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Abstract

Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify
patients, inform about treatment effectiveness or serve as part of early-warning systems.
Static risk scores, such as APACHE or SAPS, have been supplemented with data-driven
approaches that track dynamic mortality risk over time. Recent works have focused on
enhancing the information delivered to clinicians even further by producing full survival
distributions instead of point predictions or fixed horizon risks. In this work, we propose a
non-parametric ensemble model, Weighted Resolution Survival Ensemble (WRSE), tailored
to estimate such dynamic individual survival distributions. Inspired by the simplicity and
robustness of ensemble methods, the proposed approach combines a set of binary classifiers
spaced according to a decay function reflecting the relevance of short-term predictions.
Models and baselines are evaluated under weighted calibration and discrimination metrics
for individual survival distributions, which closely reflect the utility of a model in ICU
practice. We show competitive results with state-of-the-art probabilistic models, while
greatly reducing training time by factors of 2-9x.
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1. Introduction

Mortality prediction in the ICU has historically used scores, such as APACHE II (Knaus
et al., 1985), which group patients into risk categories using data from the beginning of their
stay (Keegan et al., 2011). For effective decision making, a more expressive risk estimate is
desirable, such as predicting the full distribution over the remaining time-to-death (Avati
et al., 2018; Haider et al., 2020). In this manner, individual patients with high or increasing
mortality risk can be identified to direct the physician’s attention. Decreasing mortality
risk, on the other hand, can provide reassurance on treatment effectiveness.

To address this need, we propose a non-parametric approach that combines predictions
of a set of classifiers using a weight function controlling the temporal spacing and hence,
resolution in future time horizons. We call our approach Weighted Resolution Survival
Ensemble (WRSE). By choosing decaying weight functions, our ensemble gives more im-
portance to short-term predictions most relevant in various ICU settings. An example of
WRSE’s output illustrating its use in ICU practice is shown in Fig. 1. We evaluate our
model and baselines under weighted evaluation metrics that capture temporal calibration
and discrimination.
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Figure 1: Each row displays the predicted dynamic survival curves for an example patient,
estimated {12, 24,36, 48,60} hours after admission to the ICU. According to WRSE’s esti-
mations, the first patient’s prognosis improves over time, while the second patient’s curve
indicates a worsening of prognosis.

2. Related work

The most commonly used approach for predicting survival curves, the Kaplan-Meier esti-
mator (Kaplan and Meier, 1958), provides class-specific information on a population level,
but cannot be used for producing individual survival distributions over time. To address
this issue, several approaches, both parametric and non-parametric, have been proposed
(Ishwaran et al., 2008; Yu et al., 2011; Avati et al., 2018). Furthermore, recent approaches
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(Lee et al., 2018; Kvamme and @rnulf Borgan, 2019) have leveraged neural networks to
account for non-linear relationships and produce a full survival distribution per patient.

Several works have employed the strategy of combining different survival models to
benefit from their strengths and obtain superior results to each model considered separately.
Pirracchio et al. (2015) build a Super Learner, an ensemble of binary classifiers, to predict in-
hospital death. This method, however, does not allow estimation of survival curves. Other
approaches are based on stacking, i.e. combining either predictor matrices or predictions
from survival models. In the first case, the predictor matrices of patients in the risk set at a
given failure time point are concatenated together with the risk set indicator and a binary
classifier is applied to the stacked matrix, yielding the conditional probability of experiencing
the event at each considered time point (Zhong and Tibshirani, 2019). When combined with
regression models, the approach can be used to estimate survival curves. In the second
case, stacking survival models corresponds to providing a weighted combination of survival
function estimates, with time-independent (Wey et al., 2015) or time-dependent weighting
(Lee et al., 2019, temporal quilting). Such approaches are prone to overfitting because
additional meta-parameters, more of them for time-dependent weighting, are introduced.
Moreover, they suffer from the practical drawback of the training time being determined
by the slowest base model.

On the topic of evaluation metrics for survival prediction, Cook (2006) argued that the
key properties of a survival model are discrimination and calibration. Discrimination re-
flects the correct ordering of patients by the estimated probability of death. To take into
account the time component, Antolini et al. (2005) introduced a time-dependent discrimi-
nation indez, an adaptation of Harrell’s C index (Harrell et al., 1982) that operates directly
on predicted survival functions, instead of relying on point estimates. Calibration captures
how well a model’s predictions reflect the true frequency of the events. Haider et al. (2020)
and Avati et al. (2018) generalized the notion of calibration to the full survival distribu-
tion. For both calibration and discrimination, recently proposed metrics ignore the relative
importance of different future time horizons in an ICU. To bridge this gap, we propose
weighted metrics that support selection of the best model for this particular application.

3. Dynamic individual survival distributions

We consider a temporal dataset {{(x}, ¢, y/)}¥ |}V | of N patients with (partially known)
times-to-death T, and k; the number of observed (hourly) time-points of patient i. Let
xi € R? denote the feature vector, incorporating all information for a patient i at time t.
Let ¢’ be the censoring indicator, with ¢ = 0 denoting death at ICU. gi is the observed
time-to-death (if ¢ = 0, then T} = y!) or time to discharge (if ¢ = 1, then T} > %!). The
latter may take place both in case of improvement (discharge to another hospital unit) and
worsening (transfer to palliative care) of the patient’s status and hence, the discharge leads
to censoring. The task is to predict the distribution of the time-to-death T} for all time-
steps t during the ICU stay. We use F}(7) to denote the predicted cumulative distribution

function (CDF) for all future times 7 > 0, viewed from time point t. Si(r) = 1 — I}g(r)
describes the predicted survival function.
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4. Weighted evaluation metrics suitable for the ICU

To evaluate model performance, we use calibration and discrimination, which can be cal-
culated for every future time point 7. To adapt these to better reflect clinical usefulness in
an ICU, we weight short-term predictions more strongly, using an exponentially decaying
weighting function w(7) = 47 with rate v € (0,1) and 7 measured in days. w(r) =47 is
plotted for v = 0.3, v = 0.5 and v = 0.8 in Fig. 2. The three settings are examples of
strong weighting of the short-term future (next 2 days), as well as two more moderate de-
cays. Depending on the desired application and its time horizon, other choices of v may be
appropriate. We evaluate calibration of the estimated Pr[T < 7] for every time 7, plotting
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Figure 2: The exponentially decaying weight- Figure 3: Spacing of 15 base models in

ing function w(r) =47. WRSE ensemble weighted according to v =
0.5 (cf. Section 5.1)

binned mean predicted values against the fraction of positives. This produces a piece-wise
linear function ¢-(q) with ¢;(0) = 0 and ¢;(1) = 1 and the diagonal ¢*(q) = g representing
perfect calibration. We report the absolute area around the diagonal as a metric of cali-

bration for every 7: fol ler(q) — ¢*(q)| dg. Patients who do not die are not considered for 7
after their time of discharge. The weighted absolute area around the diagonal Cal" is then
given as a weighted mean:

S w(T) - [y ler(q) — ¢ (q)] dg
> erw(T) '

To evaluate discrimination, we adapt the time-dependent discrimination index C* (Antolini
et al., 2005). Let T be the set of distinct times of death (T = {y*|ck = 0}). For each 7 € T,
we consider the set of pairs of patients Pr = {(i,7)|y" = 7Ac" = 0Ay’ > 7}. Here, patient ¢
has died at time 7 and patient j is still at risk, i.e. has neither died nor been discharged until
time 7. A pair is concordant if S*(y?) < §7(y?) and C*® averages the fraction of concordant
pairs over time. The weighted time-dependent discrimination index C*% is then:

> rer {(i,4) € Pr|S(r) < §9(7)}] - w(7)
2rer [Prl-wl(7)

Cal® =

Ctd,w _
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5. WRSE and baseline models
5.1. WRSE (Weighted Resolution Survival Ensemble)

The proposed non-parametric ensemble estimator (WRSE) consists of binary classification
base models my, ..., mg, where my(x) for k € {1,..., K} predicts the probability of dying
within the next hy hours (Pr[T" < hi | x]), given patient information x and an increas-
ing sequence h = (hi,...,hg). We use K = 15 and define hj, = w1(1 — KLH), where
w~(-) = log(-)/log(y) is the inverse of w(-) defined in Section 4, thereby putting more
emphasis on the short-term future, as depicted in Fig. 3. We combine the base models’ pre-
dictions by interpreting them as non-parametric estimates of the cumulative distribution
function (CDF) for 0 < T < hg. We do not predict the shape of the CDF for T' > hg, as
such long-term horizons are rarely present in the ICU. Since the base models are indepen-
dent, the sequence mj(x),...,mg(x) is not guaranteed to be monotonically increasing for
a given patient, a necessary condition for a CDF. We solve this using the isotonic regression
framework (Barlow et al., 1972), finding an optimal fit vector mj,. .., mj}, subject to mono-
tonicity constraints. More precisely, isotonic regression solves the following constrained
optimization problem:

K
min Z(mz — my(x))?
k=1

subject to mj <ms < -+ <mj .

The ensemble framework is general, and any binary classification model could be used.
We employ LightGBM because of its demonstrated high performance for ICU data (Hyland
et al., 2020) and interpretability using the TreeSHAP algorithm Lundberg et al. (2018).
Each LightGBM base model has at most 64 leaves in each tree, at most 1000 trees, and a
learning rate of 0.01.

5.2. Parametric and non-parametric baselines

As parametric baselines, we evaluate two models within the Survival-CRPS framework
(Avati et al., 2018): Log-normal, for its flexibility (Royston, 2001; Yang et al., 2017) and
Exponential, for its good fit to our ICU data-set seen in a preliminary analysis. A detailed
description of the framework and implementation details can be found in Appendix Section
A.2.1. As non-parametric baselines, which avoid strong assumptions about the underlying
distribution, we use (1) DeepHit (Lee et al., 2018), a model discretizing time into intervals
and jointly predicting the probability of dying in each interval, using a likelihood loss com-
bined with a ranking loss function, (2) Nnet-survival (also called Logistic-Hazard (Kvamme
and Ornulf Borgan, 2019)) by Gensheimer and Narasimhan (2019), which predicts the con-
ditional probability of dying within each interval, using a custom likelihood loss function,
and (3) multi-task logistic regression (MTLR) (Yu et al., 2011), which is based on a likeli-
hood loss function optimizing a set of dependent logistic regressors for future time points.
Implementation details and hyperparameter settings for the non-parametric baselines can
be found in Appendix Section A.2.2.
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6. Experiments

6.1. Data set and evaluation setup

We use the HiRID data set (Faltys et al., 2020), containing time series of more than 50,000
admissions to a tertiary-care ICU. The data includes organ function parameters, lab results,
and treatment parameters. The 30 most important variables, given by the highest mean
absolute SHAP values (Lundberg and Lee, 2017) on the validation set, were used for model
construction and are listed in Appendix Table 5. Missing values were imputed using forward
filling and filling with a clinically normal value if no measurement was present prior to a
time-point. We drew 5 replicates of splits, each consisting of a training, a validation and a
test set (more details are provided in the Appendix Section A.1). Patients in the test set
have a later admission time than patients in the training set, simulating model deployment
on future data. We train our models on the training set of each split. The validation set
is used for early stopping, selection of optimal hyperparameters using grid search, and the
analysis of variable importance. We evaluate models on the test set, considering patients
once every hour as independent test instances to estimate the future survival distribution.
We refer to Hyland et al. (2020) for details on preprocessing and the temporal splits.

6.2. Comparison with baselines

WRSE (with spacing v=0.5) and the baseline models were compared under the two weighted
metrics described in Section 4. All baselines were recalibrated using isotonic regression.
WRSE did not require this step, as raw predictions already show sufficient calibration. The
results in Table 1 demonstrate that WRSE outperforms parametric baselines and is on par
with state-of-the-art non-parametric approaches, with respect to discrimination (C*®%).
The trend persists across different weighting functions. Furthermore, it is better calibrated
than all baselines for v=0.3, which up-weights short-term predictions, while being outper-
formed by DeepHit for v=0.8. We complement these results by plotting the unweighted
raw metrics against the time horizon 7 in Fig. 4 (discrimination) and in Fig. 5 (calibration).
WRSE consists of a set of independent classifiers, which can be trained in parallel, with

Table 1: Results of our model compared with the baselines, listing the metrics described in
Section 4 with three evaluation weighting functions (v € {0.3,0.5,0.8}). We report mean
and standard deviation across the 5 splits.

Model Ctdw ~ =03 (Clv 4y=05 C¥» ~=08 Cal¥,y=03 Cal®, v=05 Cal”,v=0.8
Log-normal 0.78 £ 0.02 0.77 £ 0.02 0.75 £ 0.01 0.17 £ 0.05 0.15 £ 0.05 0.12 + 0.04
Exponential 0.87 % 0.02 0.85 + 0.02 0.83 %+ 0.02 0.13 + 0.05 0.14 + 0.04 0.12 + 0.03
DeepHit 0.91 + 0.01 0.89 + 0.01 0.87 £ 0.01 0.11 + 0.02 0.09 + 0.01 0.06 =+ 0.01
Logistic Hazard ~ 0.90 & 0.01 0.89 £ 0.01 0.86 + 0.01 0.11 %+ 0.02 0.10 + 0.02 0.09 + 0.02
MTLR 0.91 + 0.01 0.89 + 0.01 0.87 + 0.01 0.16 + 0.03 0.12 + 0.02 0.08 + 0.01

WRSE (ours) 0.92 + 0.01 0.90 £ 0.01 0.88 + 0.01 0.07 + 0.01 0.08 + 0.01 0.09 £+ 0.01

isotonic regression applied subsequently. We observe reduced training times by a factor of
2-4x (parametric baselines), and 5-9x (non-parametric baselines), as displayed in Table 2.
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Table 2: Average training time of WRSE (parallelized ensemble trained on a multi-core
CPU) and the baselines (trained on one GPU), across the 5 splits.

Model Log-normal Exponential DeepHit Logistic Hazard MTLR | WRSE (ours)
Training time [min] | 283 127 420 349 588 63
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004 WRSE T
DeepHit $ 0.30 1 WRSE .
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Figure 4: Fraction of concordant pairs Figure 5: Area around the diagonal of the cal-
per horizon 7 (cf. Section 4). Higher ibration plot in each horizon 7. Lower val-
values represent better discrimination. ues represent better calibration. Shaded error
Shaded error bands denote the standard bands denote the standard error across the 5
error across the 5 splits. splits.

6.3. Analyzing different WRSE configurations

To understand the effect of different weighting schemes on WRSE performance, we analyze
several versions, varying the number of base models (5, 7, and 10) and their spacing in time
(evenly spaced vs. weighted spacing). We observe that the weighted versions exhibit superior
calibration for short-term horizons, and for long-term horizons if the number of base models
is small (Table 3). The discrimination performance of all variants is similar. More detailed
results are displayed in Appendix A.3.2. We further analyse alternative choices of base
models (a multi-layer perceptron and logistic regression) and observe superior performance
of Light GBM across various WRSFE configurations, as discussed in Appendix Section A.3.3.

Table 3: Results contrasting WRSFE with temporal weighting of base models according to
v = 0.5 (cf. Section 5.1) and evenly spaced base models covering 10 days. We report the
mean and standard deviation across the 5 splits.

Model Clw ~ =03 C% ~=05 C%% ~=08 Cal”, v=0.3 Cal”,y=05 Cal’,y=08
Even spacing 5 models 0.91 + 0.01 0.90 + 0.01 0.87 + 0.01 0.11+0.001  0.11£0.01  0.10 £ 0.01
Weighted v = 0.5, 5 models ~ 0.92 + 0.01 0.90 + 0.01 0.88 + 0.01 0.07 £ 0.01  0.08 +0.01  0.08 + 0.01
Even spacing 7 models 0.91 £ 0.01 0.90 £ 0.01 0.88 £ 0.01 0.10 £0.01  0.10 £ 0.01  0.09 + 0.01
Weighted y = 0.5, 7 models ~ 0.92 & 0.01 0.90 £ 0.01 0.88 + 0.01 0.08 £ 0.02 0.08 +£0.01  0.09 + 0.01
Even spacing 10 models 0.91 + 0.01 0.90 + 0.01 0.88 + 0.01 0.10 £0.01  0.10 £ 0.0  0.09 + 0.01

Weighted v = 0.5, 10 models  0.92 £ 0.01 0.90 £+ 0.01 0.88 £+ 0.01 0.07 £0.01 0.08 £0.01 0.09 £ 0.01
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6.4. Performance of WRSE in different diagnostic groups

We further analyze the calibration and discrimination of WRSE in sub-cohorts correspond-
ing to diagnostic groups. We only include sub-cohorts with at least 100 patients in the
test set, whose characteristics are shown in Appendix Table 6. The results, displayed in
Table 4, indicate that the performance is good across all the groups. Furthermore, the
discrimination is highest for neurological and trauma patients, whereas calibration is best
for neurological and cardiovascular patients.

Table 4: Performance of WRSFE for different patient sub-cohorts in the test set of HiRID.
We report the mean and standard deviation across the 5 splits. Only diagnostic groups
with at least 100 patients in the test set were included. Diagnostic group size is indicated
in parentheses.

Diagnostic group Cldw 4 =03 CMv =05 C¥% ~=08 Cal¥, vy=03 Cal¥, v=05 Cal® v=08
Neurologic (n=1006) 0.94 + 0.01 0.93 + 0.01 0.90 + 0.02 0.07 £ 0.01 0.08 &+ 0.02 0.09 &+ 0.02
Cardiovascular (n=949) 0.91 + 0.02 0.89 £+ 0.02 0.87 &+ 0.02 0.09 + 0.01 0.09 £+ 0.01 0.10 £ 0.02
Gastrointestinal (n=516)  0.90 £+ 0.03 0.89 + 0.03 0.87 £+ 0.04 0.09 £ 0.01 0.10 &+ 0.01 0.11 £ 0.02
Respiratory (n=354) 0.89 + 0.01 0.88 &+ 0.02 0.85 + 0.02 0.10 £ 0.02 0.11 4+ 0.03 0.11 + 0.04
Trauma (n=241) 0.93 + 0.03 0.92 + 0.03 0.89 + 0.05 0.11 + 0.02 0.12 4+ 0.02 0.13 + 0.03

7. Discussion

We presented Weighted Resolution Survival Ensemble (WRSE), a non-parametric method
that estimates dynamic individual survival predictions in the ICU. In its default setting
(y=0.5), it allocates more classifiers for short-term predictions, which are more relevant in
several scenarios in an ICU. Comparisons against various parametric and non-parametric
baselines show similar or superior performance. Our framework is adaptive to the user’s
choices via its weighting function, and the choice of base models. Once the temporal spacing
of WRSE is set, the base models are trivially parallelizable, resulting in a training time
decrease of 2-9 times compared to the baselines. We also proposed modifications to time-
dependent calibration and discrimination metrics up-weighting short-term predictions. We
believe that these metrics capture a model’s usefulness in a dynamic ICU setting more
closely. Future work will focus on evaluation in other cohorts, approaches for deciding the
optimal temporal spacing, given a fixed budget of base models, as well as the introduction
of other base models for improved uncertainty estimation.
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Appendix A. Appendix

A.1. Data set details

The HiRID data set (Faltys et al., 2020) used in this work contains information about more
than 50,000 ICU stays collected between 2008 and 2016. Table 5 displays the 30 (of a total
of 197) variables used in the experiments. To train models and evaluate performance, 5
partly overlapping temporal splits have been drawn. Each split covers roughly six years,
of which the first 5/6 are used for training, 1/12 for validation and 1/12 for testing. This
setup simulates deployment to future data. We refer the reader to Hyland et al. (2020) for
detailed information on the data collection, preprocessing, and the resulting splits. Table 6
shows the clinical characteristics of patients in the test set, per diagnostic group with at
least 100 patients.

Table 5: The subset of variables from the HiRID data set used in our experiments, in
parentheses are the meta-variable IDs of the parameters as defined in Hyland et al. (2020).

Organ function parameters
PAPm (vm9)

Cardiac output (vm13)

Heart rhythm state (vmm19)

SpO2 (vm20)

Respiratory rate (vin22)
Supplemental oxygen (vm23)

Urine output / time (vm24)

GCS Verbal / Motor / Eye (vin25-27)
RASS (vm28)

Fluid output / time (vm32)

FiO (vm58)

Weight (vm131)

Age

Treatment parameters
Norepinephrine (pm39)

Ventilator mode / Peak pressure (vim60,62)
Ventilator RR setting (vm65)
Propofol (pm80)

Hourly CSF drainage (vmm84)
Steroids (pm91)

Laboratory tests

Arterial lactate (vin136)

Creatine kinase (vm144)

Mg (vin154)

Urea (vm155)

Bilirubine, total (vin162)

aPTT (vmn166)

Total white blood cell count (vin184)
Platelet count (vim185)

12
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Table 6: Number of test set patients and test set instances per diagnostic group with at
least 100 patients in the test set. We report the mean and standard deviation across the 5
splits.

Diagnostic group  # Patients = Mortality rate [%] # Test instances Positive prevalence [%)]

Cardiovascular 949 + 117 6.5 £ 0.9 35382 + 2212 10.1 + 2.0
Neurologic 1006 £ 105 5.9 £ 0.7 42816 + 2204 7.3+ 23
Respiratory 354 + 39 7.0+ 0.5 15475 £ 1442 9.4 £ 28
Gastrointestinal 516 + 89 6.6 £ 0.7 19475 + 2444 8.7+ 1.7
Trauma 241 + 37 714+ 1.6 10798 + 1632 70+£15

A.2. ITmplementation details
A.2.1. PARAMETRIC BASELINES

The Survival-CRPS framework (Avati et al., 2018) allows to incorporate information from
censored observations into the model, with the loss function given by

Scrps (Ft, (y,c)) = /Oy Ft(r)Q dr+ (1 —¢) /yoo (1 - Ft(T))Z dr .

For the log-normal distribution, a closed-form representation of Sorpg does not exist and
thus, we use a trapezoidal approximation suitable for backpropagation (Avati et al., 2018).
We derive the Survival-CRPS loss function for the exponential distribution. The cumulative

Y
density function is given by F; (1) =1 —exp(—A - 7) for a parameter A. Scrpg then has a
closed-form representation

Scrps (Ft)\v (yvc))
Yoy oo a2
:/0 Fi (7)2d7+(lc)/y (lth (T)) dr

Yy 00
:/ (1—e )2 dr+ (1 - c)/ e 2 dr
0 y

_46”‘9 —ce v _3 4
- 2 v

We follow the implementation of Survival-CRPS provided by the authors (Avati et al.,
2018). All models were trained using an Adam optimizer (Kingma and Ba, 2014) and early
stopping, terminating training when the validation loss does not improve for 10 epochs. T'wo
hidden layers of 50 neurons each, moderate weight regularization of 0.01, and a learning rate
of le-4 was used. The output layer directly predicts one (exponential) or two (log-normal)
distribution parameters. We analyze two feature extractors: an MLP with two hidden layers
and a temporal convolutional network, shown to outperform RNNs in sequence modeling
(Bai et al., 2018; Franceschi et al., 2019). Results contrasting the different feature extractor
choices for the parametric baselines are discussed in Section A.3.1.

A.2.2. NON-PARAMETRIC BASELINES

For DeepHit, Logistic-Hazard and MTLR, we use an implementation using the pycox library.
Specific details about the implementations are given in Kvamme et al. (2019), and Kvamme

13
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and Ornulf Borgan (2019), respectively. For DeepHit we use three layers with 240, 400, and
240 nodes, as well as parameters @ = 0.4 and ¢ = 2, and a learning rate of 3.3e-07. For
Logistic-Hazard we use a neural network consisting of three fully-connected layers with 90,
150, and 90 nodes and a learning rate of 3.3e-07. MTLR uses a neural network consisting
of three fully-connected layers with 90, 150, and 90 nodes and a learning rate of 3.3e-
07. DeepHit, Logistic-Hazard, and MTLR are discrete-time models, requiring discretization
of continuous times into intervals. We use 56 intervals, each covering roughly 12h. All
models were trained using an Adam optimizer (Kingma and Ba, 2014) and early stopping,
terminating training when the loss on the validation set does not improve for 10 epochs.

A.3. Additional results
A.3.1. FEATURE EXTRACTORS FOR PARAMETRIC BASELINE MODELS

Results contrasting the different feature extractor choices for the parametric baselines are
shown in Table 7. The TCN-based log-normal model shows better calibration and discrim-
ination than its MLP-based counterpart. However, calibration is clearly worse. As a result,
we consider the MLP-based model superior, as uncalibrated results are useless in prac-
tice. The exponential models are very similar; for consistency and simplicity, we define the
MLP-based version as our model of choice to be included in the main results in Section 6.2.

Table 7: Performance of parametric models (log-normal and exponential) with two different
feature extractors. The first is a multi-layer perceptron (MLP) on the current time-point.
As a second feature extractor, we use a temporal convolution network (T'CN) architecture
on 24h of patient history. We report the mean and standard deviation across the 5 splits.

Model CHw ~ =03 CHMW% ~ =08 Cal”,v=03 Cal”,7=08
Log-normal MLP  0.78 &+ 0.02 0.75 + 0.01 0.16 + 0.05 0.12 £ 0.04
Log-normal TCN  0.89 + 0.03 0.83 £ 0.02 0.21 + 0.01 0.14 £ 0.01
Exponential MLP  0.87 + 0.02 0.83 £ 0.02 0.12 + 0.04 0.12 £ 0.03
Exponential TCN  0.88 + 0.02 0.84 £+ 0.03 0.16 + 0.03 0.11 £ 0.01

A.3.2. EFFECT OF WEIGHTED TEMPORAL SPACING

An analysis of the effect of weighted temporal spacing on the discrimination index by time
horizon 7 is shown in Fig. 7. It is apparent that temporal spacing has no effect on temporal
discrimination, in contrast to calibration (Fig. 6), as shown in the main paper.

A.3.3. ALTERNATIVE BASE MODELS

Table 9 contrasts the performance of WRSE for different base models: (1) LightGBM
(proposed model), (2) a multi-layer perceptron (MLP) and (3) logistic regression. Choosing
Light GBM as base model leads to superior or comparable results across varying number of
models and weighting functions used.
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Table 8: Results contrasting WRSE with different temporal spacing of base models. Metrics
described in Section 4 with three weighing functions (y € {0.3,0.5,0.8}) are shown. We
report the mean and standard deviation across the 5 splits.

Model Cldvw x =03 CW% 4=05 CHY¥ ~=08 Cal” =03 Cal®”, y=05 Cal,y=08
Even spacing 5 models 0.91 £+ 0.01 0.90 £+ 0.01 0.87 £+ 0.01 0.11 £+ 0.01 0.11 £ 0.01 0.10 4 0.01
Weighted y = 0.3, 5 models ~ 0.92 = 0.01 0.90 £ 0.01 0.88 + 0.01 0.07£0.01  0.07+0.01  0.07 £ 0.01
Weighted v = 0.5, 5 models ~ 0.92 & 0.01 0.90 + 0.01 0.88 &+ 0.01 0.07+0.01  0.08+0.01  0.08+0.01
Weighted v = 0.8, 5 models ~ 0.92 + 0.01 0.90 + 0.01 0.88 + 0.01 0.09 +0.01  0.094 001  0.09 + 0.01
Even spacing 7 models 0.91 £ 0.01 0.90 £ 0.01 0.88 £ 0.01 0.10 £0.01 010 £ 0.01  0.09 + 0.01
Weighted y = 0.3, 7 models ~ 0.92 £ 0.01 0.90 £ 0.01 0.88 + 0.01 0.07£0.01  0.07+0.01  0.07 £ 0.01
Weighted v = 0.5, 7 models ~ 0.92 + 0.01 0.90 + 0.01 0.88 + 0.01 0.08+0.02 0.08+0.01  0.09 +0.01
Weighted v = 0.8, 7 models ~ 0.92 + 0.01 0.90 + 0.01 0.88 + 0.01 0.09 +0.01  0.09+0.01  0.09 + 0.01
Even spacing 10 models 0.91 £ 0.01 0.90 £ 0.01 0.88 £ 0.01 0.10 £0.01 010 £ 0.01  0.09 £ 0.01
Weighted y = 0.3, 10 models  0.92 & 0.01 0.90 % 0.01 0.88 + 0.01 0.07+0.01  0.074+0.01  0.08 +0.01
Weighted v = 0.5, 10 models  0.92 + 0.01 0.90 + 0.01 0.88 + 0.01 0.07+0.01  0.0840.01  0.09 + 0.01
Weighted y = 0.8, 10 models  0.92 = 0.01 0.90 =+ 0.01 0.88 + 0.01 0.08+0.01  0.08+0.01  0.09 + 0.01

Table 9: Results for WRSE with Light GBM (proposed model) and two alternative base
models: A multi-layer perceptron (MLP) and logistic regression. We report the mean and
standard deviation across the 5 splits.

Model CHv ~=03 CY% =05 C% =08 Cal”, v=03 Cal”, yv=05 Cal”,v=08
Weighted v = 0.3, 5 models (Light GBM) 0.92 £ 0.01 0.90 £ 0.01 0.88 £ 0.01 0.07 £ 0.01 0.07 £ 0.01 0.07 £ 0.01
Weighted v = 0.3, 5 models (MLP) 0.89 £+ 0.02 0.88 £+ 0.02 0.85 £+ 0.01 0.11 £ 0.01 0.11 £ 0.01 0.10 £ 0.01
Weighted y = 0.3, 5 models (Logistic Regression) ~ 0.88 £ 0.01 0.87 £+ 0.01 0.85 £ 0.01 0.13 £ 0.03 0.13 £ 0.03 0.12 £ 0.03
Weighted v = 0.5, 5 models (Light GBM) 0.92 £ 0.01 0.90 £ 0.01 0.88 £ 0.01 0.07 £ 0.01 0.08 £ 0.01 0.08 £ 0.01
Weighted v = 0.5, 5 models (MLP) 0.89 £+ 0.01 0.88 £+ 0.01 0.85 £+ 0.01 0.11 £ 0.01 0.11 £ 0.01 0.10 £ 0.00
Weighted v = 0.5, 5 models (Logistic Regression) ~ 0.89 + 0.01 0.88 £+ 0.01 0.85 £+ 0.01 0.11 £ 0.01 0.10 £ 0.01 0.10 £ 0.01
Weighted v = 0.8, 5 models (Light GBM) 0.92 + 0.01 0.90 + 0.01 0.88 + 0.01 0.09 + 0.01 0.09 + 0.01 0.09 + 0.01
Weighted vy = 0.8, 5 models (MLP) 0.90 £+ 0.01 0.89 £+ 0.01 0.86 £+ 0.01 0.11 £+ 0.04 0.11 £ 0.03 0.11 £ 0.02
Weighted v = 0.8, 5 models (Logistic Regression)  0.90 + 0.01 0.88 + 0.01 0.86 + 0.01 0.13 £ 0.04 0.12 £ 0.03 0.12 £ 0.02
Weighted v = 0.3, 7 models (Light GBM) 0.92 + 0.01 0.90 + 0.01 0.88 + 0.01 0.07 + 0.01 0.07 + 0.01 0.07 + 0.01
Weighted vy = 0.3, 7 models (MLP) 0.88 £+ 0.02 0.87 £+ 0.01 0.85 £+ 0.01 0.12 £+ 0.02 0.12 £ 0.02 0.11 £ 0.02
Weighted v = 0.3, 7 models (Logistic Regression) 0.88 £+ 0.01 0.87 £+ 0.01 0.85 £ 0.01 0.12 £ 0.02 0.12 £ 0.02 0.11 £ 0.02
Weighted v = 0.5, 7 models (LightGBM) 0.92 + 0.01 0.90 + 0.01 0.88 + 0.01 0.08 + 0.02 0.08 + 0.01 0.09 + 0.01
Weighted v = 0.5, 7 models (MLP) 0.89 £ 0.02 0.88 £+ 0.02 0.86 £+ 0.01 0.11 £ 0.02 0.10 £ 0.02 0.10 £ 0.02
Weighted v = 0.5, 7 models (Logistic Regression) — 0.88 £ 0.02 0.87 £+ 0.02 0.85 £+ 0.01 0.12 £ 0.04 0.11 £ 0.03 0.10 £ 0.03
Weighted v = 0.8, 7 models (Light GBM) 0.92 + 0.01 0.90 + 0.01 0.88 + 0.01 0.09 + 0.01 0.09 + 0.01 0.09 + 0.01
Weighted v = 0.8, 7 models (MLP) 0.90 £ 0.01 0.89 £ 0.01 0.86 £ 0.01 0.11 £ 0.03 0.11 £ 0.02 0.12 £ 0.03
Weighted v = 0.8, 7 models (Logistic Regression)  0.90 £ 0.01 0.88 £+ 0.01 0.86 + 0.01 0.12 £ 0.03 0.11 £ 0.02 0.12 £ 0.02
Weighted v = 0.3, 10 models (Light GBM) 0.92 + 0.01 0.90 &+ 0.01 0.88 = 0.01 0.07 £ 0.01 0.07 £ 0.01 0.08 £ 0.01
Weighted v = 0.3, 10 models (MLP) 0.88 £+ 0.01 0.87 £+ 0.01 0.85 £ 0.01 0.10 £ 0.01 0.10 £ 0.01 0.10 £ 0.01
Weighted v = 0.3, 10 models (Logistic Regression) 0.88 + 0.01 0.87 £ 0.01 0.85 £+ 0.01 0.11 £ 0.02 0.11 £ 0.02 0.10 £ 0.01
Weighted v = 0.5, 10 models (Light GBM) 0.92 + 0.01 0.90 + 0.01 0.88 + 0.01 0.07 &+ 0.01 0.08 &+ 0.01 0.09 &+ 0.01
Weighted v = 0.5, 10 models (MLP) 0.89 £ 0.01 0.88 £ 0.01 0.86 £ 0.01 0.11 £ 0.01 0.11 £ 0.01 0.10 £ 0.01
Weighted vy = 0.5, 10 models (Logistic Regression) 0.88 + 0.02 0.87 + 0.02 0.85 + 0.01 0.10 £+ 0.01 0.10 £+ 0.02 0.10 £+ 0.02
Weighted v = 0.8, 10 models (Light GBM) 0.92 £+ 0.01 0.90 £+ 0.01 0.88 £+ 0.01 0.08 £ 0.01 0.08 £ 0.01 0.09 £ 0.01
Weighted v = 0.8, 10 models (MLP) 0.90 + 0.01 0.88 + 0.01 0.86 + 0.01 0.11 + 0.02 0.11 &+ 0.02 0.12 &+ 0.02
Weighted y = 0.8, 10 models (Logistic Regression) 0.90 + 0.01 0.88 £+ 0.01 0.86 £+ 0.01 0.11 £+ 0.01 0.11 £+ 0.01 0.12 £ 0.02
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Figure 6: The area around the diagonal of the
calibration plot for different variants of spacing
of base models, evaluated individually for each
horizon 7. Lower values correspond to better
calibration. The error bands denote the stan-
dard error across the 5 splits.
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Figure 7: The fraction of concordant
pairs per time 7: |{(i,7) € P:|Si(1) <
S;(7)}|/|Pr| for different spacing variants
of base models. This gives an indication of
discrimination performance as a function
of the predictive horizon. Higher values
represent better discrimination. The error
bands denote the standard error across the
5 splits.
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