
Proceedings of Machine Learning Research 1:1–8, 2021 AAAI Spring Symposium 2021 (SP-ACA)

Kullback-Leibler-Based Discrete Relative Risk Models for
Integration of Published Prediction Models with New

Dataset

Di Wang dwwang@umich.edu

Wen Ye wye@umich.edu

Kevin He∗ kevinhe@umich.edu

Department of Biostatistics, University of Michigan, Ann Arbor, MI

Abstract

Existing literature for prediction of time-to-event data has primarily focused on risk factors
from a single individual-level dataset. However, these analyses may suffer from small sample
sizes, high dimensionality and low signal-to-noise ratios. To improve prediction stability and
better understand risk factors associated with outcomes of interest, we propose a Kullback-
Leibler-based discrete relative risk modeling procedure to borrow information from existing
models. Simulations and real data analysis were conducted to show the advantage of the
proposed method compared with those solely based on data from current study or prior
information.
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1. Introduction

Prior research for predicting survival outcomes has primarily focused on data elements
from a single individual-level dataset. These analyses may suffer from small sample sizes,
high dimensionality and low signal-to-noise ratios. Moreover, data elements are restricted
to those that already exist in the individual-level data. To incorporate prior knowledge
and improve prediction performance, Schapire et al. (2005) proposed a boosting algorithm
based on the Kullback Leibler (KL) measure of divergence (Kullback and Leibler, 1951) for
classification of binary outcomes. More recently, Jiang et al. (2016) proposed a KL-based
Lasso approach to improve variable selection for generalized linear models by integrating
prior information. While successful, these methods, however, are not applicable for survival
analysis with censored data. To fill in the gap and improve the prediction stability of
time-to-event data, we utilize the fact that survival time can be viewed as a time-varying
binary outcome. We therefore propose a time-dependent Kullback-Leibler discrimination
information and develop a discrete relative risk modeling procedure to aggregate the current
individual-level data with prior knowledge gathered from previously published prediction
models.
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2. Notation

Let Ti denote the failure time of interest and Ci be the censoring time for patient i, i =
1, . . . , n, where n is the total sample size. The observed survival time is Xi = min{Ti, Ci}.
Let t1, . . . , tK be the distinct failure time and k = 1, . . . ,K be the index of the distinct
failure times. Let Dk denote the set of labels associated with individuals failing at time
tk. The set of labels associated with individuals censored at time tk is denoted as Ck. Let
Rk denote the at risk set at time tk. Let Zi be an external and possibly time-dependent
covariate vector for the i-th subject. Let λ(tk; Zi) = P (Ti = tk|Ti ≥ tk,Zi) be the hazard
at time tk for the i-th patient with covariate Zi. The likelihood function is given by

L =

K∏
k=1

∏
i∈Dk

f(tk; Zi)
∏
i∈Ck

S(tk; Zi)

 =

K∏
k=1

 ∏
i∈Rk−Dk

{1− λ(tk; Zi)}
∏
i∈Dk

λ(tk; Zi)

 , (1)

where S(tk; Zi) = P (Ti > tk|Zi) =
∏
`:t`≤tk{1 − λ(t`; Zi)} is the survival function and

f(tk; Zi) = P (Ti = tk|Zi) = S(tk−1; Zi) − S(tk; Zi) is the density function of subject i at
time tk. Consider a general formulation of the hazard λ(tk; Zi) = g(ηk + Z>i β), where g
denotes a monotonically increasing and twice differentiable link function, ηk is the baseline
hazard of mortality at time tk, and β denotes a coefficient vector associated with Zi. The
log-likelihood is given by

`(θ) =

n∑
i=1

K∑
k=1

Yi(tk)

[
δi(tk) log

{
g(ηk + Z>i β)

1− g(ηk + Z>i β)

}
+ log{1− g(ηk + Z>i β)}

]
, (2)

where θ = (η>, β>)>, Yi(tk) = I(Xi ≥ tk) is the at-risk indicator and δi(tk) = I(Ti =
tk) is the death indicator at time tk. Common choices for the link function g include
complementary log-log (grouped relative risk model), log (discrete relative risk model), and
logit (discrete logistic model).

3. KL discriminatory information for discrete time-to-event model

To extend the classical KL discrimination information to time-to-event data, we utilize the
fact that the discrete failure time model can be viewed as a sequence of Bernoulli trials.
Conditional on the event Ti ≥ tk, we define the KL discrimination information at time tk
as

DKL(P1, P2; tk,Zi) =P1(Ti = tk|Ti ≥ tk,Zi) log

{
P1(Ti = tk|Ti ≥ tk,Zi)
P2(Ti = tk|Ti ≥ tk,Zi)

}
+P1(Ti > tk|Ti ≥ tk,Zi) log

{
P1(Ti > tk|Ti ≥ tk,Zi)
P2(Ti > tk|Ti ≥ tk,Zi)

}
,

which is a measure of disparity between two failure time distributions P1 and P2. Note
that DKL(P1, P2; tk,Zi) can also be considered as a measure of divergence between two
probability distributions of a time-varying binary outcome P1(∆ik = 1) and P2(∆ik = 1),

where ∆ik
d
= I(Ti = tk|Ti ≥ tk,Zi) denotes the time-varying binary outcome for subject i
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at time tk, and d stands for distribution. That is,

DKL(P1, P2; tk,Zi) = P1(∆ik = 1) log

{
P1(∆ik = 1)

P2(∆ik = 1)

}
+ P1(∆ik = 0) log

{
P1(∆ik = 0)

P2(∆ik = 0)

}
.

4. KL-based integration

We now apply the proposed KL discriminatory information to integrate discrete time-to-
event models. Suppose P1 is corresponding to a historical discrete time-to-event model, with
parameters θ̃ = (η̃>, β̃>)> obtained from a previous study. Suppose P2 is corresponding to
the discrete time-to-event model, with parameters θ, over subjects in the current dataset.

Proposition 1 Ignoring terms not involving θ, the KL measure DKL(P1, P2; tk,Zi) be-
tween the historical model and the current model for subject i at time tk is proportional to
−˜̀

ik(θ), where

˜̀
ik(θ) = δ̃i(tk) log

{
g(ηk + Z>i β)

1− g(ηk + Z>i β)

}
+ log{1− g(ηk + Z>i β)},

with δ̃i(tk) = λ̃(tk;Zi) = g(η̃k + Z>i β̃) being the predicted outcome for subject i at time tk
based on the risk factors in the current data and the parameters from the historical model.

Combining the original log-likelihood (2) and the time-dependent KL measure, we define
the resulting weighted log-likelihood function to link the historical model and the local
dataset

`λ(θ) = `(θ)− λ˜̀(θ), (3)

where ˜̀(θ) =
∑n

i=1

∑K
k=1 Yi(tk)

˜̀
ik(θ). Here λ is a tuning parameter weighing the relative

importance of the prior model to the local data and is determined using cross-validation.
In the extreme case of λ = 0, the penalized log-likelihood is reduced to the log-likelihood
based on the new data. In contrast, when λ =∞, the model is equivalent to the historical
model. Note that `λ(θ) is proportional to the following objective function

n∑
i=1

K∑
k=1

Yi(tk)

[
δi(tk) + λδ̃ik

1 + λ
log

{
g(ηk + Z>i β)

1− g(ηk + Z>i β)

}
+ log{1− g(ηk + Z>i β)}

]
, (4)

for which the parameter estimation can be obtained similarly to the standard discrete
relative risk models.

5. Simulation

To assess the performance of the proposed KL-based discrete modeling procedure, we con-
ducted simulation studies to compare the following four models: the prior model using prior
information only, the local model fitted by data of current study only, the stacked model
fitted by stacked regression, and the KL model fitted by proposed KL-based discrete model-
ing procedure. Generally, the proposed modeling procedure works for log-log, log and logit
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link functions. Here, we used logit link as an example function to conduct the simulation
studies.

Suppose β0 = (β0, β1, . . . , βp0)> is the vector of coefficients from a previously published
model, and βl = (β0, β1, . . . , βpn)> is the vector of coefficients from which the current data
is generated. We assume that the prior model and the current data share the same set of
baseline hazard of mortality ηk at each discrete time point tk. Then the current data was
generated by Z ∼MVN(0,Σ), where Σ was a first-order autoregressive (AR1) correlation
matrix with the auto-correlation parameter 0.5. For each time point tk, the event indicator
Yi(tk) for each subject i in the at risk setRk was generated by Bernoulli(logit−1(ηk+Z>i βl)).
We deleted subject i from the at risk set RT>tk for future time points if Yi(tk) = 1 at tk;
otherwise, we kept it. Latent censoring times were generated from a discrete uniform(1, 30)
and truncated by an administrative censoring at time point 10.

We considered six different models which were clustered into two scenarios in the simu-
lation studies:

Scenario 1: Current data and historical model share the same set of predictors:

Model (a): βl = β0;
Model (b): βl =reverse(β0) = (βp0 , βp0−1, . . . , β0)

>;
Model (c): βl = β0 + ε, where εj ∼ N(0, 0.25), j = 1, . . . , p0;

Scenario 2: Current data contains additional new predictors than historical model:

Model (d): βl = (β0, 0.2β0);
Model (e): βl = (β0, 0.5β0);
Model (f): βl = (β0,β0).

For scenario 1, model (a) and (b) simulated the situations when current data came from
exactly the same or completely different distribution from the prior model, respectively; and
the current data in model (c) was generated from a model which was similar to the prior
model. For scenario 2, model (d), (e) and (f) simulated the situations where the additional
new predictors in the current data were of different importance relative to the prior model,
which were managed by adjusting magnitudes of the new predictors. Moreover, we set the
local sample size nl = 300, number of prior predictors p0 = 10, number of additional new
predictors pn = 10 and the range of tuning parameters to be λ ∈ [0, 10].

The tuning parameter λ was selected by 5-fold cross validation on the current data with
average empirical log likelihood as the metric of model performance. After determining
λ, we compared the proposed KL-based discrete modeling procedure with the prior model,
local model and stacked model. In order to make a fair comparison, we evaluated the models
on the hold-out external validation dataset, which was simulated from the same distribution
as the current data. The best model achieved the maximal log likelihood on the external
validation dataset. The simulation studies were replicated 100 times.

Figure 1 shows that the KL-based discrete modeling procedure achieved the best perfor-
mance among four models under all scenarios. Specifically, the KL-based discrete modeling
procedure favors the cases where the current data is similar to the prior model. Even under
extreme situations when the current data was generated from completely different model
from the prior model (Fig. 1 (b)) or missing important predictors (Fig. 1 (f)), the proposed

4



Kullback-Leibler-Based Discrete Relative Risk Models

Figure 1: Simulation results of KL-based discrete modeling procedure (green) compared
with prior (red), local (purple) and stacked regression (pink) models. (a)-(f)
presents results for model setting (a)-(f) respectively.

modeling procedure did not result in worse predictions. We also presented the best tuning
parameter λ determined by the proposed modeling procedure in the simulation studies.
The KL-based discrete modeling procedure tend to select larger λ when the current data
was more similar to the prior model. In addition, it did not incorporate misleading prior
information which was not relevant to the local data by selecting an extremely small λ or
setting it to be 0 (Figure 2).

6. Real Data Analysis

We used Estimated Post-Transplant Survival (EPTS) model and a local kidney transplant
data as an example to illustrate how to use KL-based discrete modeling procedure to in-
tegrate previously published prediction model and new dataset. The raw EPTS score was
derived from a Cox proportional hazards model using Scientific Registry of Transplant Re-
cipients (SRTR) kidney transplant data. For simplicity, only 4 predictors were included in
the raw EPTS score model: candidate’s age in years, duration on dialysis in years, current di-
agnosis of diabetes, and whether the candidate has a prior organ transplant. Since the base-
line survival information wasn’t reported by the EPTS model, we applied estimated baseline
survival information using kidney transplant data obtained from the U.S. Organ Procure-
ment and Transplantation Network (OPTN) (https://optn.transplant.hrsa.gov/data/). A
total of 80,019 patients which included all adult patients who received kidney transplant
between January 2005 and January 2013 with deceased donor type were used in the estima-
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Figure 2: Selected tuning parameter λ for the best fitting of KL-based discrete modeling
procedure. (a)-(f) represents model setting (a)-(f) respectively.

tion. Specifically, we fit a discrete relative risk model including the same set of predictors as
the EPTS model and obtained the parameter estimates for each week within the first year
after receiving transplants. Thus, our prior model was the combination of EPTS model and
estimated baseline survival information by week.

Table 1: The log likelihood of models fitted for the real data example.

Scenario 1

Model KL Prior Local Stacked

Log likelihood -358.47 -398.66 -395.27 -398.88

Scenario 2

Model KL Prior Local Stacked

Log likelihood -358.45 -398.66 -409.47 -412.98

The current kidney transplant data we used was the University of Michigan Medical
Center (MIUM) kidney transplant dataset. We considered two different scenarios regarding
to predictors of current data: Scenario 1, which included the same set of predictors as EPTS
model; and Scenario 2, which included two additional predictors of comorbidities (whether
candidate has previous malignancy, and presence of pre-transplant peripheral vascular dis-
ease) than EPTS model. In this real data analysis, we applied log-log link function in the
proposed modeling procedure. As shown in Table 1, KL-based discrete modeling procedure
had the best performance under both scenarios. Specifically, using the same set of predic-
tors, the model fitted by current data only achieved a slightly better performance than prior
model, which indicates that the prior model lacks accuracy when applied to this specific
current dataset. However, the log likelihood of the local model decreased substantially when
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including additional predictors, which shows that the model fitted by current dataset only
is unstable. In summary, KL-based discrete modeling procedure provides a more stable and
accurate prediction than other models.

7. Summary

In this paper, we proposed a Kullback-Leibler-based discrete modeling procedure and il-
lustrated the performance of the proposed method by simulation studies and a real data
example. We developed a time-dependent KL discrimination information which extends
the classical KL discrimination information to time-to-event data, and defined a weighted
likelihood function to link the prior information and the data from current study. Both
simulation studies and the real data results showed advantages of the proposed modeling
procedure. In addition, the real data example indicates that the proposed method also works
well for situations when prior information and current data come from different underlying
models. The proposed Kullback-Leibler-based discrete relative risk modeling procedure is
sufficiently flexible to incorporate prior information from multiple data sources and improve
prediction stability.
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Appendix A. Proof of Proposition 1

With P1 corresponding to a historical discrete time-to-event model and P2 corresponding
to the discrete time-to-event model in the current dataset,

DKL(P1, P2; tk,Zi) =P1(Ti = tk|Ti ≥ tk,Zi) log

{
P1(Ti = tk|Ti ≥ tk,Zi)
P2(Ti = tk|Ti ≥ tk,Zi)

}
+P1(Ti > tk|Ti ≥ tk,Zi) log

{
P1(Ti > tk|Ti ≥ tk,Zi)
P2(Ti > tk|Ti ≥ tk,Zi)

}
=λ̃(tk; Zi) log

{
λ̃(tk; Zi)

λ(tk; Zi)

}
+ {1− λ̃(tk; Zi)} log

{
1− λ̃(tk; Zi)

1− λ(tk; Zi)

}
∝− λ̃(tk; Zi) log{λ(tk; Zi)} − {1− λ̃(tk; Zi)} log{1− λ(tk; Zi)}

=− g(η̃k + Z>i β̃) log{g(ηk + Z>i β)} − {1− g(η̃k + Z>i β̃)} log{1− g(ηk + Z>i β)}

=−
[
δ̃i(tk) log

{
g(ηk + Z>i β)

1− g(ηk + Z>i β)

}
+ log{1− g(ηk + Z>i β)}

]
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