (X)]
S (exp [0, (X)] + exp [@hy(X)] ) I
exp [¢If2 (X)]
S exp [6],(X)] ful

for(vg |X) = , forl=1,2,

fra(vg |X) =

3.2. Loss function and mitigation of the number of time intervals effect via
penalization

To learn IDNetwork parameters, we minimize a total loss function,
Etotal = _£K+1 + P)\a (3)

that sums the negative log-likelihood and a penalization term. The first term ¢5+! is a
revising of the log-likelihood ¢ defined in Equation (2) under the constraint of Equation (1).
The second term Py is a penalization term related to 5+ allowing to smooth the effect
of a non-optimal number of time intervals (ie. a non optimal value for K). The choice
of K has a significant impact on the performance: the number of nodes grows with K,
which might cause over-fitting (for large value of K) or under-fitting. The optimal selection
of K can be fixed by applying a temporal smoothing technique. Following Most (2014)
and Tibshirani et al. (2005), we apply a temporal smoothness constraint by penalizing, in
the weight matrices (resp. the bias vectors) of the output layers, the first order differences
of the weights (resp. the bias) associated with two adjacent time intervals (see definition in
Appendix B). The penalization term limits over-fitting for larger values of K.

The optimization of the log-likelihood is facilitated by the use of piecewise constant
model. Indeed, a continuous model would have necessitated the use of the Cox partial
log-likelihood (Cox, 1972) that significantly impact on the computational cost in the gra-
dient descent because of the presence of two cumulative sums (see Achab et al. (2015) and
Kvamme et al. (2019) for more details).
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4. Prediction task and benchmark
4.1. Individual disease progression predictions

In this subsection, we define the predictions of interest according to the time scales defined
below. From the output of our network (ie. the functions fy (| X) (1=1,2), fi2 (.| X)), we
can derive the estimation of the CIFs. For a new patient j with the baseline covariates Xj,
we note the estimated CIFs, derived from Equations (4) and (5) in Appendix A, as Fy, (\ X j)

(1=1,2), Flg(.| X j). We refer the reader to Appendix C for their exact expression.
We will use the estimated CIFs to assess the predictive performance of IDNetwork.

4.2. Predictive performance criteria

In event history analysis, commonly used performance measures are the time-dependent
AUC (for discrimination) and the time-dependent Brier score (BS) (for calibration). On
the basis of the transition-specific time properties defined in Section 2.1, we adapt the def-
initions of the time-dependent AUC (Jacqmin-Gadda et al., 2016) and the time-dependent
BS (Spitoni et al., 2018). To take into account the lost of information due to censoring, we
use estimators based on the inverse probability of censoring weight (IPCW) methods. The
time-dependent AUC and the time-dependent BS can be extended to the interval |0, 7] by
computing respectively the integrated AUC (iAUC) and the integrated BS (iBS). We refer
the reader to Appendix D for the exact definitions of the criteria.

4.3. Benchmark and validation

Predictive performances of IDNetwork in predicting the CIFs are compared in terms of
discrimination (with the iAUC) and calibration (with the iBS) with two state-of-the-art
statistical methods: the multi-state Cox P.H model (msCox) from the R library mstate
(De Wreede et al., 2010) and a spline-based version of the multi-state Cox P.H. model
(msSplineCox) from the R library flexsurv (Jackson, 2016). We also compare IDNetwork
with a simplified linear version of IDNetwork (LinearIDNetwork) (see an illustration in
Appendix E). We perform two sets of experiments on (1) a simulated data set and (2)
on three real clinical data sets. We score predictive performance of the methods through
internal validation (Royston and Altman, 2013) by randomly splitting M = 50 times each
data set D,, (m = 1,---,M) into a training/testing data set DIa" (68% for training
/ 12% for early stopping) and a validation data set DY (20%). For each split m, we
perform R = 20 random hyper-parameters searches (Bergstra and Bengio, 2012) and we
choose the set of hyper-parameters associated with the best iAUC (averaged across the
three transitions) on the held-out validation sets. Experimental details on IDNetwork’s
hyper-parameters tuning are given in Appendix F. We compare the median (4 standard
deviation (sd)) iAUC (higher the better) and iBS (lower the better) on the validation sets.
We statistically compare performances of IDNetwork over the three other methods using a
bilateral Wilcoxon (Wilcoxon, 1992) signed rank test. In the results, - indicates a p-value
less than 0.1, § less than 0.05, I less than 0.01, * less than 0.001.
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5. Experiments on a simulated data set

5.1. Data simulation

We generate a data set with n = 5000 observations and 7 = 100. We simulate four
2-dimensional baseline covariates, each drawn from a multivariate Gaussian distribution.
We then simulate continuous illness-death times through Cox transition-specific non-linear
(quadratic) risk functions, see simulation details in Appendix G. In this simulation scheme,
the Cox’s linear assumption doesn’t hold.

5.2. Predictive performance

The predictive performances are shown in Tables 1. Detailed results per evaluation time are
displayed in Appendix H. In this simulated data set, the Cox’s linear assumption doesn’t
hold anymore. Consequently, as expected, IDNetwork significantly outperforms msCox and
msSplineCox with a p-value less than 0.001 in terms of iAUC and iBS (except for the
transition 1 — 2 where msCox outperforms IDNetwork but with no statistical difference).
IDNetwork significantly outperforms the linear version LinearIDNetwork as well. IDNet-
work significanlty outperforms the linear version LinearIDNetwork as well.

Table 1: Predictive performance (median £ sd) on the validation sets (internal validation)
for the non-linear simulated data set. We integrate the AUC and BS measures at
all the 4 equidistant time points in [0, 7] (for computational cost reasons).

el . . Transition
Criteria | Algorithm 051 ) 153
msCox 0.533* 0.03 | 0.481* 0.03 | 0.489* +0.03
AUC msSplineCox 0.532* £0.03 | 0.479* £0.03 | 0.486* +0.03
LinearIDNetwork | 0.531* +£0.03 | 0.510% £0.03 | 0.504* 4+ 0.03
IDNetwork 0.580 +£0.03 | 0.525+0.03 | 0.566 + 0.03
msCox 0.234* £0.01 | 0.243* £0.01 | 0.159 +£0.01
BS msSplineCox 0.242* £0.01 | 0.251* +0.01 | 0.159 £ 0.01
LinearIDNetwork | 0.162* £0.01 | 0.161* £0.01 | 0.165" +0.01
IDNetwork 0.146 £0.01 | 0.144 +0.01 0.160 = 0.01

6. Application on real clinical data sets

6.1. Description of the data sets

We conduct experiments on real data from two clinical trials in colon cancer and one clinical
trial in breast cancer. A more detailed description of the data sets is given in Appendix J.

Clinical trials in colon cancer We use two data sets from Phase III clinical trials
evaluating endpoints relapse-free survival (RFS) and overall-survival (OS) in non-metastatic
colon cancer. (1) The study NCT00079274 contains 2121 observed patients followed for 60
months for RFS and for 96 months for OS. (2) The study NCT00275210 contains 1122
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patients followed over 60 months for RFS and OS. We select 9 baseline clinical covariates
shared between the two studies. The study NCT00079274 will be use for internal validation
(training and validation) and NCT00275210 for external validation.

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
cohort This data set contains clinical, histo-pathological, gene copy number and gene
expression features used to determine breast cancer subgroups. We include 1903 patients
followed for 360 months for the endpoints RFS and OS. We select 17 baseline clinical features
and we add 100 gene expression features.

6.2. Predictive performance

The integrated predictive performances are shown in Tables 2 and 3. Results per evalua-
tion time are displayed in Appendix J. On the colon data sets, we conduct (1) internal and
(2) external validation. On the validation splits, neither methods outperforms the other
for the three transitions. However, IDNetwork shows better performance on the external
NCT00275210 validation study for all the transitions (excluding in terms of iAUC for the
transition 1 — 2 where msSplineCox outperforms IDNetwork, but with no statistical sig-
nificance). On the METABRIC cohort, IDNetwork significantly outperforms msCox for
transitions 0 — 1 and 1 — 2. IDNetwork and LinearIDNetwork show bad performance for
the transition 0 — 2. This is, in our opinion, due to the fact that experiencing transition
0 — 2 means that the patient died from another cause than cancer, but the clinical and
biological features provided to the model were not related (excluding the age) to non-cancer
causes of death.

7. Conclusion and discussion

We present IDNetwork a novel method to model an illness-death process and to predict
two-stages evolution of a disease based on baseline covariates. IDNetwork uses a multi-task
architecture to learn an estimation of the probabilities of occurrence of state transitions
of an illness death process without any assumption on the relation between covariates and
risks of transition.

We benchmark the predictive performance of our method with the state-of-the-art meth-
ods and show, through experiments conducted on a simulated data set and on real data
sets on colon and breast cancer, that IDNetwork provides significant improvements in terms
of discrimination and calibration when non-linear patterns are found in the data. The ar-
chitecture of IDNetwork can learn transition-specific patterns in the data, but can suffer
of over-fitting when the training size is too small. Hence, We adapt the architecture of
IDNetwork to handle these limitations.

Medical decision making requires to combine heterogeneous individual features. IDNet-
work can be easily adapted to integrate various types of data (as images, biological, clinical
data). For the future work, it may be relevant to add an interpretability functionality
to IDNetwork. It could reveal what are the patient characteristics associated with each
transition and increase the understanding of the evolution of the disease.

In clinical practice, IDNetwork may be useful in personalized medicine by providing
prediction of the risks of relapse and death. It could help physicians to adapt the therapeutic

10



IDNETWORK: A DEEP ILLNESS-DEATH NETWORK BASED ON MULTI-STATE PROCESS

Table 2: Predictive performance (median =+ sd) for the data sets NCT00079274,
NCT00275210 on colon cancer on (1) the validation sets (internal validation),
(2) the external NCT00275210 test set (external validation). We integrate the
AUC and BS measures at all the 30 equidistant time points in [60, 7] (ie. at every
month from 2 months).

. er s . Transition
Evaluation | Criteria | Algorithm 051 ‘ 05 2 )
msCox 0.686 +£0.03 | 0.633¥ £0.09 | 0.670 4 0.04
IAUC msSplineCox 0.686 + 0.03 0.629Y +£0.10 | 0.679 +0.04
LinearIDNetwork | 0.671 4 0.03 0.637F £0.10 0.663" £0.04
IDNetwork 0.676 +£0.03 0.673 + 0.09 0.677+0.04
(1) Internal
msCox 0.152 + 0.01 0.029% £0.01 0.196 £ 0.02
iBS msSplineCox 0.152 £0.01 | 0.029* +0.01 | 0.192" +0.03
LinearIDNetwork | 0.153 4+ 0.01 0.026 + 0.01 0.207 £ 0.03
IDNetwork 0.152 +0.01 | 0.026 +0.01 0.203 +£0.03
msCox 0.669* +0.00 | 0.607* +0.02 0.562 £+ 0.02
AUC msSplineCox 0.669% +0.00 | 0.605* +£0.03 | 0.565 + 0.01
LinearIDNetwork | 0.672 4+ 0.01 0.694 4+ 0.03 0.543* +0.02
(2) External IDNetwork 0.674 +0.01 | 0.698 + 0.05 0.558 +£0.03
msCox 0.157* +£0.00 | 0.013* +0.00 0.182* +0.01
iBS msSplineCox 0.159* +0.00 | 0.013* +0.00 0.172* £ 0.01
LinearIDNetwork | 0.154 +0.00 | 0.011 +0.00 | 0.146 +0.01
IDNetwork 0.154 +0.01 | 0.011+0.00 | 0.146 +0.01

Table 3: Predictive performance (median + sd) on the validation sets (internal validation)
for the METABRIC data set. We integrate the AUC and BS measures at all the
30 equidistant time points in [90, 7] (ie. at every month from 3 months).

. . . Transition
Criteria | Algorithm 051 05 2 155
msCox 0.702+0.03 | 0.734* £0.05 | 0.689* & 0.04
Auc | msSplineCox 0.706 + 0.03 0.718" £ 0.06 | 0.693% +0.04
LinearIDNetwork | 0.697% £0.03 | 0.625* £0.04 | 0.718 +0.03
IDNetwork 0.711+0.03 | 0.672+0.04 | 0.728 +0.04
msCox 0.150* £0.01 | 0.067* £0.01 | 0.180* £ 0.01
BS msSplineCox 0.152t +£0.02 | 0.068* £0.01 | 0.186* +0.01
LinearIDNetwork | 0.150* £0.01 | 0.060 + 0.01 0.168 £ 0.02
IDNetwork 0.142+0.01 | 0.057+£0.01 | 0.165+ 0.02
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guidelines for a specific patient. IDNetwork is a flexible method developed for an illness-
death process and can readily be applied in many cancers to predict two-stages evolution.
It can be generalized to embrace more complex disease evolution patterns by adapting the
states and transitions (Jackson, 2007).
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Appendix A. Exact definitions of the CIFs under a piecewise constant
model

Under the assumption of a piecewise constant model, the cumulative incidence functions
Fy (1 =1,2) and Fy9 are piecewise linear and have the following expressions

k(t)—1
Fo(t) = > for(vr)lorl + (t = angy—1) for (Vi) (4)
=1
k(d)—1
Fia(d) = Jr2 (vk) o] + (d = aga)—1) f12 (vk(ay)- (5)
=1

where |vg| is the length of interval vg. See Kvamme and Borgan (2019) (Section 4.3) for a
similar remark in the at-most one event case.

Appendix B. Definition of the penalizaton term P,

Let’s consider
W = (Wl, WIQ)T, B = (BI,BIQ)T

the weight and bias parameters associated with both output layers, with

wl e R(101+l02)><2(K+1)7 w2 ¢ Rl12><(K+1)

the weights matrices,
Bl c R2(K+1), 312 c RK+1
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the bias vectors. For k =1..., K we compute
_ .kl kl _ 1kl kl
Aw?,lk = wj,k’+1 — wj,k’ Abllzl = bk+1 — bk 5

the weight and bias differences associated with the transition & — [, the neuron j and the
adjacent time intervals vy, vg41. Then the penalty term of our loss function in (3) has the

form
+ )\bl Z )Abkl )

where )\ﬁf and )\’b“l are transition-specific positive constants determining the amount of
smoothing to be applied for each transition. For A — +oo (respectively )\’,fl — +00),
all differences will be set to zero resulting in constant weights (respectively constant bias).
This penalization term allows to minimize the risk of over-fitting, for the three transitions
independently, for larger values of K.

lkl

P\(B, (AMZZ(A u

7j=1k=1

Appendix C. Exact expressions of our predictions Fy(.| X;) (I =1,2) and
Fio(] X;)

For a new patient j, with the set of covariates X;, the exact expression of the estimated
CIFs is given by the following equations:

k(t)—1
Fo(tlX;) = Z o1 (0k1 X5) [k] + (8 = argy—1) for (vrey| X;), for 1= 1,2,

k(d)fl

F12(d|Xj) = f12 (Uk\Xj)|Uk| + (d - ak(d)—l)flz (Uk(d)|Xj)’
k=1

this is just a rewriting of Equations (4) and (5) with estimation.

Appendix D. The predictive performance criteria

The transition-specific time-dependent AUC measures, for two patients ¢ and j, is the proba-
bility that a patient ¢ who experienced the transition kl before time ¢ has greater probability
of occurrence of the transition than a patient j who has survived to the transition. It is
defined as the integration of the ROC curve opposing specificity (Sp) and sensitivity (Se):

AUCH(t) = P(Foz (t1X:) > Fo (¢ |X5) | Tg < t, T >t, Dy = l)

t -1
:/ SeXt <<1 - Spgl) (p)) dp,for 1 =1,2,
0

AUC™2(d) = IE»(F12 (| X;)>Fia(d| X;)| Ti—Ti<d, T) —TJ >d, D=1, D} = 1)
d
-1
:/ Sel? ((1 - Sptlf) (p)) dp.
0
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The transition-specific time-dependent Brier score measures the difference between the pre-
dicted probability of occurrence of the transition at time ¢ and the status of the transition:

[1{T3 > t} — Fo (¢ |X,)]” for 1 =1,2,
1

BS%(t) =

1 n
A

7

1 . . 2
BS2(d) = — 3 [IL{T5 T d) — Fro(d | XZ-)} :
niy
D=1
where n12 is the number of patients at risk for transition 1 — 2.
The time-dependent AUC and the time-dependent BS can be extended to the interval
10, 7] by computing respectively the integrated AUC (iAUC) and the integrated Brier score
(iBS) as follows:

AUCH — X / AUCH (t)dt, iBSM = = / BSH (t)dt.
T Jo

T Jo

Appendix E. LinearIDNetwork : a linear version of IDNetwork

The architecture of LinearIDNetwork, a simplified linear version of IDNetwork with no co-
variates shared subnetwork and no transition-specific subnetworks, is illustrated in Figure 3.

Concatenated output

Soft 1 p s \T
ottinax fayer (f01:f02) Joint distribution

—> | FC layer |+ | of Tp:
1 X
(fm(vk | )>O<k§K+1
f X
X — > (foz(vk | ))M@+1
Marginal distribution
Softmax layer ? . of T —To:
) 12 p X
FC layer (fm(uk | )>O<k§K+1

Figure 3: LinearIDNetwork architecture. “FC layer” refers to fully-connected layer.

Appendix F. Experimental details of IDNetwork

In this section, we give additional details on the implementation and the optimization
settings of IDNetwork. IDNetwork is implemented in Python within a Tensorflow envi-
ronment!. It uses standard deep learning techniques as Lo regularized layers to avoid
over-fitting, L; regularized output layers, Xavier Gaussian initialization schemes, Adam
optimizer, mini-batch learning, learning rate weight decay, early stopping. IDNetwork is

1. https://www.tensorflow.org/
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optimized in two steps including the hyper-parameters optimization and the parameters
optimization.

Hyper-parameters of IDNetwork include number of nodes and hidden layers in each
subnetworks, regularization penalty parameters, output-specific penalization parameters,
activation functions for each subnetwork, etc. A complete list of hyper-parameters are
given in Table 4. Hyper-parameters are tuned using Random Search (Bergstra and Bengio,
2012). For each hyper-parameter, we fix a discrete space of search by manual search. For
each model, the sets of search spaces are adjusted according to the data set in input.

Definition* Discrete search space

Initialization Xavier initialization

Optimizer Adam Optimizer

Learning rate 1074

Mini-batch size {8, 16, 32, 64, 128}

Nodes per shared hidden layer (1) {15, 30, 50}

No. shared hidden layers (L) {1, 2, 3}
Nodes per transition-specific hidden layer (I¥!) {15, 30, 50}
No. transition-specific hidden layers (L*!) {0, 1, 2, 3}
Non linear activation function (g"Put, g*!) {ReLU, ELU, Leaky-ReLU}
Ly /L5 regularization parameter {177,176, 175, 174, 173, 172}
Decay for gradient descent {173,172, 0.1, 0.4, 0.6, 0.8, 1.0}
Parameter difference for early stopping {176, 175, 174}
Output-specific penalization (AF, \E) {17°, 174, 173, 172, 0.1}

*references to notations in the paper: transition (k,) € {(01), (02), (12)}.

Table 4: Hyper-parameters of IDNetwork.

Appendix G. Additional details on data simulation

For each observation ¢ (1 < ¢ < n) we simulate four 2-dimensional baseline variables, each
drawn from a multivariate Gaussian distribution with mean 0 and a matrix of variance

covariance X,:
(A

X = (x0,x x0, x0)"

where Xi(p) €R?2 ~ N (0,%,) (1 <p<4)and the entries of the matrix E;l,ﬂ are simulated
from i.i.d. uniform variables on [0, 1].

We aim to generate the processes T (together with Dg) and T5, such that the illness-
death times Ty, for (k,1) € {(01),(02),(12)}, are simulated through Cox transition-specific
hazard functions, noted ag;(.), as done traditionally (Bender et al., 2005):

T}y ~ am(t|X;) = oy (t) exp (gr (Xi, Brr))

where gg;(.) is a transition-specific risk function,

T
1 2 3 4
ﬁkl = (B](d)a /Bl(gl)7/81(€l)7 Bl(gl)>
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with B,(flj) € R? for 1 < p < 4, are fixed effect coefficients, and agl is a transition-specific
baseline hazard function. We generate the three baseline hazard functions as follows:
a?,(.) ~ Weibull (scale = 0.01, shape = 1.2).

We set the transition-specific risk functions to be non linear using quadratic functions,
in the spirit of Lee et al. (2018), as

2
go1 (Xi, Bo1) = <Xi(1)5(%) + Xz‘(Q) é?) )

2
902 (X, Bo2) = (Xi(z)ﬁ((;) + X7;(3) (()?2’)> 5

2
g12 (X4, Bi2) = (Xi(g)ﬂg) +X¢(4) S)) :

We fix arbitrary values for the fixed effects coefficients. Hence, in this simulation scheme,
the Cox’s linear assumption doesn’t hold anymore.

We fix the censoring rate r to r = 30% such that 30% of patients from state 0 are
censored, and 30% of patients at risk for transition 1 — 2 are censored from state 1.

Appendix H. Additional results on the non-linear simulated data set

Additional results on the non-linear simulated data set are displayed in Figure 4.

IDNetwork —  LinearIDNetwork msCox
msSplineCox
-. Transition 0 — 1 -~ Transition 0 — 2 — Transition 1 — 2
(a) Legend

AUC
%
-
BS

0 F3 50 75 100 0 F3 50 75 100
time time

(b) AUCs per evaluation time (¢) BSs per evaluation time

Figure 4: AUCs and BSs per evaluation time for the different models for the non linear
simulated data set.

Appendix I. Description of the real data sets

Descriptive statistics of the data sets are shown in Table 5.
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No. observations (%)
0—-+1 0— 2 0 — cens. 1 -2 1 — cens.
NCTO00079274 | 623 (29%) 81 (4%) 1427 (67%) 276 (44%*) 347 (56%*) | 2121
NCT00275210 | 279 (25%) 14 ( 1%) 829 (74%) 132 (47%*) 147 (53%*) | 1122
METABRIC 677 (36%) 509 (27%) 717 (38%) 593 (88%*) 84 (12%*) | 1903

* among patients at risk

Data set Total

Table 5: Descriptive statistics of illness-death data from real clinical data sets.

The data on colon cancer is composed of two data sets from two Phase III clinical
trials evaluating the outcomes RFS and OS on non-metastatic colon cancer: (1) The study
NCT00079274? contains 2121 observed patients followed for 60 months (5 years) for RFS
and for 96 months (8 years) for OS. It presents 67% of censoring from state 0 and 56% from
state 1 among patients at risk. (2) The study NCT00275210% contains 1122 patients
followed over 60 months for RFS and OS. The data set presents 74% of censoring from
state 0 and 53% from state 1 among patients at risk. The preprocessing of this two data
sets requires a preliminary evaluation of the compatible features (same covariates and same
distributions of the covariates) and to adjust the length of follow-up between both data
sets. Thus, we finally restrict our attention to 9 baseline clinical covariates (8 categorical
and 1 numerical) including the following features: BMI, sex, race, age, tumor histological
type, number of positive lymph nodes, cancer stage, ECOG performance status, presence of
bowel obstruction/perforation. In the study NCT00079274, outcome RFS has been right-
censored at 5 years and outcome OS at 8 years. Whereas in the study NCT00275210, both
outcomes have been right-censored at 5 years. We adjust the length of follow-up of both
studies choosing a value for 7 compatible with both.

For the METABRIC? data set, we include 1903 patients followed for 360 months
(30 years) for relapse-free survival (RFS) and overal-survival (OS), with 38% of censoring
from state 0 and 13% from state 1 among patients at risk (see Table 5). Based on the
literature, we select 17 baseline clinical and molecular covariates (12 categorical, 5 numer-
ical) including the following features: age, inferred on the menopausal status, Nottingham
Prognostic Index (NPI), immunohistochemical oestrogen-receptor (ER) status, cumber of
positive lymph nodes, cancer grade, tumor size, tumor histological type, cellularity, Her2
copy number by SNP6, Her2 expression, ER Expression, progesterone (PR) expression,
type of breast surgery, cancer molecular subtype (pamb0 subgroup, integrative cluster),
chemotherapy regime, hormone regime, radiotherapy regime. We also use gene expression
data. Several approaches have been reported to integrate gene expression data into survival
models, based either on dimension reduction, on genes or metagenes selection (Van Wierin-
gen et al., 2009) or, more recently, on the use of a large number of gene expression values
(> 1000) with the development of deep learning methods (Yousefi et al., 2017; Ching et al.,
2018). We preprocess gene expression data based on a selection approach in order to extract

2. The clinical trial NCT00079274 is available under request at https://data.projectdatasphere.org/
projectdatasphere/html/content/161

3. The clinical trial NCT00275210 is available under request at https://data.projectdatasphere.org/
projectdatasphere/html/content/128

4. The METABRIC data set is available at https://www.nature.com/articles/s41586-019-1007-8#
Sec22
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cancer-related information from a massive amount of features. To extract this information,
we select the 100 genes with the largest standard deviation.

For the three data sets, missing values were imputed by the median value for numerical
features and by the mode for categorical features. We apply one-hot encoding on categorical
features and standardize numerical features with the Z-score. We fix a length for the time
intervals to 1 month such that the time interval for month j, v; = [j — 1, j) includes all the
events that occurred in the interval [(j — 1) x 30.5,j x 30.5). We fix respectively K = 48
and K = 120 for the METABRIC data set and we set the event times after respectively 48
(months) and 120 (months) in supplementary last intervals v4g and vi9;.

Appendix J. Additional results on the real data sets

Additional results per evaluation time on the colon cancer data sets are displayed in Fig-
ures 5 and 6. Additional results on the METABRIC cohort are presented in Figure 7.

IDNetwork —  LinearIDNetwork - msCox
msSplineCox
-. Transition 0 — 1 -~ Transition 0 — 2 — Transition 1 — 2
(a) Legend

0257

0 500 1000 0 500 1000
time time

(b) AUCs per evaluation time (¢) BSs per evaluation time

Figure 5: AUCs and BSs per evaluation time for the different algorithms for the colon data
set (internal validation).
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Figure 6: AUCs and BSs per evaluation time for the different algorithms for the colon data
set (external validation).
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Figure 7: AUCs and BSs per evaluation time for the different algorithms for the
METABRIC cohort (internal validation).
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