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Abstract

Dynamic survival analysis is a variant of traditional survival analysis where time-to-event
predictions are updated as new information arrives about an individual over time. In this
paper we propose a new approach to dynamic survival analysis based on learning a global
parametric distribution, followed by individualization via truncating and renormalizing that
distribution at different locations over time. We combine this approach with a likelihood-
based loss that includes predictions at every time step within an individual’s history, rather
than just including one term per individual. The combination of this loss and model results
in an interpretable approach to dynamic survival, requiring less fine tuning than existing
methods, while still achieving good predictive performance. We evaluate the approach
on the problem of predicting hospital mortality for a dataset with over 6900 COVID-19
patients.
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1. Introduction

Survival analysis focuses on the analysis and modeling of time-to-event data. Traditional
approaches to survival modeling in statistics typically construct global time-to-event distri-
butions, or else make restrictive assumptions about the effect of an individual’s covariates
on their risk of an event, such as in proportional hazard models (Aalen et al., 2008). In
the past few years new machine learning approaches relaxing these assumptions have been
applied to survival analysis problems (Spooner et al., 2020; Nemati et al., 2020; Wang et al.,
2019).

In this paper we describe a novel type of dynamic survival model which learns a global
distribution over a continuous time-to-event, while using covariate information to locate an
individual on the time-axis relative to this global density. This shifting procedure acts as
a natural regularization to the model since it reduces the family of possible distributions
to truncated (and renormalized) versions of the global density. This connection between
global and individualized densities also allows interpretation of each individualized density

© 2021 P. Putzel, P. Smyth, J. Yu & H. Zhong.



Putzel Smyth Yu Zhong

as the average density of individuals who have survived to the same shifted time along the
global time-axis. Our approach also makes fuller use of the entire history of covariate infor-
mation than existing methods by including predictions at every step within an individual’s
trajectory in the loss instead of only including a term at the last available measurement
per individual. We also introduce a novel form of the dynamic C-index to more carefully
evaluate a model’s expected prognostic performance when used in a true clinical setting.
We apply our model to electronic health record (EHR) data for patients hospitalized with
COVID-19, learning individualized time-to-death distributions after hospitalization.

2. Related Work

Common statistical approaches to dynamic survival modelling include landmarking and
joint modeling. Landmarking involves constructing a nested set of datasets at ‘landmark’
times and fitting a static survival model at each time point (Van Houwelingen, 2007; Parast
et al., 2014). It can, however, be difficult from an interpretability viewpoint to understand
the connection of the predicted risks to one another at the different landmark times. In
joint modeling approaches, the probability distribution of the covariate trajectory, and
the event of interest are modelled with a joint distribution (Rizopoulos et al., 2017; Wei
et al., 2018). However, doing so usually requires strong simplifying assumptions about
the covariate trajectories, which can be particularly problematic with high-dimensional
covariate data.

In recent years, traditional survival analysis modeling approaches have been augmented
with deep learning techniques to produce individualized predictions over time. For example,
Lee et al. (2020), Ren et al. (2019), Deasy et al. (2020), and Singh et al. (2020) all use the
outputs of a recurrent neural network (RNN) to make personalized risk predictions. Lee
et al. (2020) discretize time, and predict the probabilities in each time window. Ren et al.
(2019) predict the hazard function (i.e. density of having the event at time t given that the
event hasn’t occurred yet at time t) at each measurement time, and connect the hazards
together using the probability chain rule to predict the survival function. Singh et al. (2020)
use a proportional hazards assumption (that the hazard per individual can be broken down
into a baseline hazard times a covariate contribution) and predict the hazard ratio directly.
Deasy et al. (2020) learns an embedding of high-dimensional ICU data, and predicts the
probability of event in the next time window. Other deep learning approaches for dynamic
survival include using temporal convolutions as in Jarrett et al. (2020), and transformer-
based architectures as in Horn et al. (2020).

Despite being dynamic, the majority of these approaches do not make predictions at
multiple timesteps per individual during training. Instead they only make one prediction per
individual at the last available measurement in the dataset for that individual. In addition,
all but Lee et al. (2020), and Singh et al. (2020) treat survival prediction as a binary
classification problem and use a cross-entropy loss setup during training which, as shown in
Gorgi Zadeh and Schmid (2020), can produce poorly calibrated survival probabilities. An
additional issue is that these models also tend to be blackbox and difficult to interpret, which
is a significant limitation in the context of potential adoption for use in clinical applications
(Miotto et al., 2018; Rudin, 2019).
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3. Notation

A dataset D containing N individuals can be represented as

D = {(Hi, τi, ci), i ∈ {1, . . . , N}} (1)

where Hi represents the full history of covariate measurements for individual i, τi represents
the censored event time, and ci is the censoring indicator which takes a value of 0 if τi is the
true time until event, and takes a value of 1 if τi is right-censored. In more detail, Hi consists
of a collection of measurement times, measurement values, and missing indicators. Missing
indicators are needed since for many applications not all covariates will be available for each
individual i at every measurement time. The history for individual i can be represented as

Hi = {(xij, mij, tij), j ∈ {1, . . . , li}} (2)

Letting M represent the total number of covariate measurements, xij is an M × 1 vector
representing the values for each measurement at time tij , mij is a M×1 vector with a zero if
a value is missing otherwise taking value 1, and li is the number of total measurement times
for individual i. We assume that there is a synchronizing event (such as diagnosis with
COVID-19) across individuals, i.e., that the first time point for each individual i is defined
as ti1 = 1. Note that the times, tij , are not restricted to discretized values in principle, i.e.,
they can occur continuously in time. In this paper, however, for convenience we discretize
time (into days) to reduce the amount of missingness. In training and evaluating models
we only include the history for an individual up to and including the measurement before
the true event time, since for unseen new data we are interested only in making predictions
for individuals for whom the event has yet to occur.

4. Model Description

For convenience define Hi,j to be a partial history including measurements up until time
tij :

Hi,j = {(xik, mik, tik), k ∈ {1, . . . , j}} (3)

We make predictions at each step of an individual i’s history using Hi,j , the history up until
time tij allowing the model to update it’s predictions as new covariate measurements arrive.
The predictive densities at each step j in an individual’s history must be conditioned on the
event of interest occurring after the measurement time tij since the fact that a measurement
was taken implies survival until that time. Therefore, the model output for individual i at
each time step j is the predictive density f (i)(t|Hi,j , T > tij) over the event time. Let θg
be the parameters of a parametric global density (e.g., Rayleigh, Weibull) on time-to-event.
Then, conditioned on θg, at each time-step in an individual’s history an individualized
time-shift ∆ij , is used to define an individualized predictive density. The range of ∆ij is
restricted to be greater than −tij to avoid shifting to a negative time. The global density,
f (g)(t|θg), and the individualized density, f (i)(t|Hi,j , T > tij), are then connected as follows:

f (i)(t|Hi,j , T > tij) = f (g)(t+ ∆ij |θg, T > tij)

=
f (g)(t+∆ij |θg)

S(g)(tij+∆ij |θg)
for t > tij ,

(4)
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Figure 1: The connection between the global density, shown on the left, and the individual
densities at two different measurement times. For each time, the model generates
a shift ∆ij which locates the individual density along the timeline of the global
density. The individualized density is then determined by truncating the global
density at the shifted time tij + ∆ij and renormalizing as shown in the middle
and right plots. For the first measurement time ti1 = 20 the model predicts a
negative shift, indicating that the individual is doing better than average at the
first measurement time. For the second time ti2 = 40 the model predicts a positive
shift indicating that the individual is doing worse than the average individual at
the second measurement time.

where S(g)(t) is the survival function for the global model (one minus the cdf of the global
density). The first equality represents shifting the time for individual i to their effective
time/age, given their covariate history. The second equality involves truncating at time tij
and renormalizing to account for t > tij as shown in Figure 1.

The ∆ij ’s are defined as a parametric function of Hi,j . This function in general can be
split into two (deterministic) pieces. The first function, z, maps Hi,j to a state hi,j in an
autoregressive fashion (see below). The second function, g, then maps the state hi,j to ∆ij .
This gives:

hi,j = z
(
hi,j−1, (xij,mij,∆tij);φ

)
(5)

∆ij = g
(
hi,j ;α

)
j ∈ [1, li] (6)

where ∆tij = tij − ti(j−1) and φ and α are the parameters of z and g respectively. The
function z can be thought of as a transition function taking the previous state, time elapsed
since that state and the current measurements to evolve the previous state to the current
one. In this work, we consider two options for z and g. In the first z is parametrized by an
RNN, and g by a feedforward network, In the second option we let z be the identity over
the covariates, and g simply be a linear layer. This amounts to ignoring the full history
and only using the measurements at the current time to make predictions. In principle any
parametric functions (with g having an appropriate range for ∆ij) could be used.
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5. Log-Likelihood

As described above the model makes prediction at each step in the covariate history for an
individual. The likelihood for a single individual i therefore takes the form:

L((τi, ci)|θj=1:li) =

li∏
j=1

f (g)(τi + ∆ij |θg, φ, α, T > tij)
1−ci

×S(g)(τi + ∆ij |θg, φ, α, T > tij)
ci

(7)

This likelihood can be interpreted as adding li independent psuedo-individuals, one for each
time step in Hi. However, if the sequence lengths for some individuals are dramatically
larger than others then the data for those individuals will bias the loss since they will have
a larger contribution. To address this we average the log-likelihood over the li terms per
individual, yielding smoother training and gradients when parameters are being learned by
gradient descent. An alternative option would be to sample a single time step per individual
for each step of training and only use that term to compute the gradient (as with SGD),
which would save computation time at the cost of noisier gradients.

To train the model we first fit the parametric global density with parameter vector
θg, f

(g)(t|θg). Then we fix θg and learn at each step in an individual i’s history the time
shift ∆ij . For the results in this paper, we used a global Rayleigh distribution, although
any parametric model could be used. In principle θg could be jointly learned with the
∆ij parameters. However, we found this makes optimization more difficult, likely due to
the increase in local optima introduced, and we conjecture that learning the θg parameters
jointly with the ∆ij ’s causes non-identifiability of the parameters.

Interpretation: Joint learning of the θg and ∆ij parameters also removes the possibility
of interpreting the global density as representing the average risk at time t for the average
person. Such an interpretation is desirable as it allows interpreting the learned ∆ij parame-
ters as ‘locating’ an individual along the global density. An individual i with predicted shift
∆ij at time tij would have the same risk as the average individual at time tij + ∆ij . For
example an individual at time 0 with learned shift of 5 days at time 0 would have similar
risk to the average person 5 days after the synchronizing event.

6. COVID-19 Severe Outcome DataSet

We evaluate our approach on a COVID-19 dataset consisting of 6,999 individuals diagnosed
with COVID-19 at New York University Langone Hospital (NYULH) during the period
March to July 2020. We synchronize the covariate trajectories for each individual to time
of COVID diagnosis, and define the event of interest as time until severe outcome after
diagnosis, where severe outcomes are the first occurrence of any of five severe health events:
ICU admission, stroke, dialysis, death, and ventilation. In total 882 (12%) of individuals
have a severe health outcome with the rest being censored at the end of followup. The
dataset includes a variety of dynamic categorical variables such as hospitalization status
and whether or not a patient received a particular medication on a particular day. The
data also includes numeric covariates such as results of lab tests and vital measurements, as
well as static demographic information about each patient. In total we used 345 dynamic
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covariates and 11 static covariates. We discretize the measurement times to days, although
we allow arbitrary gaps in units of days between measurements, and represent the time to
event itself down to the precision of minutes.

We partitioned the data at the patient level into development, validation, and testing
subsets with 70% used for development and validation (with 42% and 28% in each respec-
tively corresponding to a 60/40 split), and the remaining 30% for testing. The development
and validation sets were used to perform a grid-based hyperparameter search over the learn-
ing rate (for all models), regularization, and the hidden dimension of the recurrent neural
network (for the RNN-∆ model, and Dynamic DeepHit). We then fit a model to the full
training dataset, using the hyperparameter settings that performed best on the validation
data, making use of the event times, censoring indicators, and covariate trajectories in the
training data. At test time we use only the covariate histories per individual to make pre-
dictions about the event times in the test data, mimicking the real-world use case of making
predictions on new previously unseen patients.

7. Evaluation

For evaluating dynamic model performance we introduce a modified dynamic form of the
C-index, which we will call the at-risk dynamic C-index to differentiate it from the standard
dynamic C-index (Harrell et al., 1982; Antolini et al., 2005) Unlike the standard dynamic
C-index used in Lee et al. (2020), the at-risk dynamic C-index is prognostic, i.e., when
making predictions at time t, the model’s rankings are evaluated going forwards in time
from t, rather than evaluating model performance before t. Furthermore, the model’s
rankings are evaluated only for individual’s who are still at risk for the event to occur after
time t. This intuitively represents evaluating how well the model’s rankings made at t for
at-risk individuals will hold up in the future, which we believe is a more relevant metric for
clinicians. We follow the derivation in van Houwelingen and Putter (2011) which derives
the C-index as a weighted average of incident dynamic AUC at each event time, and modify
it for dynamic predictions by replacing the time varying covariates with the time varying
risk predictions from the model. More precisely, we define a set of concordant pairs Pc, and
a set of valid pairs Pv as follows:

Pv =
{

(i, k) s.t. τi ≤ τk, t ≤ τi, ci = 0
}

Pc =
{

(i, k) s.t. (i, k) ∈ Pv, Ri > Rk

} (8)

Intuitively the valid pairs are all pairs for which we know the correct ordering, and
the concordant pairs are those for which the model gets that ordering correct. The at-risk
dynamic C-index is then just the ratio of the number of concordant pairs, to the valid pairs,
estimating the probability of a random valid pair being ordered correctly. Modifying the
derivation in van Houwelingen and Putter (2011) for time-varying risks, Ri and Rk are
computed for any pair (i, k) as the total probability that the event occurs from time t to
time τi using the most recent predicted densities at time t for each individual (appropriately
re-normalized for survival until time t). Notice that the at-risk dynamic C-index does not
require a prediction window, and instead represents the model’s averaged performance over
all future times for the current set of at-risk individuals.
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For completeness we also evaluate our model with the standard version of the dynamic
C-index as described in Lee et al. (2020). Following the same notation used before, we can
define valid and concordant pairs for the standard dynamic C-index as follows:

Pv =
{

(i, k) s.t. τi ≤ τk, τi ≤ t+ ∆t, ci = 0
}

Pc =
{

(i, k) s.t. (i, k) ∈ Pv, Fi > Fk

} (9)

Here the risks from the previous equation are replaced with the cumulative densities, Fi
and Fk, evaluated at time t + ∆t conditioned on survival until time t. Notice that the
standard dynamic C-index requires a prediction time t and window ∆t. This version of
the C-index can easily be falsely inflated when time is included as a predictor. This occurs
because individuals with the event before the prediction time t will likely have their last
measurement time prior to the event ,tili , (which a model could use to make it’s predictions)
be close to the true event time. Therefore ranking by 1

tili
(which for time-discretized data

is the frequency of encounters) will be better than a random ranking for these individuals,
and a model could inflate the index by exploiting this, despite it not representing a clinically
meaningful predictor. Our proposed at-risk C-index does not have this potential issue since
it doesn’t include individual’s before the prediction time.

We compare the performance of our time-shift ∆ models with several baselines. We
evaluate our time-shift approach using both a linear model (Linear-∆) which only makes
use of the current covariate measurements without using the full history, and an RNN-based
model (RNN-∆) which uses the full history. We compare these models to the Dynamic
DeepHit model of Lee et al. (2020), in order to include comparison to a competitive deep
recurrent model. In addition we also evaluate a standard Landmark-Cox model in order
to include a traditional statistical approach. Finally, we include for comparison a model
free baseline that ranks patients by the the inverse of the total number of days (1/N-Days)
they’ve been in hospital at the prediction time t—this is included to differentiate between
the two versions of the C-index that we described above, i.e., we expect our proposed At-
Risk Dynamic C-Index to be robust to timing effects and therefore for this baseline to
produce C-Index values close to 0.5 that are no better than random ordering. Conversely
on the standard C-Index, this baseline may produce spurious performance that is above
random chance.

8. Results

To obtain the results in Table 1 we perform validation experiments training each model
on the development data for different hyperparameter settings, and evaluating performance
on the validation data. After selecting hyperparameters, we then retrain the model on
the development and validation data combined (a 70% random subset of patients), and
evaluate on the test data to generate C-Index values for out-of-sample data (the other 30%
of patients). For the dynamic C-index results in Table 1 at each prediction time (in days,
0, 3, 4, 6, and 11) we average the C-index across four different time windows of 5, 10, 15,
and 20 days. The at-risk dynamic C-index version does not require a time window.

Table 1(a) shows results for all of the methods we evaluated for the new at-risk dy-
namic C-index that we introduced in equation 8, while Table 1(b) shows results for the
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(a)

At-Risk Dynamic C-Index

Day 0 3 4 7 11 Avg (std)

1/(N-Days) 0.48 0.49 0.49 0.51 0.52 0.50 (0.01)
Landmark-Cox 0.79 0.78 0.79 0.77 0.47 0.72 (0.13)
Linear-∆ (proposed) 0.77 0.85 0.85 0.86 0.78 0.82 (0.04)
RNN-∆ (proposed) 0.78 0.83 0.83 0.82 0.71 0.78 (0.05)
Dyn-DeepHit 0.69 0.79 0.80 0.79 0.72 0.76 (0.05)

(b)

Dynamic C-Index

Day 0 3 4 7 11 Avg (std)

1/(N-Days) 0.50 0.59 0.60 0.60 0.60 0.58 (0.04)
Landmark-Cox 0.79 0.79 0.80 0.74 0.61 0.75 (0.07)
Linear-∆ (proposed) 0.76 0.80 0.82 0.85 0.86 0.82 (0.04)
RNN-∆ (proposed) 0.70 0.76 0.78 0.83 0.84 0.78 (0.05)
Dyn-DeepHit 0.82 0.87 0.87 0.89 0.88 0.87 (0.01)

Table 1: Results with the two dynamic C-indices on the COVID-19 data, (a) our proposed
At-Risk Dynamic C-Index, and (b) the standard Dynamic C-index.

standard dynamic C-index as defined in equation 9. Focusing initially on Table 1(b) we
see that Dynamic-DeepHit apparently has better performance (0.87) on average than any
of the other methods. However, we also see in Table 1(b) that ranking by the inverse of
the number of days since COVID-19 diagnosis (1/N-Days) leads to performance well above
chance. This clearly demonstrates the potential for inflated performance estimates when
the standard dynamic C-index is used for evaluation.

However, when evaluating via the new at-risk dynamic C-index in Table 1(a), the per-
formance of ranking by the inverse of the number of days is near random. This is due to
the exclusion of individuals with event times before time t in the set of valid pairs, showing
that ranking by the inverse of number of days is not useful for making predictions for at-risk
patients. Thus, comparing the C-index values for 1/N-Days ranking method between Table
1(a) and (b), we see (as expected) that the at-risk dynamic C-index in (a) does not suffer
from the optimism bias inherent to the standard dynamic C-index in (b). Under the at-risk
dynamic C-index , in Table (a), the performance of Dynamic-Deephit is now considerably
lower, implying that some of its performance on the standard dynamic C-index may have
been due to exploiting the correlation for individuals with event times before the prediction
time t. In contrast our proposed RNN-∆ and linear-∆ models have more stable perfor-
mance across the two indices. In addition our Linear-∆ model has the highest performance
over all models (0.82) in Table 1(a). We note that neither of the two RNN models (RNN-
∆ or Dyn-DeepHit) were able to use the longer-term history of patient data to achieve
the performance of the linear-∆ model. In addition, the two proposed ∆ models and the
Dyn-DeepHit model all outperformed the traditional statistical Landmark-Cox model. We
conjecture that Dynamic DeepHit performed better under the standard dynamic C-index
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Figure 2: Boxplots of the predicted ∆’s at different prediction times. For each prediction
time we collect all individuals who are still in the hospital, and plot a boxplot for
the ∆’s output by the model for that set of individuals. The minimum possible
∆ at time t is negative t. As time passes the ∆’s tend to become smaller.

due to the inclusion of a ranking regularization term which closely mimics the dynamic
C-index in its loss function. Nonetheless, Dynamic DeepHit performance, when measured
by the at-risk C-index, while better than the landmark-Cox model, was poorer then both
versions of our approach.

Figure 2 shows boxplots of the ∆’s learned by the model for different prediction times.
The model-predicted ∆’s tend to decrease the longer a patient has been in the hospital,
agreeing with the analysis in Rees et al. (2020) that length of stay is inversely correlated
with serious (or adverse) outcomes. We also show the predicted hazards for two individuals
in Figure 3. Here the plotted hazard represents the predicted hazard function, which is a
continuous function of time, evaluated at the start of each day. The individual shown on
the left plot of 3 starts off with slightly higher than average hazard after covid diagnosis,
but after developing a fever, and high systolic blood pressure they then experience a severe
outcome at day 8. Conversely, the individual shown on the right starts off with a better
prognosis, their hazard rises slightly with their blood pressure at day 4, and then after the
hazard decreases to zero over time they leave the hospital with no severe outcome.

9. Conclusion

In this paper we introduced a novel dynamic survival model based on individualized time-
shifts relative to a global denisty. We also proposed a new at-risk dynamic C-index that
evaluates a model’s predictions only for individuals still at risk. Our model shows promis-
ing performance on a real-world COVID-19 hospitalization dataset. However, the current
results described in this paper are only for a single dataset and further evaluation is needed
on additional datasets (including public data such as MIMIC-Three). Another important
question is why the additional modelling power of the RNN-based models do not yield im-
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Figure 3: Examples of two different hospitalized individuals, illustrating the model’s pre-
dicted hazard function evaluated at the start of each day, along with systolic
blood pressure, diastolic blood pressure, and temperature. Average values, shown
in red, are for comparison to the individual values shown in blue.

proved performance over the linear model for the at-risk dynamic C-index on the COVID-19
dataset. The choice of parametric form for the global distribution has also not yet been fully
investigated, and the currently-used Rayleigh distribution may be a limiting factor since it
limits the hazard function to an increasing linear function of time since synchronizing event.
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