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Abstract

Timestamped sequences of events, pervasive in domains with data logs, e.g., health records,
are often modeled as point processes or rate functions over time. Leading classical methods
for risk scores such as Cox and Hawkes processes use such data but make strong assumptions
about the shape and form of multivariate influences, resulting in time-to-event distribu-
tions irreflective of many real world processes. Methods in point processes and recurrent
neural networks capably model rate functions but their complexity may make interpreta-
tion, use and reuse challenging. Our work develops a high-performing and interrogable yet
simple model. We introduce wavelet reconstruction networks, a multivariate point process
with a sparse wavelet reconstruction kernel to model rate functions from marked, times-
tamped data. We show these simple models achieve improved performance when applied
to forecasting complications and care visits in patients with diabetes.

Introduction

Clinical risk scores are commonly used analytic devices in health care. There are risk scores
for predicting strep throat from sore throats (Centor et al., 1981), mortality from vital
signs (Gardner-Thorpe et al., 2006), heart attacks from routine clinic visits (D’Agostino
et al., 2008), and many more. Policy is implemented around these risk scores, from rates of
reimbursement to physician compensation (Asch et al., 2015). When used for early warning,
risk scores have been associated with reduced mortality (Seymour et al., 2017). Underlying
these approaches is the formulation of risk over time given some set of features. For example,
Cox and Hawkes models make assumptions of proportional hazards and summation over
kernel activations, which are often inappropriate in health settings.

In particular, problems arise when the repeated measurement of an event beyond the
first, say of glucose, might be irrelevant. In addition, clinical event timing may be routine,
scheduled, or emergent, which suggests that kernel learning will improve model performance
because rate changes may be delayed and not immediate. Finally, clinical event processes
are marked and possess variable types, e.g., bacterial culture (Staphylococcus Aureus),
glucose (200 mg/dL), and ketoacidosis. Multi-dimensional wavelets on relative time can
address these issues, where a discrete wavelet reconstruction encodes the relationship of
time-delayed events identified through cross-correlation (see Figure 1 for the 1-d case). We
show that we can encode the wavelets, a relative-to-absolute mapping, and the reduction
step on a computation graph to conduct learning. We apply our model first in simulations
and in a diabetes application.

© 2021 J.C. Weiss.
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Figure 1: Illustrative 1-d cross-correlation motivating the discrete wavelet reconstruction
kernel for relative time dependencies between one feature and outcome (left). Example:
Alc* diabetes simulation (right).

Related work. Both neural networks and Hawkes process variants are used for rate
modeling in health care: a few examples include Choi et al. (2015), Du et al. (2016), Alaa
et al. (2017), and Weiss (2017). The closest work is likely that of Bao et al. (2017), where
the authors adopt dyadic influence functions. However in that work marks are not used
and the dyads selected are a subset of the Haar wavelet basis. Compared to Mei and Eisner
(2017) that generalizes the Hawkes process with neural networks, our method (1) allows
events to have marks, (2) enables forecasting and multi-forecasting (not just nowcasting),
and (3) has a generalized linear form.

Our method uses wavelets to represent event contributions, and several survival analysis
approaches have also adopted them in univariate models, e.g., in Antoniadis et al. (1994)
and Brillinger (1997). Outside of survival analysis and point processes, wavelet-inspired
neural networks have seen success, with Wave-net using wavelets to classify time series
(Bakshi and Stephanopoulos, 1993), and Wavenet adopting a multi-layer hidden neural
architecture to connect distant time steps (Van Den Oord et al., 2016).

Contributions. The contributions of this work are as follows: first, we contribute a
model that generalizes multivariate Hawkes processes to allow for non-additive event rate
relationships. Like other works, our approach involves learning the kernel function that
relates multivariate event histories to the rate. However, in our work we use wavelets as the
kernel and can be seen as a multivariate development from Brillinger (1997). We leverage
the scaling property of wavelets to formulate a regularization that balances spatiotempo-
ral generalizability with deterministic or near-deterministic event timing. Unlike many
sequence models, which are affected strongly by choice of time step, our work adopts an ab-
solute and relative time frame, and therefore the granularity of the absolute time frame need
not be determined a priori. We show that our method outperforms comparison algorithms
in predicting complications and forecasting adherence. Finally, we show that our method
characterizes adherence and risk of complications in an important health application.

Background

Let E be the set of events with target event y € F the event we want to forecast. Associated
with each event e is a value v € V. An example consists of a sequence of (time, event, value)
tuples and a period of interest for forecasting. For the n-th example, n € {1... N}, define T,



WAVELET RECONSTRUCTION NETWORKS FOR MARKED POINT PROCESSES

as the number of tuples. Then the sequence can be written as (tin, €in, vin) fori € {1...7,},
with the period of interest denoted as 7.

Let Ay (t) be the rate functions of interest, dropping the subscript n for ease of notation.
The multivariate Hawkes process can then be written as follows:

|E] T

Ay(t) =Xo(t) + D Be > gelt —ti)L(ti <t,ei =e)
e=1 =1

where A\(t) is a baseline population rate function, g.(-) is a kernel function for event e
relating its effect on the rate of y, . are event-specific parameters, and 1(-) is the indicator
function. Typically g.(-) is an event-specific exponential decay function with a learnable
decay parameter. Self-exciting processes are defined by g,(-) > 0, bursty processes by
ge(+) > 0, and inhibitory processes by ge(-) < 0. A few variations include Linderman and
Adams (2014) where g, is a Bayesian graph kernel and Xu et al. (2017) where g, is an
infectivity function and triggering kernel product.

The form of the Hawkes process is limiting, however, because (1) the effect of g.(-) decays
over time, (2) the effect over g.(-) is additive, (3) the value associated with each event is
not considered, and (4) the time restriction in the indicator function implies nowcasting
(1(¢t; < t)) not forecasting (1(¢; < t — ¢) for some ¢ > 0).

Wavelet reconstruction networks

We now define wavelet reconstruction networks (WRNs). We specify the form of the rate
function, define our kernel function, and impose restrictions on the kernel function for
forecasting and multi-forecasting.

Let he;(t;ti, 74) be a piecewise-constant kernel function for event e on absolute time
intervals 74 with index set J = {1,2}, where j = 1 indicates a time kernel and j = 2
indicate a time-value kernel. Let R be a set of reduce functions, which for our model we set
R = {sum, max}. Then rg (.1} indicates the reduction over T' functions over the interval
Ty- We propose the following rate function:

|E| R,J

Ay(t) =Xo(t) +D > Beririler, py (hej(titi, a)1(e; = €)). (1)

e=1 71,5

Note that the kernel function he; is on absolute time, whereas g, is defined on relative time
in the previous section. This is done to specify the translation of the wavelet reconstruc-
tions on discrete relative-time intervals onto discrete absolute-time intervals, which requires
additional treatment to prevent causal leakage. We define the kernel function on relative
time below, followed by the definition of h.; using the translation function.

Discrete wavelet reconstruction kernel. Recall that the discrete wavelet transform
(DWT) is an invertible transform of a signal between time space and time-frequency space
used in multi-resolution analysis and signal compression (Mallat, 1989). Here we encode
our parameters in the time-frequency space and use the inverse DW'T to reconstruct the
relative-time kernel functions as follows.

For each event, we use one- to two- dimensional wavelets, with j = 1 referring
to time reconstructions, and j = 2 referring to time and event value reconstructions.
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We use discrete wavelets of size () and («,|S]), with a time intervals on the interval
[0, max, (max,,, tiny — ming,,, tine)] on the time dimension, and with s € S disjoint value
intervals in [min(v), maz(v)] on the value dimension . For point events, we use the notation
s € S where |S| = 1, and categorical events are treated as separate point events. Note that
7 = 1 reconstructions are the temporal analogues of missingness indicators.

Let parameters we; be the wavelet coefficient tensors for event e and wavelet reconstruc-
tion dimension j, and let g.;s be the kernel function on relative time for event e and interval
s, with gejs(t —t;) = 0 for t —t; < 0. Define the set of wavelet reconstruction functionals by:
D = {¢ej : (Wej,Ve) = Gejs }- Conceptually, given event value ve, the wavelet reconstruction
functional ¢.; reconstructs the signal from w,; and indexes the value dimension with v,
producing function g.js, a function with inputs of relative time.

Relative- to absolute-time transformations. To relate the absolute-time kernel h.;
with the relative-time discrete kernel g.;,, we define the following causally-protective trans-
lation function. Let 74 denote disjoint caglad intervals that comprise 7, the target interval
in absolute time, and let 7, be the relative-time intervals of the wavelet reconstruction. We
denote lower and upper endpoints with |-| and [-]. Then, for event time ¢;, the absolute
wavelet reconstruction intervals have endpoints 7| = |7e] +t; and [7e| = [7e]| + ;. The
transformation ¢ is given by:

Do ntad o) > [ra) AX([Ta s [Tic]) = [Tie])gejs (t — t)

[7a] = [7a ’
where A denotes interval intersection. The second condition for inclusion in summation,
| Tie] > [74], prevents causal leakage by ignoring intervals ;. that affect an interval 7,4
that both precedes and intersects it. An advantage of our relative-time specification over
RNNs (and their analogues) is that the granularity over absolute time can be adjusted with
minimal effect on the hazard. By comparison, RNNs need to be retrained or reformulated
if there are changes to the time-step specification, and RNNs that encode the inter-arrival
times as features are not robust to irrelevant injected events.

Forecasting. Thus far we have specified h.; as a nowcasting kernel because g.;s is
zero and non-contributory when ¢ — t; < 0 for all e and s. For forecasting, we incorporate
time-dependent censoring with functional C', the Hadamard censor, and hyperparameter c
the censoring distance, to prevent recent events, i.e., risk modifiers, from affecting the rate.
Let C(c) (t; ti) equal 1 if ¢ —¢; > ¢ and 0 otherwise, and let Veje(wWej, ve) = Vej(c)(Wej, ve) =
C(c) 0 ¢ej(wej,ve) where o is the Hadamard product. We can specify the forecasting rate
function analogous to Equation 1 as follows:

hej (t; ti, Td) = (I(gejS(t - ti)» Td) S

|E| R,J
Ape(®) = Xo(t) + DY Beririmi,... 1y (a(Weje(we, vi); Ta)L(e; = €)) (2)
=11,
For multi-forecasting, we choose a vector of desired relative forecast times {c} and maximize
the average log-likelihood over all ¢. This may be distinguished from training separate
forecasting models because the parameters of the model are tied.

Learning. The parameters of the model are © = {wcj, ferj}. Because the system may
be overdetermined, we add regularization terms. The first is v5 -, 3, ||Berj|[1 akin to the
LASSO (elastic-net regularization is equally straightforward). The second is the regularizer
Yw D_ej |[u(wej)[|1 akin to sparse shrinkage on the wavelet tensor with a choice for u, where

we define u(wej) = ®ke{1,...,j} 2lk/2 o wej, where [ is the wavelet scale parameter of the
k-th dimension.
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Table 1: Negative log likelihood, asterisk (*) denotes simulation.

Dataset Method (NLL)

H. Poisson  Time-invarant Nowcast Hawkes LSTM! LSTM2? WRN WRN-PPL
ACS* 0.44 0.43 0.36 0.39 0.21 0.13 0.23 0.15
Alc* 18.54 19.20 13.56 3.87 11.80 4.10 3.93 3.78
Alc 2.86 2.76 2.52 1.67 1.15 1.29 1.23 1.13
KNR 0.75 0.71 0.58 0.31 0.46 0.35 0.24 0.26

Improving prediction. While the generalized linear form (Equation 2) lends itself
to interpretation, we consider whether non-linearities will further improve predictive per-
formance. Therefore we introduce permute-and-pool layers (WRN-PPL) that randomly
permute event ordering within time step, randomly select sign, perform max-pool, and
project linearly to the next layer. In place of the double summation in Equation 2, we
apply a random sign ({—1,1}) Hadamard tensor Z and pass the result to P parallel per-
mutation layers with max pools of size min(27, |E||J||R|) for p = 0 to P — 1. The outputs
of the max pool are then linearly combined and output to the next layer.

Experiments

We conduct tests in two simulations and on a health care data set. For direct comparison,
we evaluate performance against methods in the nowcasting framework using negative log
likelihood and ranking measures. We divide the data into a train, tune, and held out test
set. Model development is performed on train and tune sets with parameters determined by
early stopping. Models are then evaluated on the held out test set. We use the Goodman-
Kruskal ~ statistic as a measure of concordance among non-tied pairs. Further details of
parameter setting, e.g. preprocessing, bin widths, optimizer settings, are in the Appendix.
We compare wavelet reconstruction networks (WRNs) with homogeneous Poisson processes,
time-invariant and nowcasting Fourier basis functions, multivariate Hawkes processes, and
two long short-term memory (LSTM) networks. Details are given in the Appendix.

Data. Simulations: The first simulation is of heart attack diagnoses denoted by acute
coronary syndrome (ACS). In this simulation, it is the elevation in value of troponin, a
heart enzyme measurement, outside the normal range (less than 0.01 ng/mL) that indicates
ACS will occur in the next time unit uniformly at random. The second simulation is
of diabetes care: patients with diabetes undergo semi-regular appointments, e.g., annual
eye and foot exams, quarterly hemoglobin Alc measurements, and pre- and post-prandial
glucose measurements. These patients are often non-adherent with worsening adherence as
a function of increasing time from adverse events (Figure 1, right). EHR data: We also
partnered with a regional health care system to investigate the risk of adverse outcomes
of diabetes and adherence to the care those patients received. Preprocessing led a study
population of 4,732 individuals monitored over 7 years evenly split into training, validation
and test sets. Details of the cohort are provided in the Appendix. We focused on two
outcomes: (1) hemoglobin Alc measurements, as a proxy for scheduled diabetes care, and
(2) a combined outcome of {ketoacidosis, neuropathy, retinopathy} as defined by ICD 9
and ICD 10 codes. Features included demographics and diabetes-related EHR features.
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Figure 2: Left: Predicted rates of hemoglobin Alc tests for five random, test set patients
(one month forecasts). Actual events correspond to circles, and dotted lines begin at the
base risk and end at the predicted risk. Middle and right: Wavelet reconstruction of troponin
contribution to ACS hazard, nowcasting and multi-forecasting. A preceding troponin above
0.01 indicates increased rate of ACS occurrence within the next hour (blue region).

Results

Overall, the proposed wavelet reconstruction network WRN-PPL outperformed the other
algorithms (Table 1). The WRN-PPL method excelled in high-rate tasks (Alc* and Alc
experiments) and were comparable to the best in low-rate tasks (ACS* and KNR). The
WRN and WRN-PPL ~ statistics showed effective risk stratification with a v of 0.98, and
concordance levels were comparable between the WRN and LSTM models (Table Al).

The WRN-PPL algorithm makes predictions that anticipate appointments where
hemoglobin Alc will be measured in quasi-periodic fashion, while keeping the hazard low
in-between (Figure 2, left). The model learns the effect of troponin level and timing on
heart attack rate (Figure 2 middle, right). Both reconstructions demonstrate recovery that
acute coronary syndrome is diagnosed within the next time unit after a troponin greater
than 0.01 ng/mL. The multiple-c¢ reconstruction on the right more accurately reflects the
uniform distribution hazard, namely, increasing hazard if the event has not yet occurred.

The performance of WRN-PPL in Table 1 and Figure 2 illustrates the utility of our
model, in particular in identifying the near-periodicity of recurring events. For example,
the rate prediction for the individual denoted in green in Figure 2 (right) suggests that
individual may have skipped, missed, or rescheduled 5 to 6 appointments over the last
decade. The peaks reach hazards of approximately 3, indicative of a mixture of belief and
uncertainty—belief that in those months the event should occur at a rate above three per
year, and uncertainty about the occurrence of the appointment.

Discussion. Wavelet reconstruction networks is a simple forecasting method that per-
forms competitively with neural networks. Its advantages include multi-resolution repre-
sentation of relative time dependencies in 1 and 2 dimensions and enables time step speci-
fication at test time. We demonstrated the strong performance of our system in a analysis
of diabetes and showed the ability to capture quasi-periodic events that could be used to
measure adherence and forecast risk of complications. Future work will consider the use
of more expressive wavelet families, and how to automatically detect time gaps (¢) where
performance gains are large, suggestive of time windows for early warning.
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Appendix
Experimental setup details

The Fourier comparison methods are given by f(t|to, ) = >, >, wisin((2nl/7)(t —to)) +
vgicos((2ml/T)(t — to))xk, where x corresponds to features, i.e., event by value interval
occurrences, at or before time 0 (tp = 0, time-invariant) and at ¢y = ¢ (nowcasting), k
indexes the event by value interval by time step, and [ indexes the basis function component.
L2 regularization are applied to wy; and vg;. Then the rate function is defined as A(-) =
wo + f(-)2. For nowcasting, the Fourier method is given features from 16 previous time
steps, and since in nowcasting ¢t — tg = 0, the formula reduces to a generalized linear model
of vy, terms. The multivariate Hawkes process we use includes a kernel with event-specific
exponential decay parameter v, > 0: i.e, ge(t —t;) = e (=) We use a learnable constant
baseline rate A\g. We learn . without constraint, rather than 8. > 0 or 8. < 0 of Hawkes
and inhibitory processes respectively. We impose a positivity constraint to ensure the rate
is non-negative.

The first LSTM method is a variant of the multi-task healthcare LSTM from Lipton
et al. (2016) where the preprocessing involves zero- or last-value carry forward- imputa-
tion, mean-reducing, and adding missing indicators. Because our task is nowcasting not
multi-label classification, we modify the loss function accordingly. The second LSTM is a
WRN preprocessing LSTM, which we compare against to control for differences in WRN
preprocessing from that of the first LSTM. The LSTM comprises a linear-embedded input
(i x h) and two LSTM hidden layers (h x h) that are output to a rectified linear layer (h x 1)
where h is the hidden unit width. For each model, the output is a hazard per time step
Any, and the loss is the point process log likelihood:

N Thy
LL(X|0) = Y (Zlog Any (ting) + / )\ny(t)dt)
n=1 =1 Tny

The code is written in PyTorch 1.0 and is available at https://github.com/jcweiss2 /wrnppl/.

EHR details

From the regional cohort followed from 2010 to 2017, we selected those at risk of diabetes
as defined by an outpatient measurement of hemoglobin Alc or glucose, or a diagnosis
of hyperglycemia. Among those, we excluded any individuals without at least two clinic
encounters more than six months apart. We additionally applied a censor date at the time
of the last clinical event before a 30-month gap in care, where there is uncertainty that the
patient is lost to follow-up or is receiving care outside of network.

Application of the inclusion and exclusion criteria resulted in 798,818 timestamped
events in a study population of 4,732 individuals, with each individual representing a single
example. We divided the population into thirds: {train, tune, test} sets. Features included
were extracted with string matching on event descriptions of events documented as putative
risk factors in clinical guidelines from the ADA, AHA, and UpToDate, and included events
from demographics, medications, encounters, laboratory, diagnosis, and procedures tables.
The extraction resulted in 575 features. Hemoglobin Alc was measured at least once in 820
individuals (21%), and an adverse event occurred at least once in 137 individuals (3%).
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Architecture details

To ease understanding of the relationship between wavelet parameters corresponding to rel-
ative time pairwise feature-outcome relationships mapped to absolute time predictions, we
provide a diagram corresponding to the wavelet reconstruction networks (WRNs) architec-
ture (Figure Al). The linear form of WRNSs facilitates learning a simple and sparse repre-
sentation that nonetheless captures temporal and value-based associations. Regularization
on the transform representation leads to sparse activations which tend to be blockwise and
may provide some added robustness to temporal and value-based imprecision.
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Figure A1l: Wavelet reconstruction network architecture. w wavelet parameters, ¢ recon-
struction kernel, ¢ relative-to-absolute time translation function, C' censoring function, h
absolute time functions, § function contribution coefficients, Ay baseline rate function.

Additional results

Figure A2 illustrates the ability of WRN to model the rates of complications better than
other nowcasting methods, even with a gap in feature availability. Compared to the peri-
odicity seen for Alc measurement, medical guidelines do not specify scheduling for regular
follow-up of the adverse events, and this is congruent with the lack of periodicity in the
KNR hazard predictions.

Multi-forecasting. As one would expect, a trade-off occurs between early predic-
tion and predictive performance. The effect of WRN-PPL forecast distance ¢ on KNR
prediction is shown in Figure A2 (right). Notably, the 3-month censored WRN-PPL has
approximately the same performance as the nowcasting LSTM?. Similarly, effects of single-
model, multiple-c prediction are shown in Figure A3 (upper), illustrating the WRN-PPL
improvement over WRN for nowcasting (up to ¢ < 1) but not for ¢ > 1. The coefficient
profiles vary substantially as a function of ¢, demonstrating that relative-time attributions,
which are commonly used in association statements in health literature, appear to depend
on censor time c.

For multi-forecast learning, a comparison of the results in Table 1 and Figure 2 (upper
versus lower) demonstrates the value of model expressivity. In particular, Table 1 shows that
single forecasting outperforms multi-forecasting at ¢ = 0 in Figure A3. However, inspection
of Figure 2 (upper versus lower) suggests that multi-forecasting improves the learned wavelet
representation insofar as being more self-consistent. Together, these findings suggest that

10
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Figure A2: Combined outcome (KNR dataset) negative log likelihood as a function of censor
distance (in years).
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Figure A3: Negative log likelihood (KNR dataset) as a function of forecast censoring dis-
tance ¢ for multi-forecasts. The permute and pool layer expresses greater expressivity to
model the hazard than WRN.

the layering between the wavelet reconstruction (WRN: {reduction layer, linear}, and WRN-
PPL: {reduction, permute and pool, linear}) and the hazard output is not adequately
expressive to map the true wavelet reconstruction to the true hazard. We argue the solution
is not in simplification nor abandonment of the multi-forecast setting, but in leveraging
the multi-forecast setting to facilitate recovery of the wavelet reconstruction by using an

11
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Table Al: Goodman-Kruskal v, a measure of concordance, on the held out test set. Asterisk
(*) denotes simulation.

Dataset Method (Goodman-Kruskal +)

H. Poisson  Time-invariant ~Nowcast Hawkes LSTM! LSTM? WRN WRN-PPL
ACS* -1.00 -0.81 0.08 -0.97 0.98 0.91 0.80 0.85
Alc* -1.00 -0.02 0.81 0.64 0.84 0.85 0.78 0.77
Alc -1.00 0.23 0.71 0.79 0.83 0.87 0.93 0.93
KNR -1.00 0.25 0.81 0.91 0.84 0.91 0.95 0.98

even more expressive mapping when prediction—rather than associative analysis—is the
emphasis.
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