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Abstract

Survival prediction aims to predict the time of occurrence of a particular event of interest,
such as the time until a patient dies. The main challenge in survival prediction is the
presence of incomplete observations due to censoring. The classical formulation for sur-
vival prediction treats the survival time as a continuous outcome, which leads to a censored
regression problem. Recent work has reformulated the survival prediction problem by dis-
cretizing time into a finite number of bins and then applying multi-task binary classification.
While the discrete-time formulation is convenient and potentially requires less assumptions
than the continuous-time approach, it also loses information by discretizing time. In this
paper, we empirically investigate continuous and discrete-time representations for survival
prediction to try to quantify the trade-offs between the two formulations. We find that
discretizing time does not necessarily decrease prediction accuracy. Furthermore, discrete-
time models can result in even more accurate predictors than continuous-time models, but
the number of time bins used for discretization has a significant effect on accuracy and
should thus be tuned as a hyperparameter rather than specified for convenience.

Keywords: Survival analysis, censored regression, multi-task learning, Cox proportional
hazards model, multi-task logistic regression

1. Introduction

Survival analysis methods are typically used to analyze time-to-event data and have a
long history in statistics. Many survival analysis methods can also be used for survival
prediction, which aims to predict the time to event for an unseen event given a set of
covariates or features for an example. The main difference between survival prediction and
other prediction problems in machine learning is the presence of incomplete observations,
where we have only partial information about the outcomes for some examples due to
censoring. Typical machine learning algorithms cannot incorporate this partial information,
so survival prediction algorithms need to be created to accommodate censoring.

Classical methods for survival analysis have typically treated the time to event as a
continuous outcome. The classical survival prediction problem is thus formulated as a
censored regression problem. Such approaches require some assumptions on the survival
times and include both semi-parametric and parametric models. The most commonly used
semi-parametric model is the Cox Proportional Hazards (CoxPH) model (Cox, 1972), which
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Figure 1: Illustration of time discretization into different number of bins

makes the proportional hazards assumption about survival times. Parametric models specif-
ically assume a distribution for the survival times, such as the exponential or log-normal
distribution. Both semi-parametric and parametric models can be very accurate predic-
tors when their assumptions are satisfied, but such assumptions are commonly violated in
practice.

An alternative approach to survival prediction is to discretize the survival times into a
set of time bins. This is done by assuming some maximum time or horizon (e.g. 20 years)
and then dividing time into equally-spaced bins (e.g. 20 bins each representing 1 year). This
reformulates the survival prediction problem as a sequence of binary classification problems,
which is a type of multi-task learning problem. Such an approach is both convenient and
does not require any assumptions on the distribution of the survival times. This discrete-
time approach forms the basis for many recently-proposed survival prediction algorithms
(Yu et al., 2011; Li et al., 2016a; Lee et al., 2018; Giunchiglia et al., 2018; Ren et al., 2019;
Wulczyn et al., 2020).

We examine three research questions in this paper:

RQ1 How much does discretizing time decrease the accuracy of a continuous-time survival
prediction algorithm?

RQ2 How does the number of discrete time bins affect the accuracy of a discrete-time
survival prediction algorithm?

RQ3 Does the added flexibility of the discrete-time formulation lead to an increase in
accuracy that compensates for any decreases in accuracy to discretizing time?

To investigate these three questions, we perform an empirical comparison of survival
prediction accuracy of continuous and discrete-time algorithms across four real data sets.
To keep the comparison as focused as possible on the format of the times rather than model
difference, we select two survival prediction models from the same family of generalized
linear models: the CoxPH model and the multi-task logistic regression (MTLR) model

2



Empirical Comparison of Continuous and Discrete-time Survival Prediction

(Yu et al., 2011). The discretization process is illustrated in Figure 1. The CoxPH model
is designed for continuous survival times, although it can be applied to discretized times
as well by handling ties (Efron, 1977). On the other hand, the MTLR model requires dis-
cretized times because it formulates survival prediction as a sequence of binary classification
problems.

2. Background

Survival analysis models treat the time to the event of interest, or the survival time, as
a random variable. In the survival analysis literature, the distribution of survival times is
mainly identified by the survival function S(t) and hazard function h(t) (Wang et al., 2019).

The survival function is defined as the probability that a person survives after a specific
time t.

S(t) = P (survival after t) = P (T > t).

This is a non-increasing function equal to 0 at t =∞.
The hazard function is the probability that event occurs in the next instant, given

survival to time t:

h(t) =
f(t)

S(t)
,

where f(t) is the probability density function of the survival time.

2.1. Continuous-time Survival Prediction

Continuous-time survival analysis approaches fall into 3 main categories: parametric, semi-
parametric, and non-parametric.

2.1.1. Parametric

Parametric models are ideal if a known distribution, such as exponential, gamma, Weibull,
or log-normal, can be accurately fitted to the survival times (Lee and Wang, 2003). In high-
dimensional settings, regularized methods can be applied to generate accurate predictions
(Li et al., 2016b). However, the distribution of survival times in many survival analysis
problems does not resemble one of the known distributions. As a result, the key survival
analysis functions (survival, hazard, and cumulative density functions) cannot be accurately
estimated as the distributions’ parameters cannot be accurately estimated from the data.

2.1.2. Semi-parametric

Semi-parametric survival analysis techniques such as the Cox proportional hazard model
(CoxPH) do not require specification of a particular distribution for survival time (Cox,
1972). CoxPH is one of the most widely used methods to estimate survival functions by
means of fitting the log of hazards as a linear combination of subjects’ covariates. This
approach removes the need for baseline hazard function estimation by maximizing a partial
log-likelihood function that is not dependent on the baseline hazard function.

The hazard ratio function in CoxPH model is given by

log
hi(t)

h0(t)
= βTxi,
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where the xi is the ith subject, and β is the coefficient vector. To estimate the coefficient
vector β, the following partial log-likelihood function should be maximized:

l(β) =
k∑

i=1

βTxi − log
∑

j:sj>si

exp(βTxl)

 ,
where k is the number of distinct event times, and si denotes the survival time for subject
i. In the event of ties (multiple events at the same time), Efron’s approach (Efron, 1977) is
typically applied.

Particularly in high-dimensional settings, regularization is often applied to avoid overfit-
ting to the training data. Perhaps the simplest regularizer is the `2 penalty, which involves
minimizing C

2 ‖β‖
2
2−l(β), where C is the regularization constant. More complex regularizers

have also been proposed, including the Elastic Net (combined `1 and `2 penalties) (Simon
et al., 2011).

2.1.3. Non-parametric

Suppose searching for a proper distribution that fits the survival data is time-consuming,
or no distribution appropriately fits the data. In that case, non-parametric approaches can
be considered to estimate the survival function. Estimating the survival function using
the product-limit (PL) approach, developed by Kaplan and Meier (1958), is one of the
most widely used non-parametric approaches. Unlike the parametric and semi-parametric
approaches, however, the Kaplan-Meier estimator does not account for covariates and is
thus not typically used for survival prediction.

2.2. Discrete-time Survival Prediction

Discrete time survival prediction treats time as discrete by dividing continuous time into
intervals, for example [0, a1), [a1, a2), ..., [am−1, am), [am,∞). There are several advantages
of using discrete time to event setting. They do not require any proportional hazard-like
assumptions on the distribution of the survival times because any discrete distribution is
valid. They also allow the survival prediction problem to be formulated as a sequence of bi-
nary classification problems. Finally, compared to continuous time models, interpreting the
hazard functions in discrete time models becomes easier as they are expressed as conditional
probabilities, and they can handle ties easily.

To overcome the proportional hazards assumption in the CoxPH model, Yu et al. (2011)
proposed a multi-task logistic regression (MTLR) approach to survival analysis and demon-
strated superior performance compared to the CoxPH model on several real data sets.
Rather than the hazard function, it directly models the survival function by combining
local logistic regression models so that censored observations and time varying effects of
features are naturally handled. The survival time s is encoded as a binary sequence of
survival statuses y whose probability of observation is represented as a generalization of
a logistic regression model, so that the log-likelihood of a set of uncensored patients with
survival time s1, s2, . . . , sn and feature vectors x1,x2, . . . ,xn is given by

l(θ) =
n∑

i=1

[
m∑
j=1

yj(si)(θ
T
j xi + bj)− log

m∑
k=0

exp
m∑

j=k+1

(θTj xi + bj)

]
.
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Rather than maximizing the log-likelihood, Yu et al. (2011) propose to optimize an
objective with two regularizers:

min
Θ

C1

2
‖θj‖2 +

C2

2

m−1∑
j=1

‖θj+1 − θj‖2 − l(θ),

where Θ denotes the matrix of all θj vectors. The two regularizers over ‖θj‖2 and over
‖θj+1−θj‖2 prevent overfitting and ensure smooth variation of parameters across consecu-
tive time points, respectively. The model naturally handles the censored data by marginal-
izing over the unobserved variables in a survival status sequence.

Other discrete-time survival prediction approaches include another multi-task learning
survival prediction method MTLSA (Li et al., 2016a), which also transforms the survival
prediction problem into a series of binary classification sub problems but uses an `2,1-norm
penalty to enforce sparsity and prevent overfitting. More recent work has focused on deep
learning-based approaches for discrete-time survival analysis (Giunchiglia et al., 2018; Lee
et al., 2018; Ren et al., 2019; Wulczyn et al., 2020). Such approaches typically use the same
multi-task binary classification formulation but differ in their loss functions and neural
network architectures.

Another discrete-time approach reformulates the survival prediction problem not as
multi-task binary classification, but as Poisson regression (Bender et al., 2020).

2.3. Related Work

Eleuteri et al. (2007) described and compared neural network-based approaches for both
continuous and discrete survival analysis using modified variants of Conditional Hazard
Estimating Neural Network (CHENN) (Biganzoli et al., 1998) and a Bayesian version of
Partial Logistic Artificial Neural Network (PLANN) (Lisboa et al., 2003), respectively, and
found no significant difference in the discrimination performance on the basis of C-index.

Kvamme and Borgan (2019) proposed an alternative discretization approach based on
quantiles of the estimated event time distribution. They use two schemes: constant density
interpolation (assuming constant density functions between the time-points in the discretiza-
tion grid) and constant hazard interpolation (assuming constant hazard rates between the
grid points) to interpolate an estimated discrete survival function for continuous time pre-
dictions.

A recent survey on machine learning approaches for survival analysis (Wang et al.,
2019) covers both continuous and discrete-time approaches, but does not compare them or
examine the effects of discretizing time, which we focus on in this paper.

3. Data Sets

We use 5 real data sets in this study for evaluating different survival analysis approaches.
The sizes of the data sets are shown in Table 1.

• The Dutch Breast Cancer Dataset (DBCD): The survival data of 295 women with
breast cancer is contained in this data set. This is a high-dimensional gene expression
data set with 4, 919 features, which is much larger than the number of instances.

5



Empirical Comparison of Continuous and Discrete-time Survival Prediction

Table 1: Sizes of data sets used in this study

Data Set # of Instances # of Features # of Censored Instances

DBCD 295 4,919 216
NWTCO 4,028 13 3,457

FLCHAIN 7,874 42 5,705
WHASS500 500 14 285

SRTR 106,372 3,661 79,357

Around 73% of the instances are censored. A detailed description of the data can be
found from (van’t Veer et al., 2002; van Houwelingen et al., 2006).

• National Wilm’s Tumor Study (NWTCO): This data set was originally presented
in a study to assess the impact multiple variables on days to tumor relapse (D’angio
et al., 1989). This data contains the information of 4, 028 patients, where 85.8% of
the end points are censored.

• Assay of Serum Free Light Chain (FLCHAIN): This data set was first presented
in a study aimed to measure the impact of non-clonal serum immunoglobin free light
chain (FLC) on the survival time (Dispenzieri et al., 2012). It has 7, 874 instances and
72.5% of the endpoints are censored. This dataset was sourced from scikit-survival
(Pölsterl, 2020).

• Worcester Heart Attack Study (WHAS500): This data contains the information of
500 hospitalized patients (Goldberg et al., 1986). The main objective of this study
was to examine the effects of various covariates on the survival patients after their
admission to the hospital. It has 14 features and 72% of the endpoints are censored.
This dataset was sourced from scikit-survival (Pölsterl, 2020).

• The Scientific Registry of Transplant Recipients (SRTR): The SRTR data includes
data on all donors, wait-listed candidates, and transplant recipients in the U.S., sub-
mitted by the members of the Organ Procurement and Transplantation Network
(OPTN). The event of interest is time to transplant failure. We consider the same
set of 106, 372 transplants as in Nemati et al. (2021). We use the Human Leukocyte
Antigen (HLA) pairs-based feature representation they proposed, which has 3, 661
features.

4. Methods

To address the three research questions we posed in the introduction, we consider three
survival prediction models:

• CoxPH model on continuous survival times.

• CoxPH model on discretized survival times.

• Multi-Task Logistic Regression (MTLR) model on discretized survival times.
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The CoxPH and MTLR models both come from the same family of generalized linear models,
so we believe that this is a fair comparison that focuses on the format of the survival times
rather than differences in models.

To create the discretized survival times, we created uniformly spaced time bins between
the minimum and maximum survival time in the data set, using a set number of bins
in each of our discretized experiments. We then took the midpoint of each bin as the
survival time. For example if a bin is [15, 16), and a subject has a survival time of 15.76,
it assigned a discretized survival time of 15.5. Discretizing times creates many ties, so we
use Efron’s method for handling ties (Efron, 1977) when fitting the CoxPH model, which is
more accurate but slower. We discretize the survival times only on the training set (see data
splits in Section 4.1) so that the original continuous survival times are used for evaluating
prediction accuracy.

We experiment with the number of time bins in the range {5, 10, 15, 20, 25} for both
CoxPH on discretized survival times and MTLR. For MTLR, we also push discretization
to the extreme by considering a case with only 2 time bins.

4.1. Experiment Set-up and Hyperparameter Tuning

All data was randomly shuffled with a set seed before being assigned into train/validation/test
sets. The proportion of the sets was 60%/20%/20% respectively. We converted categorical
variables into a one-hot encoded format. We then used scikit-learn’s StandardScaler (Pe-
dregosa et al., 2011) which standardizes features by removing the mean and scaling to unit
variance on all columns.

To perform the hyperparameter searches, we used Ray Tune (Liaw et al., 2018). Within
Tune, we used the HyperBandForBOHB scheduler (Falkner et al., 2018; Li et al., 2018) in
conjunction with the TuneBOHB searcher in order to utilize a Bayesian optimization search
scheme. We set all experiments to take 1 search unit so no experiments were paused and
resumed in the search. Additionally, we optimize over the validation set C-index results to
prevent test set leakage.

We used the CoxPH model from the scikit-survival package (Pölsterl, 2020) and the
MTLR model from PySurvival (Fotso et al., 2019–)1. The CoxPH model used an `2 penalty,
and the regularization parameter C (denoted by alpha in scikit-survival) was the only
hyperparameter tuned for the CoxPH model. The model was fit using Newton-Raphson
optimization.

Hyperparameters for the MTLR model were number of training epochs, `2 regularization
parameter C1 for the model coefficients and a second `2 regularization parameter C2 that
ensures the parameters vary smoothly across consecutive time points (denoted by l2 reg

and l2 smooth, respectively, in PySurvival), and the learning rate. All parameters except
for number of epochs were sampled on a log scale. The model was fit using the Adam
optimizer (Kingma and Ba, 2014).

The CoxPH hyperparameter space was sampled 100 times per model type, while the
MTLR hyperparameter space was sampled 5000 times. This was because the hyperparam-

1. We also tried the CoxPH implementation in PySurvival but experienced slow convergence and worse
results compared to scikit-survival.
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eter space for the MTLR search was substantially larger than the space for the CoxPH
model, which had only 1 hyperparameter.

5. Results

The C-indices on the validation and test sets for the four datasets we examine are shown in
Tables 2(a) and 2(b), respectively2. Prediction of survival times in the FLCHAIN data set
was much easier than in the others, with C-indices around 0.9 for all models while C-indices
were around 0.6 to 0.8 in the other data sets. Using these results, we turn to the three
research questions posed in the introduction.

RQ1: How much does discretizing time decrease the accuracy of a continuous-
time survival prediction algorithm? To answer this question, we compare the C-
indices for the CoxPH model fit to the continuous survival times and for the CoxPH models
fit to the discretized times. Across all data sets, there is very little difference between the
two C-indices regardless of the number of time bins, both for the validation and the test sets.
The minor differences are likely as a result of hyperparameter tuning rather than the time
discretization. Thus, it appears that discretizing time has minimal effect on the accuracy
of continuous-time survival prediction on real data provided that a reasonable number of
bins are used.

RQ2: How does the number of discrete time bins affect the accuracy of a
discrete-time survival prediction algorithm? To answer this question, we primarily
examine the results across varying number of bins for the MTLR model, since we found
that discretization had minimal effect on CoxPH in RQ1. Both the validation and test
set C-indices shown in Table 2 show a lot of variation across the number of time bins,
much more than for CoxPH. Again, some of this is attributable to hyperparameter tuning,
particularly for the small DBCD data set where overfitting is a large concern. However,
even for FLCHAIN, a data set with over 7, 000 instances, the test set C-index varies by
0.048, which is one order of magnitude larger than we observed in RQ1! For the most part,
the trend we observe is that both the validation and test set C-indices increase with the
number of time bins up to a certain point and then decrease after that point, as shown in
Figure 2 for the NWTCO and WHAS500 data. The number of time bins where the highest
C-index is achieved varies by data set, however.

RQ3: Does the added flexibility of the discrete-time formulation lead to an
increase in accuracy that compensates for any decreases in accuracy to dis-
cretizing time? To answer this question, we compare the C-indices of the CoxPH model
fit to the continuous times with those of the MTLR models. When examining the validation
set C-indices in Table 2(a), the best MTLR model is more accurate than the CoxPH on all
data sets aside except SRTR3, and the improvement can be substantial as in the cases of
the DBCD and WHAS500 data sets. When considering the test set C-indices in Table 2(b),
however, this improvement does not always carry over, perhaps as a result of overfitting

2. Code and data to reproduce our results are available at https://github.com/IdeasLabUT/

Continuous-Discrete-Survival-Prediction

3. For the MTLR results on the SRTR data with 10 bins and higher, the majority of runs in our hyperpa-
rameter tuning failed to converge, which may partially explain its poor accuracy.
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Table 2: Prediction accuracy for different models and data sets as measured by the C-index.
The hyperparameters that maximize the validation set C-index are chosen for each
model. These same hyperparameters are used to compute the test set C-indices.
The most accurate model for each data set is shown in bold.

(a) Validation Set C-indices

Model DBCD NWTCO FLCHAIN WHAS500 SRTR

CoxPH (continuous) 0.793 0.736 0.923 0.770 0.605
CoxPH (5 bins) 0.793 0.735 0.923 0.777 0.605
CoxPH (10 bins) 0.800 0.736 0.923 0.778 0.606
CoxPH (15 bins) 0.792 0.736 0.923 0.778 0.606
CoxPH (20 bins) 0.793 0.736 0.923 0.779 0.605
CoxPH (25 bins) 0.792 0.736 0.923 0.764 0.605

MTLR (2 bins) 0.848 0.746 0.885 0.794 0.569
MTLR (5 bins) 0.832 0.757 0.911 0.816 0.570
MTLR (10 bins) 0.842 0.749 0.919 0.810 0.572
MTLR (15 bins) 0.837 0.750 0.925 0.809 0.572
MTLR (20 bins) 0.825 0.753 0.924 0.827 0.571
MTLR (25 bins) 0.842 0.751 0.921 0.814 0.550

(b) Test Set C-indices

Model DBCD NWTCO FLCHAIN WHAS500 SRTR

CoxPH (continuous) 0.809 0.687 0.934 0.779 0.611
CoxPH (5 bins) 0.813 0.687 0.934 0.765 0.612
CoxPH (10 bins) 0.813 0.687 0.934 0.765 0.612
CoxPH (15 bins) 0.814 0.687 0.934 0.764 0.611
CoxPH (20 bins) 0.814 0.687 0.934 0.763 0.611
CoxPH (25 bins) 0.813 0.687 0.934 0.778 0.611

MTLR (2 bins) 0.836 0.674 0.880 0.743 0.576
MTLR (5 bins) 0.832 0.698 0.916 0.738 0.559
MTLR (10 bins) 0.544 0.686 0.926 0.741 0.573
MTLR (15 bins) 0.540 0.683 0.928 0.767 0.574
MTLR (20 bins) 0.713 0.683 0.922 0.763 0.568
MTLR (25 bins) 0.684 0.686 0.918 0.744 0.554
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Figure 2: Illustration of effect of survival time discretization on test C-index for 2 data
sets. On the NWTCO data, MTLR is more accurate than CoxPH when choosing
5 time bins, while MTLR is less accurate than CoxPH on the WHAS500 data
regardless of the number of bins.

by choosing hyperparameters that maximize validation C-index. Specifically, the CoxPH
model has higher test C-index than any of the MTLR models on the FLCHAIN, WHAS500,
and SRTR data sets. Thus, there does not appear to be a clear-cut answer to this question
from our experiments.

6. Discussion

Our findings for RQ1 were somewhat surprising to us, as they suggest that the actual survival
times provide little value beyond their grouping into time bins! A possible explanation
for this finding is that the continuous-time prediction model is not able to predict the
order of closely-timed events, and thus providing finer-grained time information does not
significantly improve prediction accuracy. Another possibility may be the choice of the C-
index as the metric for accuracy. The C-index depends only on the ordering of predictions
and not on the actual predictions themselves, so a poorly calibrated predictor could still
possibly achieve a high C-index. Despite this limitation, the C-index is the most commonly
used accuracy metric in survival prediction, which is why we adopted it in this study.

Our findings for RQ2 were less surprising to us. As the number of time bins gets
extremely small (2 bins in the most extreme case), we are discarding a lot of information
about timing of events by combining events that are not closely timed into the same bin.
Thus, one might expect to see prediction accuracy increase as the number of bins increases.
In the multi-task binary classification formulation used in MTLR, however, increasing the
number of bins also increases the number of classification tasks, which increases the number
of parameters in the model. As we found for RQ1, there is very little information to be
gained in survival times beyond a certain level of granularity. Hence, we eventually begin
to add more parameters without adding additional signal, which suggests that prediction
accuracy should begin to decrease if the number of time bins gets too high, which we do
observe.
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While it is tempting to choose the time bins to represent a convenient time unit, e.g. 1
year for each bin, the trade-off for the convenience may be a non-negligible decrease in
prediction accuracy. This suggests that the number of time bins should be treated as a
hyperparameter to be optimized in discrete-time survival prediction models.

Our findings for RQ3 were somewhat inconclusive, as MTLR was more accurate than
CoxPH on some data sets (provided that a good choice was made for the number of bins)
and less accurate on others. The accuracy of the CoxPH predictions are highly dependent
upon the validity of the assumptions behind the CoxPH model, and this is true also for
other continuous-time survival prediction models including parametric approaches. This
dependency on assumptions is one reason why discrete-time survival prediction models that
do not have such assumptions have been introduced. It may not be possible to get a clear-
cut answer to this question because the prediction accuracy of continuous-time approaches
will always be dependent upon the match between the data and assumptions. However,
it may certainly be possible that other, more complex non-linear discrete-time approaches
(including recently-proposed deep learning models) could generally outperform continuous-
time approaches across a wide variety of real data sets, and this would be an logical avenue
for further study.

7. Conclusion

Our main objective in this study was to examine how several differences between continuous
and discrete-time survival prediction models contribute to prediction accuracy. We formed
3 specific research questions regarding these differences and empirically investigated them
across 5 real data sets.

First, we observed that discretizing time does not necessarily lead to much of a decrease
in prediction accuracy when using a continuous-time survival prediction model like the
CoxPH, so the discretization process itself does not seem to be limiting accuracy. On the
other hand, we observed that the number of time bins used for discretization can have
a significant effect on the accuracy of a discrete-time survival prediction model like the
multi-task logistic regression (MTLR) (Yu et al., 2011). While the number of time bins
is typically chosen for convenience (e.g. 1 time bin = 1 year), our findings suggest that
the number of time bins should be treated as a hyperparameter to be tuned if maximizing
prediction accuracy is the goal. Finally, we find mixed results when comparing continuous
and discrete-time survival prediction algorithms in terms of prediction accuracy.

A limitation of our analysis involves our choice of models. We chose to compare the
CoxPH and MTLR models because they both belong to the same family of generalized
linear models, which makes for a relatively fair comparison. The discrete-time formulation
appears to be more convenient, as evidenced by the many recently-proposed discrete-time
survival prediction algorithms (Yu et al., 2011; Li et al., 2016a; Lee et al., 2018; Giunchiglia
et al., 2018; Ren et al., 2019; Wulczyn et al., 2020), and relies on less assumptions than
continuous-time approaches. We intend to extend our analysis to more sophisticated non-
linear models both in continuous and discrete time.
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