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Abstract

Extensive collections of personal omics data from large clinical cohorts provide an unprece-
dented opportunity to develop high-performance machine learning systems for precision
medicine. However, most clinical omics data were collected from individuals of Euro-
pean ancestry. Such ancestrally imbalanced data may lead to inaccurate machine learning
models for the data-disadvantaged ethnic groups and thus generate new health care dis-
parities. In this work, we develop a transfer learning scheme for survival analysis with
multi-ethnic data. We perform machine learning experiments on real and synthetic clinical
omics datasets to show that transfer learning can improve the prognostic accuracy of Cox
neural network models for data-disadvantaged ethnic groups.
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1. Introduction

Clinical omics studies hold great promise to elucidate complex disease mechanisms and gen-
erate critical data for developing predictive analytics that is essential to precision medicine.
However, recent statistics show that the vast majority of participants of clinical genetics
and omics studies are of European descent Sirugo et al. (2019); Gurdasani et al. (2019);
Guerrero et al. (2018); Martin et al. (2019). Such data inequality presents a great chal-
lenge for training machine learning models that work equally well for all ethnic groups.
In a recent study Gao and Cui (2020), we found that current prevalent multi-ethnic ma-
chine learning schemes, mixture learning and independent learning, tend to generate low
performance models for data-disadvantaged ethnic groups, and that transfer learning can
reduce the model performance disparities. However, it is not clear how the clinical omics
data inequality would affect the performance of Cox neural network Yousefi et al. (2017);
Ching et al. (2018); Katzman et al. (2018); Luck et al. (2017); Kvamme et al. (2019); Wang
et al. (2020) models for time-to-event prediction of clinical outcomes and whether transfer
learning would be effective to address this challenge in time-to-event prediction tasks. Here,
we extend the machine learning experiments supporting these conclusions from classifica-
tion tasks to time-to-event prediction tasks, which are widely used in clinical studies. We
investigate the impacts of data inequality on caner prognosis using Cox neural networks.
We use machine learning experiments on both real and simulated cancer clinical omics data
to show that Cox neural networks generate significant performance gaps between ethnic
groups due to data inequality and data distribution discrepancy between ethnic groups,
and that transfer learning can improve the prognostic prediction for data-disadvantaged
ethnic groups.
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2. Methods

We used protein expression data from TCGA (Genome Data Commons, https://gdc.

cancer.gov/about-data/publications/pancanatlas) for overall survival (OS) prognosis
for patients with kidney renal clear cell carcinoma (KIRC) or Glioma (GBMLGG). The
KIRC-Protein-OS dataset contains expression data of 195 proteins and censored survival
time data from 406 European American (EA) and 44 African American (AA) patients.
The GBMLGG-Protein-OS dataset contains expression data of 176 proteins and censored
survival time data from 582 EA and 48 AA patients.

Here we created a Cox neural network model with six layers. The input layer has 195
nodes for KIRC and 176 nodes for GBMLGG, a fully connected (FC) layer with 128 nodes
followed by a dropout layer (drop out rate = 0.5), then another FC layer (with 64 nodes) also
followed by a dropout layer (p = 0.5), and finally a Cox regression layer. We used the ReLU
activation function for each FC layer to avoid the gradient vanish problem Goodfellow et al.
(2016). In model fitting, we optimized the object function, l(β) = −

∑
iεU L(β) + λ1|W |+

λ2||W ||2, where L(β) = log[
∏m
i=1

eβXi∑
jεR(Ti)

eβXj
]δi =

∑m
i=1 δi[βXi − log

{∑
jεR(Ti)

eβXj
}

], β

represents the weights of the Cox layer,
∑

iεU L(β) is the partial likelihood, U is the set of
uncensored patients, λ1 and λ2 are regularization parameters, W represents the weights in
the network, δi is the event status of patient i.

In transfer learning, knowledge learned from the source domain where training data is
abundant can be transferred to assist machine learning in the target domain where training
data is inadequate Pan and Yang (2009); Tan et al. (2018); Weiss et al. (2016). Here
we set EA as the source domain and AA as the target domain. We used two fine-tuning
methods for transfer learning: (1) We pre-trained the Cox neural network model M =
f(TEA, EEA|XEA) using the EA group data, and then fine-tuned it with the AA group data:
M

′
= finetuning(M |TAA, EAA, XAA), where Xk,Tk, and Ek denote the protein expression,

event time, and the event status of group k. In the fine-tuning step, we used a smaller
learning rate (0.002) since the model had been partially fitted. (2) The second fine-tuning
method is based on stacked auto-encoder Sevakula et al. (2018); Singh et al. (2016); Vincent
et al. (2010). We used the unlabeled data from the EA group to pre-train a stacked denoising
auto-encoder with 5 layers: an input layer, a FC layer with 128 nodes, a bottleneck layer
with 64 nodes, a FC layer with 128 nodes and an output layer with same nodes as the input
layer.

For each experiment, we applied a 10-fold stratified cross-validation for training and
testing split, in which samples are stratified on ethnicity and event status. We performed 20
runs for each experiment with different random partitions. We evaluated model performance
using the concordance index Harrell et al. (1982) (C-index). We used the one-sided Wilcoxon
Signed rank test to calculate the p-values for the statistical significance of the performance
differences Fig. 1.

We developed a statistical model to generate synthetic datasets such that each generated
dataset will contain two ethnic groups, EA and AA. The model comprises three types
of parameters, N1 and N2, nde, and N = {nu,v|u, v ∈ [−1, 0, 1]}. The data inequality
is controlled by N1 and N2, which denotes the total number of samples in the EA and
AA groups. We generated the simulated feature matrix Xij using the ssizeRNA package
and used nde to specify the number of differentially expressed features which controls the
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marginal distribution difference between the two ethnic groups. For the ith sample in group
k, the survival time T ki was generated using the exponential Cox model Austin (2012)
T ki = U

exp(
∑m
j=1 β

k
j xij)

, where xij is the jth feature of individual i, βkj ∈ [−1, 0, 1] represents

the effect of feature j to survival time of group k, and U is an exponential distribution
with a mean of 3000. We used a cut-off time threshold Thrk to simulate the event status

Eki =

{
0 if T ki < Thrk

1 otherwise

}
and set T ki = Thrk if Eki = 0. With two ethnic groups, a pair

of β1j and β2j would have nine possible combinations. The number of features associated
with each of the nine possible combinations is denoted as N = {nu,v|u, v ∈ [−1, 0, 1]}, which
controls the conditional distribution discrepancy between two ethnical groups.

3. Results

We compared the performance of different multi-ethnic machine learning schemes with seven
experiments (Table 1). Fig. 1 shows the box plots of C-index from seven experiments on
the multi-ethnic survival analysis for two types of cancer: kidney renal clear cell carcinoma
(KIRC) or Glioma (GBMLGG). Each box plot represents 20 independent runs with different
random training and testing data partition.

In mixture learning, data from both ethnic groups were used to train the models, and
then the model was tested on the data of both ethnic groups (Mixture0), on EA data only
(Mixture1) and on AA data only (Mixture2). We observed significant model performance
gaps between EA (Mixture1) and AA (Mixture2) groups with p-values of 3.38×10−8 and
3.39×10−8 for KIRC and GBMLGG, respectively.

In independent learning, data of each ethnic group were used separately to train and
test independent models for each ethnic group (Table 1). We also observed significant
model performance gaps between EA (Independent1) and AA (Independent2) groups for
both cancer types Fig. 1).

In naive transfer learning, the model trained using source domain (EA) data was directly
applied to the target domain without any adaptation. The naive transfer learning also
showed low performance on the data-disadvantaged AA group (Fig. 1).

Table 1: Multi-ethnic Machine Learning Scheme Comparison (*SD: Synthetic data)
Multi-ethnic
ML Scheme

Experiment
Ethnic Composition C-index
Training
Data

Testing
Data

KIRC GBMLGG SD1* SD2*

Mixture
Learning

Mixture 0
AA + EA

AA + EA 0.68 0.74 0.81 0.86
Mixture 1 EA 0.69 0.75 0.83 0.87
Mixture 2 AA 0.52 0.59 0.56 0.65

Independent
Learning

Independent 1 EA EA 0.69 0.75 0.85 0.89
Independent 2 AA AA 0.43 0.64 0.55 0.54

Naive
Transfer

Naive
Transfer

EA AA 0.45 0.63 0.51 0.64

Transfer
Learning

Transfer
Learning

EA (source)
AA (target)

AA 0.66 0.69 0.73 0.69
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Figure 1: Multi-ethnic machine learning scheme comparison on real and syn-
thetic datasets. Prediction of overall survival for (A) KIRC and (B) GBMLGG
patients from protein expression data, (C) Synthetic Data 1, generated using pa-
rameters estimated from the KIRC dataset, and (D) Synthetic data 2, generated
using parameters estimated from the GBMLGG dataset.

Using transfer learning, we achieved significant performance improvements for the data-
disadvantaged AA group in both cancers (Fig. 1). The fine-tuning methods 1 and 2 showed
the best performance for KIRC and GBMLGG respectively.

We generated two synthetic datasets using a statistical model described in the Method
section. Synthetic datasets 1 and 2 was generated using parameters estimated from the
KIRC and GBMLGG datasets respectively. For each synthetic dataset, the machine learning
experiments showed a performance pattern similar to that of the real data (Fig. 1), which
was characterized by performance gaps from the mixture and independent learning schemes
and by transfer learning reduction of the performance gaps.
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4. Discussion

Our results show that ancestrally imbalanced data may lead to significant model perfor-
mance disparity in survival analysis with Cox neural networks and transfer learning can
reduce the performance gaps by improving the model performance for data disadvantaged
ethnic groups. We developed a new synthetic data generator to simulated multi-ethnic
omics data associated with time-to-event clinical outcome endpoints. The experiments on
the synthetic data show that the performance patterns of the multi-ethnic machine learning
schemes can be reproduced from the synthetic data generated using the statistical model
incorporating two key factors: data inequality and distribution mismatch between ethnic
groups. This is consistent with our previous observations from machine learning experiments
using binary classification tasks for omics-based cancer prognosis Gao and Cui (2020). We
also performed new machine experiments on näıve transfer learning, which showed that the
direct application of machine learning model learning from one ethnic groups to another
ethnic group may lead to low performance.
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