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Abstract

Survival analysis models are necessary for clinical forecasting with data censorship. Implic-
itly, existing works focus on the individuals with higher risks while lower risk individuals
are poorly characterized. Developing survival models to represent different risk individuals
equally is a challenging task but of great importance for providing accurate risk assess-
ments across levels of risk. Here, we characterize this problem and propose an adjusted
log-likelihood formulation as the new objective for survival prognostication. Several mod-
els are then proposed based on the newly designed optimization objective function which
produce risks that count individuals “equally” on risk ratios thus providing representa-
tive attention to individuals of varying risk. Extensive experiments on multiple real-world
datasets demonstrate the benefits of the proposed approach.
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1. Introduction

Clinical forecasting, as a vital part of healthcare, prognosticates the time to an event of
interest for the populations at risk. One critical challenge that hinders the use of data mining
and machine learning approaches in clinical forecasting is the presence of censored data, i.e.,
that followup can be incomplete, and thus the true time to event is unknown. This motivates
the study of survival analysis and the development models such as Cox (1972), Aalen (1980),
accelerated failure time (Lin et al., 1998) models, random survival forests (Ishwaran et al.,
2008) and so on. These models encode data in the presence of censored outcome events
and are a case of the more general point process, where the condition is event-free survival.
These survival methods handle the unobserved ground rates but their specified objective
functions do not minimize proportional error in rate, and as a result they characterize the
low risk individuals poorly.

However, in healthcare the low risk individuals for morbidity and mortality are often
the majority and possess risk factors different from those at high risk. Overlooking those
at low risk therefore significantly limits the predictive capabilities of existing survival mod-
els (Weiss, 2019, 2021). One direct approach could be optimizing subgroups by filtering on
membership to particular risk strata. However, we will see that such a two-stage approach
focuses on the highest risk individuals among those subgroups yet, within subgroup, still
does not produce equal representation across individuals with varying levels of risk.
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When models fail to estimate risk properly, they overemphasize high risk individuals and
overfit on noise rather than on signal in low risk individuals. The basic aim is therefore to
build models that produce risk that count individuals “equally”, i.e, invariant to their level
of risk. Unfortunately, it is unclear how to naturally extend the existing survival models
to account people “equally” on risk ratios so as to provide equal attention to low-risk
individuals.

When low-risk individuals are the majority of the population, providing accurate risk
estimation for them could: (i) reduce overtreatment, (ii) lower their healthcare costs, and,
(iii) improve awareness of their health status at early stages of disease . As an example,
according to (Fine MJ, 1997), physicians often rely on their subjective impressions of a
patient’s clinical appearance in making the initial decision about the site of care, tending
to overestimate the risk of death in patients with pneumonia, and these overestimates
are associated with the decision to hospitalize patients at low risk. Therefore, accurate
predictions for low-risk patients are critical for health care field.

We approach this problem through the formulation of the objective function attempting
to mitigate misattention, which results in a reweighting program that focuses on all indi-
viduals proportionally to their proportional rate misspecification. We then propose models
that minimize proportional errors in the setting of point processes and proportional hazards
models. The main contributions of this paper can be summarized as follows:

e A formulation of the optimization objective function that counts individuals “equally”,
which is generalizable and can be used in any risk estimation models.

e New equal attention time-to-event models that attend to low-risk individuals with
improved predictive ability and characterization.

e Demonstration and validation with multiple experiments and case studies.

2. Related Work

Survival analysis models time-to-event information for data with potential outcome censor-
ship. One line of research is from traditional statistics, such as the Kaplan-Meier method
(Kaplan and Meier, 1958), the Cox Proportional Hazard model (Cox, 1972) and Lee and
Wang (2003) enforces the hazard to follow exponential distribution when the model is fit-
ted to the data. Among them, closer to our work is the accelerated failure time (AFT)
model (Lin et al., 1998) which implicitly minimizes proportional error. Two key distinc-
tions are: i) our work explicitly address the problem of equal risk attention while AFT
models are inattentive to low-risk individuals; ii) AFT log transformation under censorship
results in a challenging mathematical specification (Jin et al., 2006) requiring advanced
inference methods and a good solution is thus not guaranteed, our work, on the contrary,
leads to the desired solution with simplified mathematical formulation.

Another line of effort is from the machine learning community. In recent years, deep
learning has been extended to survival analysis (Katzman et al., 2018; Ren et al., 2019; Lee
et al., 2018; Kvamme et al., 2019). However, similar to the approaches from the traditional
statistics community, most of these methods are inattentive to low-risk individuals and
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therefore also suffer from the poor characterization of lower risk individuals leading to
degraded predictive capabilities.

Closely related to our work are several recent efforts adopting alternative objective func-
tions (Avati et al., 2020; Chapfuwa et al., 2018). Another approach is to fuse together binary
classification predictions across time (Yu et al., 2011). However, unlike these methods, our
method provides attention to low-risk persons in the setting of anytime prediction.

While our method is general for methods that optimize for the survival objective func-
tion, we illustrate our learning methodology based on the representative approaches from
the respective research directions, and devise two models that provide attention to low-
risk persons and regions: that of (i) Cox-reweighting, which extends the Cox Proportional
Hazard model to make survival predictions according to the newly designed optimization
objective, and (ii) DeepSurv-reweighted using harmonic mean adjusted loss function. Sim-
ilarly, the approach could be used in training other recent survival frameworks (Jing and
Smola, 2017; Zhang et al., 2016; Lee et al., 2018; Weiss, 2019).

3. Methodology

Background. Let Y be the event we want to model over time for N samples. Let the event
times be the sequence t;, for i € {1,...,7,} for n = {1,..., N} over a period of interest
[0, 7). We are interested in modeling the rate function:

Pit<T<t+h|T>t-) f(t)

.) = l' =
A(t]) = Jim h S(t)’

where {-} varies by model and represents the information or data to use in modeling A. The
probability density function and survival function are given by f and S, with the canonical
. . OlogS 0S/0t t|-
relationship: — g? =— S({l') = é%t%,)) = A(t]").
Next we establish the relationship between rescaled time where a single Poisson process
with rate 1 and our original time, where A is defined. This comes from the time rescaling

theorem.

Time rescaling theorem. Given the rate function A, define A the cumu-
lative hazard function: A(t|-) = fot A(7]-)dr. For the realization of a sequence
of events from A(¢|-) with times {ui,...,ux} and A(t|-) < oo, the sequence
{A(u1l-),..., A(ug|-)} is distributed according to a unit rate Poisson process
(Meyer, 1971; Ogata, 1981).

Details of the proof can be found in Brown et al. (2002). The implication of the theorem
is that if we could model the conditional intensity correctly, the intervals between rescaled
times follow exponential distribution with rate 1.

Harmonic Mean Point Processes. From the time rescaling theorem, it is straight-
forward to observe that the relative contributions of each time interval to the likelihood is
proportional to the rate within that interval, 7.e., if we care about each individual’s risk
in a time unit equally, then we could consider decreasing the likelihood contributions in
proportion to the rate. In other words, our procedure will seek to nullify, partially or fully,
the proportional factor of likelihood attention given to higher rates. We call this approach
optimization of the adjusted log likelihood, which is illustrated in Figure 1.
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Algorithm 1: Harmonic Mean Point Process
Result: ALL-trained model
Temporal network F : X — A(t) € [0, o)
Proportionality coefficient +y, stability factor e
while training do
S‘(t;,k—l) = F(X;) piecewise on [t} ,t.,) Vk € K
Copy then detach S\(t;k_l) Vi, k
ALLjj, = LLj g/ (At ) %8107 + ¢)
ALL.sum().backward()
optimizer.step()
end

With X a collection of m samples, we propose the adjusted log likelihood ALL defined
as follows:

N T,
_ “log Mtin|©)  [™ A(t]©)
ALL(X|O) = ngl (; W - /0 0 dt),

where \*(t) is the ground truth intensity at time ¢. By assuming A(¢) and \*(¢) are piecewise
constant, we can view the adjusted log-likelihood as the weighted sum of log-likelihood
contributions. Suppose we divide the time interval (0, 7;] into K sub-intervals where K
is a significantly large number so that A*(¢) is constant within any sub-interval. That is,
with 0 = t/;0 < t'j1 < -+ < t/jk = 75, A*(t) is constant for ¢t € (t'j,_1,t;] and all
k=1,...,K. Then,

ALL(X|) = Emj [/0’ 108 A(O) sy — /OT" )‘(t|@)dt]

j=1 A* (t) A¥ (t)
m,K /. ,
= /t o Mdl\f(t) _ /t OAO)
jk=1 L7t ik—1 A*(t) . A*(t)
m,K 1 t/j,k t/j,k
- (17 / log A(t|©)dN(t) — / A(t|©)dt | .
k=1 A (W) [ S Vs

is the sum of log-likelihood contributions in time intervals (¢';;_1,t ;%] weighted by the
reciprocal of the ground truth intensity at t'; j, for every j and k. The similarity is apparent
when it is compared to the similar form of standard log-likelihood:

m.K ik ik
LL(X|©) =} / log)\(tl@)dN(t)—/ "Ae)dt|.
k=1 k-1 k-1

Therefore, we can weight each interval’s log likelihood by the inverse of the oracle rate to
get the adjusted log likelihood.

Proportional hazards models. Because of the separation of time and feature con-
tributions to the hazard function, Cox models focus on optimizing for the parameters of
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Algorithm 2: Harmonic Mean Cox Model

Result: APLL-trained model
Feature network G : X — h € [0, 00)
Proportionality coefficient +y, stability factor e
while training do

A(t) = Ao(t)e?

Copy then detach h

ALL = LL/((e")0#107 + ¢)

ALL.sum().backward()

optimizer.step()
end

the features in isolation, the so-called semi-parametric approach. Define () = Ao(t)e ),
where h(-) denotes the contribution of features to the hazard function. In the Cox model,
h(-) = T z. In DeepSurv, h(-) = g(z,0) is the output of some neural network g parameter-
ized by 6.

The partial likelihood is given by the product of the probability at time ¢,, that the event
occurred for individual n, given the at risk set n,,n,, C {1,..., N}. Define the failure event
indicator Y = 1 to indicate failure and Y = 0 to indicate censorship. Then with parameters
O, the partial log likelihood is given by:

PLL(X|®) =~ Y (hg(-)—logzehﬂ(')).

n:Y,=1

From above, both the hazard A and cumulative hazard A are proportional to e().
Therefore, the oracle equal attention adjustment 1/A*(¢) to the partial likelihood, under as-
sumption that the oracle belongs to the semi-parametric model family, i.e., \*(t) = A§(t)e,
is the feature-based component of the full likelihood, which is constant over time: e™*"
Thus, we can write the adjusted partial log likelihood (APLL):

APLL(X[O)= - Y <h9(-)—h*—logZe_h*ehG(')).

n:Yy,=1

Oracle Approximation. Without access to A*, we must resort to some approximation
of the reweighting. One choice for A* is our current estimate A. However, this could lead to
unstable weightings because a single example could dominate the weight distribution. To
address this fairness-variance tradeoff, we introduce the proportionality coefficient v and
stability factor € to help stabilize the weights. Algorithm 1 illustrates the training procedure
and the stabilization modification. Similarly, the APLL corresponds to reweighted samples,
where each individual n is reweighted according to e instead of each weighted as unity.
Therefore, in practice, we can weight the examples according to the inverse of the hazard
to pose an equivalent optimization program (Algorithm 2).

We call our methods harmonic mean point processes (HMPP) and harmonic mean Cox
models (HMCM) because if the oracle is known and doubly stochastic, i.e., frail, then
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Rescaled time

Time

Figure 1: A unit of time with A = 1 has three times less likelihood weight than a unit with
A = 3, evidenced by its proportion of the length on the y-axis.

the estimates we get from the training procedure are harmonic mean estimates of the
rate distribution. In practice, when we use an dynamic graph for gradient updates, the
denominator must be copied and detached from the computation graph so that the graph
of which A is a part is not further connected by the current model’s predictions X and h
(Algorithms 1 and 2).

4. Experiments

In this section, we evaluated the performance of our proposed reweighting adjustment on
several popular benchmark datasets and discussed the results.

Censored  Censored

Datasets Size Data 4 Rate Feature # MST
GBSG 2,232 965 0.432 7 50
METABRIC 1,904 801 0.420 9 154
SUPPORT 8,873 2,837 0.320 14 231
KKBOX 2,814,735 975,834 0.347 18 195

Table 1: Summary of the four datasets. # stands for number and MST stands for Median
Survival Time from the Kaplan-Meier estimator.

4.1. Datasets

We evaluated the proposed models on four real-world datasets whose characteristics are
summarized in Table 1 with corresonding Kaplan-Meier curve depicted in Fig. 2.

GBSG is a dataset by the Rotterdam & German Breast Cancer Study Group (Katzman
et al., 2018). It contains 2232 patients and nearly 10% censored rate in training dataset
and 56% censored rate in test dataset.
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Figure 2: The Kaplan-Meier curves of four different datasets.

METABRIC is by the Molecular Taxonomy of Breast Cancer International Consor-
tium (METABRIC) (Katzman et al., 2018), which contains 1904 patients.

SUPPORT stands for Study to Understand Prognoses Preferences Outcomes and Risks
of Treatment (SUPPORT) (Katzman et al., 2018), which contains 8873 patients.

KKBOX is a survival dataset created from the WSDM - KKBox’s Churn Predic-
tion Challenge 2017 with administrative censoring (Kvamme et al., 2019). KKBOX offers
streaming music subscription and users can cancel their memberships at any time. To
“churn” means a user stops his/her membership. It has around 2.8 million samples and is
the largest dataset we experimented with.

4.2. Evaluation Metrics
4.2.1. CONCORDANCE INDEX

Concordance index (C-index) is a widely used evaluation metric in survival analysis (Harrell
et al., 1982), which equals the area under ROC curve (AUC) in the absence of censorship.
It is an assessment of model predictions in terms of correct pairwise ordering among the
failure times. For example, if for two samples dy = (x1,¥1),d2 = (x2,y2), where x stands for
features and y stands for the corresponding time-to-event, our prediction indicates g1 < 9o
is true then the model get 1 point for this pair, 0 if the predicted ordering is incorrect.
Concordance index calculates such scores for every possible pair and outputs the average
score. Formally, we define the concordance index as

Ceindex = Pr{$(Tilx;) < $(Tilx))|Ts < T, E; = 1},
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where S is the predicted survival probability, T is the death time, E stands for censored or
not.

4.2.2. BRIER SCORE

Brier score (BS) (Brier and Allen, 1951) is another metric which both attends to discrimi-
nation and calibration of survival analysis models. It is roughly the mean squared error of
the probability estimations and the real binary labels, e.g. death or not in survival analysis.
Note that unlike concordance index, the lower the Brier score is, the better. For dataset
with censorship, the Brier score is calculated as

I

N TS(x)2 T < t, Dy =1} (1 — 8(t|x)?L{T; > t}
Z:[ &(T) ! G(T:)

where N is the number of samples and G (t) is the Kaplan-Meier estimate of the censoring
survival function.

4.3. Compared Method

We aim to compare models with proportional hazard assumption and adjust them with our
proposed loss function to achieve more accurate risk estimation for low risk people.

e Cox (1972) is a semi-parametric model which is commonly used in survival analysis.

e Cox-reweighted is our adjusted cox model with reweighting. We started with a
weight vector of ones and retrain the model with weight assigned by the reciprocals
of last risk score predictions. We train using Lifelines CoxPHFitter for 10 epoches or
until convergence.

e DeepSurv (Katzman et al., 2018) is a Cox proportional hazard model equipped with
deep neural network for modeling feature interactions. The loss function is similar to
Cox with L2 regularization:

1 .
10)= 5 3 (Rt —tog 3 o)) ol

= iE=1 JER(T)

where Ng—; is the number of sample with events, ﬁg(xz) is the risk output of the
neural network and R(7;) stands for all the remaining patients at time T;.

e DeepSurv-reweighted is our adjusted DeepSurv model with reweighting. We mod-
ified the loss function of DeepSurv with the approach introduced previously.

4.4. Reporting of Results

We present our results in subgroups divided by risk to investigate how our reweighting
techniques work in low risk subgroups which we care more about. We divide the whole
dataset into 10 subgroups, where the 0 - 10% subgroup is the subgroup with lowest risk
and 90 - 100% subgroup is the subgroup with highest risk. Furthermore, we performed
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Figure 3: Cox: (a) the concordance index before/after reweighting for four datasets. (b) the
within-group concordance index of the lowest 0 - 30% risk subgroups before/after reweight-
ing for four datasets.

a b-fold cross validation and report the mean and standard deviation of the concordance
index for the lowest 0 - 30 percentile subgroups which we care most about. Using other
numbers of subgroups gives similar results. The error bar indicates the standard deviation
of the concordance index in the 5-fold cross validation and the height stands for the mean
concordance index.

4.5. Results

Cox and Cox-reweighted Our Cox-reweighted model achieves higher concordance in-
dex within each subgroup (Figure 3(b)). With the adjusted loss function and reweighting
technique, it outperformed the vanilla Cox model by 8.4% in the subgroup with lowest
risk, and 6.0%/6.8% in 10 - 20%/20 - 30% low risk subgroup, respectively, averaging across
the four datasets. Specifically, KKBOX is the largest dataset with over two million sam-
ples where our Cox-reweighted model stably outperforms the Cox model in all three low
risk subgroups by a large margin, which further demonstrates our approach. At the same
time, the overall concordance index on the whole datasets remains nearly the same before
and after weighting (Figure 3(a)), proving that the reweighting won’t degrading overall
performance.

In terms of Brier score, the Cox-weighted achieved lower scores in 0 - 30% subgroups
across the four dataset we compared (Figure 4(b)). Again, KKBOX has the most stable
Brier score output due to its large size. The Cox-reweighted achieved 1.5%/2.6%/4.8%
improvement over Cox model for 0-10%/10-20%/20-30% risk subgroups respectively. Sim-
ilarly, the overall Brier scores on the four datasets stayed nearly the same, which shows
our adjustment improves the prediction for low risk people while maintaining the overall
performance (Figure 4(a)).

DeepSurv and DeepSurv-reweighted The within-group concordance index of the low-
est 0 - 30% risk subgroups demonstrate improvements in each comparable low-risk decile
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Figure 4: Cox: (a) the overall Brier score before/after reweighting for four datasets. (b)
the within-group Brier score of the lowest 0 - 30% risk subgroups before/after reweighting
for four datasets (the lower, the better).
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Figure 5: DeepSurv: (a) the concordance index before/after reweighting for three datasets.
(b) the within-group concordance index of the lowest 0 - 30% risk subgroups before/after
reweighting for three datasets.

(Figure 5(b)), in fact by 5% in the lowest-risk decile. DeepSurv-reweighted did not degrade
the performance on overall dataset (Figure 5(a)).

In addition, theoretically, the formulation of equally attentive optimization objective
function of our approaches is expected to have features associated with the outcome differ-
ently to the association of inattention to low-risk individuals methods. The hazard ratio
forest plot relating the features with the outcome (Figure 6) experimentally verifies this.
Note that due to space constraint, only the forest plot on kkbox dataset is shown.

5. Discussion

We summarize our contributions as the following three points:

10
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ing on the KKBOX dataset.

e We proposed using harmonic mean to adjust the optimization objective function for
models obeying proportional hazard assumption such as Cox and DeepSurv, to count
individuals “equally” and achieve more accurate risk prediction for low risk people.

o We performed the reweighting techniques on Cox and DeepSurv models and demon-
strated our proposed adjustment with experiments on four real-world datasets. The
results has achieved 8.4% improvement on Cox and 5% on DeepSurv in terms of
concordance index for the lowest 10% risk people.

Future work includes (1) the application of our reweighting techniques to additional semi-
parametric models; (2) the integration of our approach with other reweighting methods;
and, (3) the application to large-scale healthcare datasets such as MIMIC-IIT and eICU to
perform case studies where low-risk individuals are the majority, but where the consequences

Hazard Ratio (95% CI)

We provided the analysis and pseudocode for our harmonic mean approach.

of even rare outcomes mean that risk assessments should not overlook them.
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