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Abstract

‘Medical concept embedding’ aims to provide vector representations of International Statis-
tical Classification of Diseases (ICD) codes such that the relationship between two vectors
mirrors the conceptual relationship between the two diagnoses or clinical interventions.
Despite the growing interest in vector representations of clinical information in electronic
health records (EHR), the utility of embedding methods has not been examined in the
context of predicting individualized survival distributions (ISD). In this study, we apply
ISD methods, specifically Cox-Proportional Hazards with Kalbfleisch-Prentice extension
(CoxPH-KP) and Multi-task Logistic Regression (MTLR), to the task of predicting prob-
ability of Heart Failure (HF') rehospitalization or mortality, in a population-level database
of 40,568 HF hospitalizations over the span of 8 years. Further, we compare performance of
these ISD models with versus without code embeddings, that were learned in a temporally
disjoint dataset of 229,359 all-cause hospitalizations. All our models show good discrimi-
nation in the validation dataset of 8,114 HF hospitalizations, with time-based concordance
greater than 70% for every monthly intervals upto 8 years. Finally, we demonstrate that
medical concept embedding does not always lead to improved model discrimination, but
does improve model calibration, particularly over the longer time scales.
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1. Introduction

Heart failure (HF) is a severe form of heart disease where the heart cannot pump enough
blood to keep up with the body’s needs. HF patients are at high risk of severe episodes
and death. Moreover, patients who are hospitalized for HF are more likely to need to be
hospitalized again, which poses high economic costs (Tran et al., 2016). Currently, there
are no reliable models that identify which of these hospitalized HF patients are at high risk
of unplanned rehospitalization or death.

It is challenging to build models that predict readmissions over long time scales using
administrative databases because such clinical characterizations are often shallow or incom-
plete. Survival analyses, in particular, individual survival time distribution (ISD) methods,
are well suited for this task as they can account for patient-level clinical heterogeneity and
provide meaningful probabilistic estimates at several time points (Haider et al., 2018). ISD
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also allows us to compute a specific patient’s expected survival time. For example, ISD
tools such as Cox-Proportional Hazards with Kalbfleisch-Prentice Extension (CoxPH-KP)
(Kalbfleisch and Prentice, 2002) and Multi-task Logistic Regression (MTLR) (Yu et al.,
2011) can be used to learn patient-specific survival curves based on patient attributes such
demographic profile, comorbidities and medical interventions — see Figure 2. Here, for each
time t, S (¢|z) is the probability that patient z will survive (not have an ”event”) at least
until time t (where ”event” means readmission to the hospital or death).

Administrative databases, or electronic health records (EHR) in general, systematically
record clinical entities such as diagnoses and medical interventions of patients using interna-
tional standard codes (WHO, 2016). Further, these datasets contain a sequence of hospital
visits for each patient over time, where each visit can include multiple medical codes. We
can encode the discrete codes from a finite set of choices as a multi-hot vector for each
visit. However, these codes are often correlated — eg, ICD-10 code 150 (Heart Failure) and
148 (Atrial Fibrillation and Flutter) (Denaxas et al., 2018). The raw bit representation of
multi-hot vector lacks the conceptual relationship between the codes, both semantically and
in terms of the geometric distance between vectors. We may be able to address this problem
with the use of embeddings, which translate large sparse vectors into a lower-dimensional
space that implicitly embody semantic relationships. Since its first application in 2016,
medical concept embeddings have been useful for predicting future medical codes (Choi
et al., 2016b) or in analysis of patient similarity (Zhu et al., 2016). EHR-based embedding
representations have been particularly successful in HF, and have led to promising results
in predicting the risk of developing the disease in binary classification framework (Che
et al., 2017; Denaxas et al., 2018; Choi et al., 2018). However, to best of our knowledge,
the utility of using embeddings has not been examined in the context of survival (time to
event) analysis or prediction of individualized survival curves in HF or any other medical
condition.

Typically, clinical utility of predictive models that output probabilities are evaluated
based on discrimination and calibration (Harrell Jr, 2015). Discrimination metrics, such
as concordance, measures how well a model separates individuals into two classes, such as
readmitted within 30 days versus not readmitted. On the other hand, calibration measures
whether predicted probabilities agree with observed proportions. Calibration is particu-
larly important in prognostic settings such as prediction of future readmission probability
(Cook, 2008), since a poorly calibrated model might over- or under-estimate the readmis-
sion probability, even if it can still accurately classify individuals into classes —i.e., exhibit
good discrimination (Figure 5 provides an illustrative example).

In this study, we developed and evaluated ISD models to predict HF rehospitalization or
all cause mortality, with 40,568 HF hospitalizations in Canadian province of Alberta, over a
8 year period (2008 — 2016) using CoxPH-KP and MTLR methods. Further, we compared
the model performance with and without the use of medical code embeddings, in terms of
discrimination and calibration at monthly time points.



LoNG TERM PREDICTIONS OF REHOSPITALIZATIONS USING MEDICAL CONCEPT EMBEDDING

Distribution of censored events

4000
|

3000

1000
1

Frequency of index HF admissions
2000
1

years before censoring

Figure 1: Frequency distribution of censored events

2. Methods

2.1. Data Sources

The province of Alberta has a single-payer, government funded health care system that
provides universal access to over 4.3 million people for hospital, emergency department
(ED), and physician services. We used de-identified data from administrative databases
maintained by Alberta Health for the period of 2002 to 2016, including (1) the Discharge
Abstract Database, which records for each hospital visit, the admission date, discharge date,
most responsible diagnosis, and up to 25 other diagnoses, most responsible intervention,
and up to 20 other interventions, special care units and physician specialities for all acute
care hospitalizations; (2) the Ambulatory Care Database, which records all patient visits to
hospital-based physicians’ offices or EDs; (3) the Practitioner Claims Database, which tracks
all physician claims for outpatient services; and (4) the Alberta Health Care Insurance Plan
Registry, which tracks vital status of all residents. Lastly, demographic information such
as sex, socio-economic status, urbanicity and ethnicity were collected from the Population
registry. This study received ethics approval from the Health Ethics Research Board at the
University of Alberta.

2.2. Feature Encoding

We used two types of encoding to represent the diagnosis / intervention ICD-10-CM (In-
ternational Statistical Classification of Diseases and Related Health Problems - 10 - clinical
modification) codes in each HF hospitalization, namely multi-hot and embedding. We par-
titioned the dataset based on time periods: Apr 2002 to Mar 2008, used to learn embedded
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Figure 2: Representative survival curves for KM, CoxPH-KP and MTLR models
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Figure 3: Concordance index measured at multiple time points and its average for the 4
evaluated models
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Figure 4: Calibration measured using HL test at multiple time points for the 4 evaluated
models. Note that we consider the model to be calibrated if the p-value is greater
than the threshold p-value — here, we consider 0.05 and 0.001.
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representations and Apr 2008 to Mar 2016, used to learn and evaluate ISD models. In
general, an ICD-10-CM code is 3 to 7 characters; we collapsed the less-frequent ICD codes
(the ones ranked after the first 500) to their first 3 characters, which denotes the general
category of disease. This procedure reduced the total of 12827 unique ICD codes to 3015
codes, which was then used for both kinds of encoding.

To derive the embeddings, we used inpatient records pertaining to all cause hospitaliza-
tions (total: 229,359) from 37,161 patients during a 6 year period (2002 - 2008) who had at
least 2 visits. We then applied the Med2Vec architecture (Choi et al., 2016a), which learns
representations at two levels: code-level and visit-level. Here, we trained neural networks
to predict codes in neighboring visits (previous and next), given the codes in current visit
(input and outputs are multi-hot 3015 length vectors). Med2Vec combines this objective
function of minimizing the cross-entropy with another that tries to find representations for
the codes that predict others in the same visit, by maximizing the log-likelihood of co-
occurring code representations (see Appendix A for more details). We set the embedding
size to 200.

2.3. Predictive Modeling

The goal of our model was to predict the time of next hospitalization with primary diag-
nosis of HF (ICD-10 Code: starting with '150") or death during the 8 year period (2008 -
2016), given an input of features pertaining to a particular (index) HF hospitalization of an
individual patient. Our dataset contained 40,568 primary HF hospitalizations of 29,525 pa-
tients, where outcome was right censored for 30.1% of hospitalizations — that is, 30.1% were
alive and never re-hospitalized during this interval (Figure 1). In addition to medical codes
(3015 in multi-hot encoding; 200 in embedded encoding), we used the following attributes
of index hospitalization as features : age, sex, socio-economic status, urbanicity, ethnicity,
physician’s specialty, types of critical care unit, occurrence of hospital transfer, duration
of hospital stay, duration of special care stay, total duration of hospital stay in preceding
year, time since last all-cause hospitalization, and the counts of clinical encounters prior to
index hospitalization in the preceding year of following types: inpatient, outpatient, ED,
physician office visits each with primary HF, secondary HF or any diagnosis. We performed
feature selection based on significance (p-value < 0.1) of the variables in univariate CoxPH
regression on the training dataset. We used CoxPH-KP and MTLR to learn ISD models
over these selected features (see Appendix B, C for details) with and without embedding,
namely: Emb-Cox, Emb-MTLR, multihot-Cox and multihot-MTLR.

2.4. Evaluation

We trained each model (Emb-Cox, Emb-MTLR, multihot-Cox and multihot-MTLR) using
4/5th of the dataset (n = 32,454), and then validated the learned model on the held out
1/5th (n = 8114) of dataset. This split was stratified such that the fraction of censored
events and range of event times was roughly equal in the training and held out test set.
We evaluated the performance of our models using concordance and calibration, calcu-
lated at every time point corresponding to monthly (30 days) intervals up to 8 years (total:
96 time points). We computed concordance to measure discriminative ability of the model
to categorize the hospitalizations as with / without outcome, while only considering pairs
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of hospitalizations in different predefined bins ! (Heagerty and Zheng, 2005). Here the risk
score was given by the negative of the median survival time 2. Similarly, we used calibra-
tion to measure the ability of the model to correctly estimate the probability of outcome
at multiple time points, with D’Agostino-Nam translation to account for censored events,
using Hosmer-Lemeshow (HL) goodness-of-fit test (Hosmer and Lemesbow, 1980). We also
computed a summarised performance measure, namely the integrated brier score (Brier and
Allen, 1951).

3. Results

Figure 2 shows survival curves for Kaplan-Meier (KM) model as well as Emb-Cox, Emb-
MTLR models for 10 representative test hospitalizations. Since the KM model does not
account for individual features, the survival distribution represents the population’s overall
survival curve. Next, note that all the CoxPH-KP curves have effectively the same shape,
and do not cross, due to the proportional hazards assumption, whereas the curves for MTLR
can cross.

Figures 3 and 4 show the concordance-index and calibration HL p-value for the 4 pre-
diction models, over 96 monthly time points. With respect to concordance, we observed
that all the 4 models range from 70 to 75% over all the time points (Figure 3). Embedding
models were slightly more stable, and in particular Emb-MTLR shows lowest variance and
highest average (although all 4 averages were very close to each other). Note that multi-hot
models performed particularly well in early time points (time points < 1 year).

For inferring the model calibration, in addition to conventional p-value threshold of
0.05, we also compared the models based on relaxed threshold of 0.001, given the increased
power of HL test at large sample sizes (see horizontal dashed lines in Figure 4). We observed
the Emb-MTLR was most calibrated among the evaluated models. It was well calibrated
upto 3 years at 0.05 threshold, and upto 4 to 5 years at 0.001 threshold (Figure 4). The
second most calibrated model was Emb-Cox which showed good calibration upto 6 months
to a year. On the other hand, both multi-hot models (multihot-Cox and multihot-MTLR)
were not well calibrated except for first time point (30-day prediction), but only at 0.001
threshold.

Lastly, the integrated Brier score was 14.97, 14.82, 15.01 and 14.87 for Emb-Cox, Emb-
MTLR, multihot-Cox and multihot-MTLR models respectively. Again, Emb-MTLR showed
the best score 3. However, it should be noted that depending on the clinical context, a more
accurate survival model at shorter duration, such as at 30 days, might be more useful than
a more stable model at longer duration. Additionally, given the long time span of the data,
any temporal changes in adoption and definitions in ICD-10 codes could potentially effect
the embeddings and prediction performance. In summary, as expected, we observed a drop
in performance with both discrimination and calibration over longer range predictions. All 4
models evaluated were comparable in terms of overall concordance, however models trained
with medical code embeddings showed more stable predictions and better calibration over
the longer time scales compared to models trained with multi-hot encoded features.

1. e.g. at 30 day cut point, Bini=[0, 30] and Biny,=[31, 2920]
2. Median survival time is where the survival curve crosses 50% probability, see horizontal line in Figure 2
3. For Brier score, lower score indicates better performance. Baseline score is 0.25.
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Figure 5: The bins of observed and expected probabilities associated with two calibration
computations of the Emb-MTLR model applied for 2 year [left] and 7 year [right]
time points. Note that left is well calibrated, while right is not calibrated, however
both show good discrimination (concordance index > 70%)

Appendix A. Overview of Med2Vec

Choi, Edward and Bahadori, Mohammad Taha et al. provides the Med2Vec algorithm
(Choi et al., 2016a). Here we provide an brief summary. To quote the authors:

We can denote the set of all medical codes ci,c¢g,...,cic| in our EHR dataset by C with
size |C|. EHR data for each patient is in the form of a sequence of visits V1, ..., Vp where
each visit contains a subset of medical codes Vr € C. The goal of Med2Vec is to learn two
types of representations:

Code representations: First goal is to learn an embedding function fc : C — R
that maps every code in the set of all medical codes C to non-negative real-valued vectors
of dimension m.

Visit representations: Second goal is to learn another embedding function fy : V —
R" that maps every visit (a set of medical codes) to a real-valued vector of dimension n.
The set V is the power set of the set of codes C.

Given a visit V4, a multi-layer perceptron generates the corresponding visit representa-

tion v;. First, visit V; is represented by a multi-hot vector z; € {0, 1}|C| where the ith entry
is 1 only if ¢; € V;. Then x; is converted to an intermediate visit representation u; € R™

10
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as follows
uy = ReLUW x¢ + b,) (1)

using the code weight matrix W, € R™*I¢l and the bias vector b, € R™.

The final visit representation v, € R is created as follows,
= ReLU(W,u; + b,)

using the visit weight matrix W,, € R™™ and the bias vector b, € R", where n is the
predefined size of the visit representation. (Note that unlike the original Med2Vec, we did
not use demographic information for learning the embeddings)

Given a visit representation vy, a softmax classifier predicts the medical codes of the visits
within a context window (previous and next events) by minimizing the cross entropy error
as follows:

g%*E: Yo (i) log i

t=1 —w<i<w,i#0 (2)
—(1 — x44q) " log (1 — 41),

where

exp (W vt + by)
S exp (W[j, o + by j])

where W, € RICI*™ and b € R/Cl are the weight matrix and bias vector for the softmax
classifier, w the predefined context window size, exp the element-wise exponential function,
and 1 denotes an all one vector.

~

Yt =

The code representations to be learned is denoted as a matrix W/, = ReLU (W .) € R™*/Cl,
From a sequence of visits Vi, Vo, ..., Vp , the code-level representations can be learned by
maximizing the following log-likelihood,

mlnfz Z Z log p(cjlci), (3)

t=1i:c;€Vy jic; €V, j#i

where

eXP (W', )T Wel:, 4]
Zk Lexp (WY [ k] TWY [, 14])

p(ejle) =

11
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Finally, the single unified framework can be obtained by adding the two objective func-
tions 2 and 3 as follows,

arg min Z{ Z Z log p(cjei)

Wc,v,s:bc,v s iic;€Vy gt CJGV},]#Z (5)

+ Z —@),plog g — (1 — ) " log (1 — ?Jt)}
—w<k<w,k#£0

By combining the two objective functions, Med2Vec learns both code representations
and visit representations from the same source of patient visit records, exploiting both
intra-visit co-occurrence information as well as inter-visit sequential information at the
same time.

Appendix B. Overview of MTLR

Consider modeling the probability of survival of patients at each of a vector of time points
T =[t1,t2,...,tm]. In our study 7 is 96 monthly intervals from 1 month up to 8 years. We
can set up a series of logistic regression models: For each patient, represented as «,

P(T > t;|2) = (1 + exp(6; - @) (6)

where 0; are the time-specific feature vectors. While the input features x stay the same
for all these classification tasks, the binary labels y; = [T > t;] can change depending
on the threshold ¢;.% We encode the survival time d of a patient as a binary sequence
y =y(d) = (y1,y2,.--,Ym), where y; = y;(d) € {0,1} denotes the survival status of the
patient at time ¢;, so that y; = 0 (no death or readmission event yet) for all ¢ with ¢; < d,
and (y; = 1) (death) for all ¢ with ¢; > d.

Here there are m + 1 possible legal sequences of the form (0,0,...,1,1,...,1), including
the sequence of all 0’s and the sequence of all 1’s. The probability of observing the survival
status sequence y = (y1, Y2, ..., Ym) can be represented as:

Po(Y=(y1,v2,.--,ym) | ) = eg(%éxi)?};(i k;)c)) "

where © = (01,...,0p,), and fo(x,k) = >, 1 (6; - x) for 0 < k < m is the score of
the sequence with the event occurring in the interval [tg, ;1) before taking the logistic
transform, with the boundary case fo(x, k) = 0 being the score for the sequence of all ‘0’s.
Given a dataset of n patients {x,} with associated time of events {d, }, we find the optimal
parameters (for the MTLR model) (©*) as

0* = argmaxz Zy] )(0i-x,)

r=1 =1

m C m
~log Y exp fo(zr. k)] = 5> |6l
j=1

k=0
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where the C' (for the regularizer) is found by an internal cross-validation process. There are
many details here — to insure that the survival function starts at 1.0, and decreases mono-
tonically and smoothly until reaching 0.0 for the final time point; to deal appropriately with
censored patients; to decide how many time points to consider (m); and to minimize the
risk of overfitting (by regularizing), and by selecting the relevant features.

The paper by Yu et al. provides the details. C.-N. Yu, R. Greiner, H.-C. Lin, and V.
Baracos. Learning patient-specific cancer survival distributions as a sequence of dependent
regressors. In NIPS, 2011(Yu et al., 2011).

Appendix C. Overview of CoxPH-KP

The Cox proportional-hazards (Cox-PH) model is extremely common in the survival analysis
literature. Cox-PH models the hazard function of patients, where hazard is interpreted as
the risk of event at any given time, specifically for a time ¢ and covariates « the hazard

function is defined as
Pt<T<t+At | T>t
h(t|x) = lim (t=T<t+ | T >t 2)
At—0 At

. 9)

Cox-PH models this hazard function in terms of a baseline hazard, ho(t), equal for all
patients and scaled by a learned, individual risk depending on features, that is, h(t|x) =

ho(t) e’ ® This is why the model is termed the proportional hazards model, the hazard
for one patient is proportional to the hazard of all other patients, by a scale depending on
individual features. To learn the values for w’ one does not need to know the baseline
hazard function. Suppose a single patient died at time ¢;. The probability that patient i
was the one who died is given by

h(tj ’ xl) _ ho(tj) ewT x;
ZkGR(tj) h(t] ’ xk) ZkER(tj) ho(t]) ewT @y’
wT z; (10)
e K2

9

Zk‘ER(tj) ewT Tk
where R(t;) is the set of patients still alive (at risk) at time ¢;. Thus the likelihood for
w? is defined as

w’x; (5

L (w?) = ¢

( ) j ZkeR(tj) ew” @

where subscript (j) is interpreted as it is patient ¢ who had an event at time j. By

this formulation of the likelihood equation, we see that feature weights are independent of

time. While we are able to estimate feature weights without specifying the baseline hazard

function, we cannot determine the survival distribution. A number of methods exist for

calculating the the baseline hazard and therefore the survival distribution including the

Kalbfleisch-Prentice estimator which we use in this work. The thesis “Baseline Survival

Function Estimator under Proporitional Hazards Assumption” provides a nice discussion
of the Breslow and Kalbfleisch-Prentice estimators (ping Weng, 2007).

; (11)

13



	Introduction
	Methods
	Data Sources
	Feature Encoding
	Predictive Modeling
	Evaluation

	Results
	Overview of Med2Vec
	Overview of MTLR
	Overview of CoxPH-KP

