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Abstract

We introduce the safe logrank test, a version of the logrank test that can retain type-I error

guarantees under optional stopping and continuation. It allows for effortless combination of
data from different trials on different sub-populations while keeping type-I error guarantees
and can be extended to define always-valid confidence intervals. Prior knowledge can be
accounted for via prior distributions on the hazard ratio in the alternative, but even under
‘bad’ priors Type I error bounds are guaranteed. The test is an instance of the recently
developed martingale tests based on e-values. Initial experiments show that the safe logrank
test performs well in terms of the maximal and the expected amount of events needed to
obtain a desired power.

1. Introduction

Traditional hypothesis tests and confidence intervals lose their validity under optional stop-
ping and continuation. Very recently, a new theory of testing and estimation has emerged
for which optional stopping and continuation pose no problem at all (Shafer et al., 2011;
Howard et al., 2021; Ramdas et al., 2020; Vovk and Wang, 2021; Shafer, 2020; Grinwald
et al., 2019). For instantiations of (forerunners of) the ideas developed here within AI and
machine learning (where there are obvious applications in e.g. A/B testing), see Balsubra-
mani and Ramdas (2015); Johari et al. (2017). The main ingredients of the new develop-
ments are the e-value, a direct alternative to the classical p-value, and the test martingale, a
product of conditional e-variables. These are used to create so-called safe tests that preserve
type-I error control under optional stopping and continuation, and always-valid confidence
intervals that remain valid irrespective of the stopping time employed. Here we provide a
concrete instance of this theory: we develop E-variables and martingales for a safe (under
optional stopping) version of the classical logrank test of survival analysis (Mantel, 1966;
Peto and Peto, 1972) as well as for regression with Cox’s (1972) immortal proportional
hazards model — settings in which optional stopping and continuation is highly desirable.
At the time of writing, the former of these has already been implemented in an R package
(Ly and Turner, 2020). We provide some initial experimental results in Section 4.
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Logrank tests and proportional hazards are standard tools and assumptions in ran-
domized clinical trials, and are already often combined with group sequential/a-spending
approaches. Such approaches allow several interim looks at the data to stop for efficacy or
futility. Like ours, they are rooted in early work by H. Robbins and his students (Darling
and Robbins, 1967; Lai, 1976), but the details are very different. The advantage of using E-
variables instead of a-spending is that the former is still more flexible, and as a consequence
easier to use. In particular, with group sequential approaches one has to specify in advance
at what points in time one is allowed to do an interim analysis; a-spending is more flexible
but still needs a maximum sample size to be set in advance. With FE-variables, one can
always look and one can always add new data. This becomes especially interesting if one
wants to combine the results of several trials in a bottom-up retrospective meta-analysis,
where no top-down stopping rule can be enforced : if a randomized clinical trial was reason-
ably successful but not 100% convincing, then a second randomized trial might be performed
because of this result— the trials are not independent (Ter Schure and Griinwald, 2019).
As a result of the second, a third might be performed, and so on. Even if the alternative
hypothesis in all these trials is different (we may have, e.g. different effect sizes in different
hospitals), as long as it is of interest to reject a global null (no effect in any trial) we can
simply combine all our E-variables of individual trials by multiplication — the resulting
test still has a valid type-I error guarantee. Moreover, we can even combine interim results
of trials by multiplication while these trials are still ongoing — going significantly beyond
the realm of traditional a-spending approaches. We also show how E-variables can be com-
bined with Bayesian priors, leading to nonasymptotic frequentist type-I error control even
if these priors are wildly misspecified (i.e. they predict very different data from the data we
actually observe). Our approach is sequential in nature, but significantly more flexible than
earlier sequential approaches such as Jones and Whitehead (1979) and Sellke and Siegmund
(1983). This, and many other details for which there is no space in this extended abstract
are treated in the extended arXiv version of this paper Grunwald et al. (2020) (ARX from
now on). We refer to Griinwald et al. (2019) (GHK from now on) for an extensive gen-
eral introduction to E-variables including their relation to likelihood ratios (when both the
null hypothesis Hy and the alternative H; are simple (singleton), then the best E-variable
coincides with the likelihood ratio); Bayes factor hypothesis testing (F-variables are often,
but not always, Bayes factors; and Bayes factors are often, but not always E-variables) and
their enlightening betting interpretation (indeed, e-values are also known under the name
betting scores Shafer (2020)). The general story that emerges from papers such as Shafer’s
as well as GHK and Ramdas et al. (2020) is that E-variables and test martingales are the
‘right’ generalization of likelihood ratios to the case that both Hg and H; can be composite,
providing an intuitive notion of evidence.

Contributions We show that Cox’ partial likelihood underlying his proportional hazards
model can be used to define E-variables and test martingales. In this extended abstract, we
only show this in a simplified, discrete time setup for the case without covariates, leading
to a ‘safe’ (for optional stopping) logrank test. In the full version of this paper (ARX) we
extend this derivation to the case with unordered simultaneous events (ties), continuous
time, ‘always-valid’ confidence sequences and covariates (Cox regression).
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Contents We first provide a short introduction to E-variables and test martingales. In
Section 3 we develop FE-variables for proportional hazards without covariates, based on
Cox’ partial likelihood. Section 4 provides some simulations showing the feasibility of our
approach in practice, if a minimum statistical power is required.

2. E-Variables and Test Martingales

Before trying to digest the following definition, it may help to consider a simplified setting
(different from the survival analysis setting below) in which the Yj; are i.i.d. ~ P with
density p under Ho = {P} and ii.d. ~ @ with density ¢ under H; = {Q}. Then the
likelihood ratio for the i-th data point S := q(Yi;)/p(Y(;) is an e-variable according to
the definition below since Ep[S(;y] = [(q(yi)/p(vi))p(yi)dys = [ a(ys)dy; = 1, and since data
are i.i.d. under the null, Sj; is also an e-variable conditional on Yyy,...,Y);_y). S, called
test martingale below, is then simply the likelihood ratio q(Y(1y, ..., Yiy)/p(Yry, -+, Yiiy)-

Definition 1 Let {Y; }ien, represent a discrete-time random process and let Ho, the null
hypothesis, be a collection of distributions for this process. Fiz i > 0 and let Sy be a non-
negative random variable that is determined by (Yy,...,Y(;)), i-e. there exists a function
[ such that Sy = f(Y<0>,...,Y<i>). We say that Sy is an E-variable conditionally on
Yooy, - - Yy if for all P € Hy,

Ep [Sg) | Yoy Y] < 1. (1)

If (1) holds with equality, we call the E-variable sharp. If, for each i, Sy is an E-variable
conditional on Yy, ..., Y1y, then we say that the product process {S"}ieny with S* =
HZZI Sy 1s a test supermartingale relative to {Y(;) tien, and the given Ho. If all constituent
FE-variables are sharp, we call the process a test martingale.

It is easy to see (Shafer et al., 2011) that a test (super-) martingale is, in more standard ter-
minology, a nonnegative (super-) martingale relative to the filtration induced by {Y(z'>}i€N07
with starting value 1.

Safety The interest in F-variables and test martingales derives from the fact that we have
type-I error control irrespective of the stopping rule used: for any test (super-) martingale
{5} ien relative to {Y; bien, and Ho, Ville’s inequality (Shafer, 2020) tells us that, for all
0<a<l, PeHyy,

P(there exists i such that S° > 1/a) < a.

Thus, if we measure evidence against the null hypothesis after observing i data units by S°,
and we reject the null hypothesis if S? > 1/a, then our type-I error will be bounded by «,
no matter what stopping rule we used for determining i. We thus have type-I error control
even if we use the most aggressive stopping rule compatible with this scenario, where we
stop at the first i at which S? > 1/a (or we run out of data, or money to generate new
data). We also have type-I error control if the actual stopping rule is unknown to us,
or determined by external factors independent of the data Y;y — as long as the decision
whether to stop depends only on past data, and not on the future (the potential to take
into account external factors is not directly visible from Ville’s inequality as stated here; it
is formalized by GHK19).
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We will call any test based on {S%};eny and a (potentially unknown) stopping time 7
that, after stopping, rejects iff S™ > 1/« a level a-test that is safe under optional stopping,
or simply a safe test. Note that in our simple ii.d. example above with cHy = {P}
and H1 = {Q}, the most power Neyman-Pearson test at level « is also a likelihood ratio
test, but with threshold that also depends on sample size n — for us, the threshold is 1/«
irrespective of n, and this is the key to enabling optional stopping. Importantly, we can also
deal with optional continuation: we can combine E-variables from different trials that share
a common null (but may be defined relative to a different alternative) by multiplication,
and still retain type-I error control (we give examples in ARX). If we used p-values instead
would have to resort to e.g. Fisher’s method, which, in contrast to multiplication of e-values,
is invalid if there is a dependency between the (decision to perform) tests.

Optimality Just like for p-values, the definition of E-variables only requires specification
of Hy, not of an alternative hypothesis H;. H; comes into play once we distinguish between
‘good’ and ‘bad’ E-variables: E-variables have been designed to remain small, with high
probability, under the null Hy. But if H; rather than Hg is true, then ‘good’ E-variables
should produce evidence (grow — because the larger the FE-variable, the closer we are
to rejecting the null) against Hy as fast as possible. First consider a simple (singleton)
Hi = {P}. If data comes from P, then the optimality of conditional E-variable S is
measured in terms of Epllog Sy | Yoy, ..., Y;—1y]. The E-variable which maximizes this
quantity among all E-variables is called Growth Rate Optimal in the Worst case, GROW.
There are various reasons why one should take a logarithm here — see GHK and Shafer
(2020) for details. We explore one in detail in ARX: by Wald’s identity, among all E-
variables, the GROW minimizes the expected number of data points needed before the
null can be rejected. Thus, finding a sequence of GROW FE-variables is quite analogous
to finding the test that maximizes power — in Section 4 we provide some simulations to
relate power to GROW. Note that we cannot directly use power itself in designing tests,
since the notion of power requires a fixed sampling plan, which by design we do not have.
In case H; is composite, we extend the notion of GROW to yield optimal growth in the
worst case: the GROW E-variable for outcome ¢ conditional on Y, ..., ¥;_1y, if it exists,
is the E-variable S that achieves

in Epllog Sy | Yoy, .-, Yie 2
mgxlgrel%ll pllog Suy | Yioy, -5 Y, (2)
the maximum being over all E-variables conditional on Yy, ..., Y;_q).

3. Safe Logrank Tests

Preliminaries Throughout the text we abbreviate {1,...,n} to [n]. We assume that
n participants are included in a trial, with groups 1 (treatment) and O (control). We
let g = (g1,--.,9n) be the binary vector indicating for each participant what group they
were put into. In the general continuous time set-up, random variable T} denotes the
time at which the event happens for participant j. All our results continue to hold under
noninformative right censoring. For simplicity, we will omit it from our treatment here, but
we take it into account in ARX.
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We let Y;(t) = 17,>¢, be the ‘at risk’ process for the j-th participant, and let Y9 be
the number of participants at risk in the group g € {0,1} at time ¢, that is, Y9(t) =
Zj:gj:g Y;(t). We define Y (t) = (Yi(t),...,Yn(t)) to be the n-dimensional indicator vector
that indicates for each participant j whether the participant is still at risk at time t. We set
NIt t] = YI(t') — Y9(¢) to be the number of events that happened in group g inbetween
time ¢’ and time t. We assume that a time increment of 1 represents a natural ‘unit time*
for example an hour, a day, or a week.

3.1. The Simplified Process in discrete time

In any particular realization of the setting above, we will have a sequence of event times
t(1) < t(2) < t(3) < ... such that for all ¢, at time ¢(), one or more events happen, and
inbetween (i) and ¢(i 4+ 1), no events happen. We extend the notation to N<gl.> to denote the

number of events happening in group g at the i ™ event time and Yy = Y16y You)
with Y} iy = 1if Tj > t(i). Thus Yj gy = 1 for all j € [n], Y} 1y = 1 for all j € [n] except
one, and so on, assuming no censoring: at the time of the first event, everyone is at risk; at
the time of the second event, everyone is at risk except the participant that had the first
event, etc. Again, Y ; is the n-dimensional vector that indicates for each participant j
whether they are still at risk, but now at the time that the i*" event happens. Let Y(?) be
the number of participants at risk in the group g € {0,1} at the time of the i'" event, that
I8, Y3 = 2= Yili)

Our method is best explained by first assuming that at each time ¢(i), exactly one event
happens so N<0i> + N <1Z.> = 1, allowing us to abstract away from ’absolute’ time scales. We
can then define the simplified process Y gy, Y (1), ... with each Y ;) taking values in {0,1}"
— note that this process is defined relative to a discrete sample space [n]°° in which there
is no notion of continuous time. For given group assignment g and each # > 0 we define a
distribution Py underlying this process such that:

1. Y(0> = (1, 1, N 1), Pg—a.S.

2. For each i < n, there is a single participant j° € [n] that experiences an event, i.e. we
have Yjo ;5 = 0,Yjo ;_1y = 1, and for all j € [n] with j # j°, Yo 5y = Yjo (;_1y. We
let Ji;y = j° be the RV denoting this participant.

3. We set, for jo with gjo =1: P@(J<Z> = jo | )/]'o’<i7]_> = 1) = W
1

and fOI' jo with gjo =0: P@(‘](’L> = jo | }907@_1) = 1) = W

These requirements uniquely specify Py. In ARX we motivate the definition above as
giving essentially the correct conditional distribution of Jy; under a proportional hazards
assumption with hazard ratio #. We define ¢y to be the conditional probability mass function
of the event that the i-th event takes place in group g. That is:

4ol | (1% y") = Po(Ny =1 Y0y =",V yy =)
By the above,
y'o

Wl W'y =1-060] 6"y = 55
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is the probability mass function of a Bernoulli 4'6/(y° + y'6)-distribution; note also that,
for any vector y that is compatible with the given y", y' and g, we have go(1 | (v°,9%)) =
Py(N <gi> = g | Y(—1y = y): the probability of an event in group g only depends on the
counts in both groups. For given 6y, 01 > 0, let My, 4,(0) = 1 and

My oty = 20 | Yoo Vi)
T e (N 1Yy Vi)

(4)
By writing out the expectation, we see that

By, [Monati) | Y0 V)| = 2 anlg 1 Vg Y0 y) = 1. 5)
96{071}

This standard argument immediately shows that, under Py, for all 4, all §; > 0, My, g, (i)

is an E-variable conditional on Y (g),..., Y (;_1), and
My, = T Moy 0040 (6)
j=1

is a test martingale under P, relative to process (Y );en,. Thus, by Ville’s inequality, we
have the highly desired:

Py, (there exists ¢ with Mé?ao > oz_1> < a. (7)

To give a first idea of its use in testing and estimation, we give several examples below, sim-
ply acting as if Mpy, g, would also be a test martingale under the unknown true distribution,
even though the latter is defined on continuous time. We show that the latter is justified
in ARX.

Some of the examples require a generalization of My, g, in which gy, in (4) is replaced by
another conditional probability mass function r;(x | y',4°) on 2 € {0,1}, allowed to depend
on i. For any given sequence of such conditional probability mass functions, {7;}ien, we
extend definition (4) to M, ,(0) = 1 and

Moo (i) — Ti(N<1i) | Y<1—1)7Y<?—1))
.00 (i) = (Nl | vyl Y0 )
@00 \N sy | (i—1ys L (i)

(8)

For any choice of the r;, (5) clearly still holds for the resulting M, g,, making M, g, (i) a
conditional E-variable and its product a martingale; and then Ville’s inequality (7) must
also still hold.

Example 1 [GROW alternative] The simplest possible scenario is that of a one-sided
test between ‘no effect’ (6p = 1) and a one-sided alternative hypothesis H1 = {Pp, : 61 € ©1}
represented by For example, if ‘event’ means that the participant gets ill, then we would hope
that under the treatment, 8, would be a value smaller than 1 and we would have ©1 = {6 :
0<6<0,}. If ‘event’ means ‘cured’ then we would typically set ©1 = {6 : 6 < 6 < o} for
some 01 > 1. We will take the left-sided alternative with 0 < 1 as a running example, but
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everything we say in the remainder of this paper also holds for the right-sided alternative.
In the left-sided setting, setting, My, 1(i) is a conditional E-variable for arbitrary 6; > 0.
More generally, M, (i) is a conditional E-variable for arbitrary conditional mass functions
ri. Still, the so-called GROW (growth-optimal in worst-case) E-variable as in (2) is given
by taking My, 1, i.e. it takes the 6 € ©g closest to Oy. That is,

0 _
1 g, B, o8 Mougo | Yoy Vi) =

max min Bp,, [log My | i1, Yy

is achieved by setting 0 = 0, no matter the values taken by Y<z 1) Y<(i)71>. Here the second
mazximum is over all sequences of conditional distributions r; as used in (8). Thus, among
all E-variables of the general form M, 1(i) there are very strong reasons why setting r; = qp
is the best one can do. Nevertheless, if one does not restrict oneself to E-variables of the
form My, g,, but uses the more general M, g, instead, one may sometimes opt for another
‘almost’” GROW choice, as elaborated in the next example.

Now suppose we want to do a two-sided test, with alternative hypothesis {Py, : 01 <
6, Vvo > 9_1} with 6, > 1. For this case, one can create a new ‘combined GROW’ E-
variable

. 1 , ,
M(i) = 5 (Mo, 00 (i) + Mg, 4,(3)) ,
which is a conditional E-variable since Ep, |:M91 0o (1) | YZ 1y }/(07 >)} =1 (see GHK).

Example 2 [Tests based on Bayesian priors with Frequentist Type-I Error Guar-
antees]| Now suppose we do not have a very clear idea of which parameter 61 € ©1 to pick;
we might thus want to put a prior probability distribution on ©1. To accommodate for this
we extend our definition (3) to

w(l |40 yh) = / ao(1 ] 40, 5)dW (9)
0

for probability distributz’ons W on R. No matter what W we pick, the resulting My g, (i) =
qw (1 | Y<%—1> i 1>)/qgo(1 | YZ 1) Yg 1>) is still an E-variable, as argued above Example 1.
If data come from some dzstrzbutzon with parameter 61 € ©1, then My g, will not be GROW
unless W puts all of its mass on 01; nevertheless, My, can come quite close to the optimal
for a whole range of 61 and may thus sometimes be preferable over choosing My, g, — we
provide simulations to this end in ARX.

Starting with a prior distribution W with density w, we can use Bayes theorem to derive
a posterior distribution w;(f) on ©1

1 1 0
” q Y YH  w(6
fe“k 190(N |Y 1y Yigqy)w(0)do

We thus get that qw,, (1 | Yé)’ Y<%) is equal to

Hzlqo< |Y YO )w(6)
Jo Mir ao(Nly [ Y- Yoy yw(6)d6

go(1 | Yy, Y\ wiy1(0)do = o1 Vi, Y-
%
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and, by telescoping, M&Z}l g, is seen to be equal to

Jo it QG(N<1@ ’ Y(}f_lp Y<(,)€_1>)w(9)d9
[T ¥ | Vo Vi

This approach resembles a Bayes-factor in the sense that it involves priors and subjective
choices. It is not Bayesian though in the important sense that our frequentist type-I error
guarantee continues to hold, irrespective of the prior we choose. Rather, there is an element
of what has been called luckiness in the machine learning theory literature (Grinwald and
Mehta, 2019): if the prior W turns out ‘correct’, in the weak sense that the E-variable
grows about as fast as we would expect in expectation over the prior, then we get a strongly
growing E-variable and will need few events before we can reject the null. If the prior is
‘wrong’, we need a larger sample. Yet, the type-I error guarantee always holds, also in this
‘misspecified’ case.

Now, suppose we do have a minimum clinically relevant 8, in mind, but we want to
exploit favorable situations in which the effect size is even larger than indicated by 601, i.e.
the ‘true’ 0 satisfies |0 — 6y > |0, — 0| — these are ‘favorable’ because we can expect the
data to contain more evidence against the null. We may then choose to take a prior that is
(strongly) peaked at 0, but stil places some mass on more extreme values of 0.

4. Some Simulations

In this section we report the results of simulating data from the simplified process introduced
in Section 3. In ARX we show that this is equivalent to simulating data from a continuous
time counting process under proportional hazards. Recall that if we are testing some fixed
0, with #; < 1 against g = 1, and we have witnessed k events, the odds of next event
happening in group 1 are 91Y<}€> : Y<9€> under the alternative hypothesis. Thus, simulating
in which group the next event happens only takes a (biased) coin flip.

We limit our attention in this section to the aforementioned one-sided testing scenario
61 (for some 6, € (0,1)) vs. 6y = 1, and we fix our desired level to a = 0.05. We consider
the stopping rule 75, = inf{i : M9<j>,1 > 1/a}, that is, we stop as soon as our test martingale
crosses the threshold 1/« (aggresive optional stopping). By our previous discussion, we
have a type-I error guarantee for this and any other stopping rule. However 7y, 1 may often
be too large: it may not be feasible financially or time-wise to wait either until the stopping
moment or until we run out of patients to reach a decision. Thus it seems reasonable to
determine a number of events iy after which we stop anyway, and decide to accept the null,
1
the study. We would like to clé)lrltrol the probability S of this type-II error, induced by
stopping at 7y, A imax instead of stopping at 7p,. A moment’s thought shows that we look
for the smallest imayx such that Py (1, > imax) < 1 — (3 for a target power 1 — 3, which
we fix to 0.8. Of course imax is just the (1 — §)-quantile of 7p,, and can be determined by
repeated simulation in a straightforward manner. We simulate a number of realizations igjn,
of 79, and use the (1 — )-quantile of the observed empirical distribution of 7p,. For each
configuration 64, Y&)), Y<%> that we considered, we performed mg;,, = 10000 simulations and

even if our test martingale M0<) may have crossed the threshold 1/«, had we continued
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Maximum and expected number of events for 80% power
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Figure 1: Each panel corresponds to a different starting number of subjects in both groups,
e.g. in the left-most panel both groups are of size 100.

assessed the uncertainty in the estimate of i, by estimating its standard deviation using
1000 bootstrap rounds on the empirical distribution of 7y,.

The number of events i.x is the maximum that one may see under the alternative
hypothesis at a fixed power 1 — . In this sense, it is the number of events that we will
witness in the worst-case. However, we will typically reach a decision sooner. In Figure
1 we show the expected value of the random number of events before we stop, 79, A imax,
under the null hypothesis (dark blue curve).

For comparison, we also show the number of events that one would need under the
Gaussian non-sequential approximation of Schoenfeld (1981) to achieve a power of 0.8 —
i.e. one treats the log-rank statistic as if it were normally distributed, and, for fixed number
of events, one rejects the null using a z-test, i.e. if the log rank statistic is larger than
z0.05 = 1.645. One then calculates power under the assumption that the log rank statistic
also has a normal distribution under the alternative. This is a standard classical approach;
see ARX for further details. We see that ipay is significantly larger than the Schoenfeld’s
predicted number of events, but the expected value of 7y, A tmax, which is the number we
will need on average if we plan on stopping at imax at the latest (dark blue line), is of
comparable size.

As we noted earlier, it may happen that data come from a distribution with a more
extreme hazard ratio than we anticipated. Then the best choice (the one that leads to
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the smallest stopping time 7o, ) is to use for our test martingale M("pl the value of 6] that
actually generates the data. This value is of course unknown in all practical situations. In
ARX we provide additional experiments where, to profit from the ‘lucky’ situation in which
the alternative is more extreme than we anticipated, we put a prior W on ¢} and use Myy ;.
We find that in this case, we need only slightly more data before we can stop than if we
had used Mp, for the 0 that actually generated the data, irrespective of what this 0] is
— thus showing that we can achieve the adaptivity of a Bayesian approach while keeping
frequentist Type-I error control at the same time.
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