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Abstract

Current status data arise when the exact time of an event of interest is not known and the
only available information about the time is whether the time is beyond a single assessment.
When interest lies in prediction based on such data, we define observed data loss functions
through censoring unbiased transformations and pseudo-observations to construct unbiased
estimates of complete data loss functions, and we use these to fit regression trees and make
predictions using current status data. The trees grown based on these methods are found
have good properties empirically in terms of recovery of the true tree structure and event
time prediction.

Keywords: Censoring unbiased transformations; current status data; prediction; pseudo-
observations; regression trees; variable selection.

1. Introduction

The past several decades have seen considerable development and application of classifica-
tion and regression tree (CART) (Breiman et al., 1984) algorithms. Recent developments
in CART include the extensions to handle various types of outcomes, the use of a vari-
ety of loss functions, variations enabling the unbiased selection of covariates, and ensemble
algorithms based on single trees; see Loh (2014) for a comprehensive review. Regression
trees have been used extensively for prediction problems involving survival data, referred to
as survival trees, where new splitting criteria and evaluation metrics have been required to
deal with right-censored observations. In many settings, however, interest lies in the time of
an event which is not directly observable but rather can only be detected to have occurred
upon careful clinical examination, through the use of laboratory tests, or by imaging (e.g.,
radiographs) at particular points in time. Current status data arise when there is only a
single assessment time and the event status is only known at this time. Some algorithms
for predictive modeling have been developed to deal with interval-censored data, but to
our knowledge, there is no predictive model approach developed for current status data.
In this paper, we develop survival trees for current status data based on CART algorithm
by constructing observed data loss functions which are consistent estimators of a complete
data risk function. We demonstrate that survival trees built using the Lo observed data loss
functions are equivalent to the ones obtained by applying the complete data regression trees
to the imputed event times. We discuss strategies to construct observed data loss functions
and impute event times. The proposed methods are evaluated empirically and compared
to the oracle tree built using uncensored event times, methods based on ad hoc approaches
such as imputing the event times using the midpoint, or the right endpoint of the censoring
interval, and the conditional inference tree approach proposed by Fu and Simonoff (2017)
based on the log-rank score, which was originally designed for interval-censored data.
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2. Survival Trees for Current Status Data

Here we provide a general framework for implementing the CART algorithm while accom-
modating a current status observation scheme of the response time of interest. We discuss
two strategies for constructing observed data loss functions.

2.1. Notation and Preliminary Remarks

Let T € R' denote the event time of interest and S(t|z) = P(T > t|X = x) denote
the conditional survivor function of T' given covariates X = x. Current status data, also
known as type I interval-censored data, arises if there is a single random examination time
U (U > 0), and it is only known whether or not the event time 7' exceeds U; we let
A = I(T < U), so the observed data for a particular individual are O = (U, A). We
further assume that conditional on the covariates that are controlled for in the analysis, the
event time is independent of the examination time as in Cook and Lawless (2019). With a
sample of observations on n independent processes, we use a subscript ¢ to label individuals
and denote the complete data as D = {(T;,X;’)',i = 1,...,n} and the observed data as
O ={(0;, Xi/)/,i =1,...,n}.

2.2. NPMLE of Survivor Function with Current Status Data

We review of the nonparametric maximum likelihood estimator (NPMLE) of the marginal
cumulative distribution function for a failure time based on current status data. Let Uy,
j =1,...,m denote the unique ordered elements of {0,Uy,..., Uy}, let n; = >, I(U; =
U;)) denote the number of individuals who are assessed at U(;), and let 7; = > 1" | AI(U; =
U(jy) denote the number of individuals assessed and found to have failed at the examination

Uiy, j =1,...,m. The likelihood function can be written as
L(S() = [[ W' 21 = SU)* = [[ F(UG)" 7 [1 = F(Ug))™ "
i=1 j=1

where F'(t) = 1 — S(t). With the constraint of F'(Uy)) < ... < F(Ugy)), the optimization
problem is equivalent to an isotonic regression (Robertson et al., 1988) problem involving
data {ri/ni,...,rm/nm} with weights {n1,...,n,}. According to the maximum-minimum
formula for isotonic regression, the NPMLE is

V2

l=v1 T

F(U.;) = max min == "
( (J)) v1<]j v2>] Z}im i

So the NPMLE of the survivor function S(t) = P(T > t) has a closed form S(t) = 1 — F(t)
for current status data. In practice S(t) can be computed empirically via the pooled adjacent
violators algorithm (PAVA) for isotonic regression (Barlow et al., 1972).

2.3. The Observed Data Loss Functions

We let U(X) : X — R be the real-valued function denoting a prediction rule, where X" de-
notes the covariates space. The complete data loss function is L(D, V) = 1 3" | L(T;, (X)),
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and R(¥) = E[L(T, ¥(X))] is the complete data risk. Our goal is to build regression trees
based on current status data, in which case the T; are not observable and the complete data
loss function L(D, V) cannot be calculated. To address this we define a class of observed
data loss functions L(O,¥) to be used in place of L(D, V) in the tree growing, pruning
and cross-validation steps of the CART algorithm. We choose such functions so that the
observed data loss function is unbiased or consistent for the complete data risk R(¥). We
next propose two strategies of constructing observed data loss functions based on censoring
unbiased transformations and methods based on pseudo-observations.

2.3.1. CENSORING UNBIASED TRANSFORMATIONS (CUT).

Censoring unbiased transformations (CUT) have been utilized to deal with right-censored
data (Fan and Gijbels, 1996; Rubin and van der Laan, 2007). More recently, Steingrimsson
et al. (2019) considered the constructions of observed data loss functions using CUTs for
building regression trees with right-censored data. Here we consider the use of CUT to facil-
itate the construction of regression trees with current status data. We begin by describing
the general construction of CUTs.

Let Y be a scalar function of the complete data (T, X')" and Y* be a scalar function of
the observed data (O, X')". We define Y* as a CUT for ) if

EY (O, X)X =x|=E[Y(T,X)|X =«

for every « € X.

We set Y(T,X) = L(T,¥(X)), and consider a general function Y*(0,X) as a CUT
of L(T,¥(X)). For a sample of n independent individuals the observed data loss function
L(O, ") is constructed using the empirical average of the Y*(O, X) terms as

Leur(O, W) Zy (04, X;) (1)

The constructed observed data loss function (1) is thus an unbiased estimator for the com-
plete data risk R(V) = E[L(T, ¥(X))].

When building a CART with complete data, the default complete data loss for a continu-
ous response is the Lg loss and a piecewise constant prediction rule U(X) = Zszl Brl(X €
Xy) is adopted, where { X7, ..., X} is a finite partition of the covariate space X and S is the
predicted value if X falls into the kth partition Xy, for k = 1,..., K. When the complete
data loss takes the form

K
Lo =Y (X € X)(T? — 278 + B7) , (2)
k=1

the observed data loss function Lo cpr (O, ¥) is built using the empirical average of its
corresponding CUT given by

n K
SN HXG € ) [V5(01, Xe) - 295(05, Xo) i+ 57 (3)

i=1 k=1
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where Vi (0, X) and Y3 (O, X) are the CUTs for T and T2, respectively. The expression in
(3) has the same conditional expectation as the Lo complete data loss (2) given covariates
X, so (3) is an unbiased estimator of the complete data risk R(V) = E[L2(T, ¥(X))].

The challenge then reduces to finding suitable functions y; (0,X), j =1,2, the CUT
for T7, j = 1,2, respectively. Since

1
E[T/|X] =) _E[TV|A =6, X|P(A = §|X),
6=0

the CUT of TV can be constructed as

1
=Y I(A=0)E[TV|A =6 X], (4)
6=0
where
. [V tids(t|X)
E[T”AZI,X}:*%, (5)
iA _ JdS(tX)
E[T7|A =0, X] _—W. (6)

Thus Y; (0, X) is a CUT of T7 since it has the same conditional expectation as T7 given
covariates X.

The conditional survivor function of T' given covariates X can be estimated semipara-
metrically under a Cox proportional hazard model or nonparametrically using the condi-
tional inference trees proposed by Fu and Simonoff (2017).

2.3.2. USE OoF PSEUDO-OBSERVATIONS.

The jackknife pseudo-observation (PO) approach for incomplete data was introduced and
originally used in standard regression settings (Quenouille, 1949; Tukey, 1958), but has
been greatly promoted for applications to survival analysis in recent years. Andersen et al.
(2003) applied the pseudo-observation approach for inferences based on multi-state models,
Andersen et al. (2004) used the pseudo-observations in a regression of restricted mean
survival time with right-censored data, and Han et al. (2014) used the pseudo-observations in
a semiparametric regression for interval-censored responses. See Andersen and Perme (2010)
for a recent review of the general theory and the range of applications of this approach;
here we provide a brief introduction.

Suppose 0 is an estimator of a parameter of interest 6§ based on an i.i.d. sample of
T,...,T,, and 0= is a leave-one-out estimator of @ based on Ty,..., i1, Tigq, .o, Ty
The ith pseudo-observation is constructed as

~

0; =nb — (n—1)0, (7)

fori=1,...,n. If 6 and ) are unbiased estimators of 0, the expectation of 0; is equal
to 6 and thus the empirical average of POs also gives an unbiased estimator of 6. In the
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present context, we aim to construct an observed data loss function which is unbiased for
the full data risk R(¥), so we set the quantity of interest to be § = R(¥).

Suppose that 6 is an estimator of 6 based on the observed current status data (9
and that (-9 is the corresponding leave-one-out estimator using O~ = ={(0;,X,"),j
1,...,i—1,i+ 1,...,n}. The POs are obtained using (7), and they are used to further
construct the observed data loss function

Lpo(O, ) Ze

We consider here the special case where the Lo loss is specified along with piecewise-
constant prediction rules. The observed data loss function Ly po(O, V) built using the
empirical average of the POs is

K

%Z Z I(X; € &) (ém — 2018k + 5;%) ; (8)

i=1 k=1

where égz‘ and éli are the POs for Tf and T; in the complete data loss (2). If éj is an estimator
of E(T7) and éj(fi) is the corresponding leave-one-out estimator, then éﬂ = néj —(n— 1)95471’)
is the ith PO for E(17), j =1,2.

We estimate E(T7) = — [[° #/dS(t) by replacing S(t) with an estimate so that the POs

for E(T7) can be written as
R / FdS(t) + (n — 1) / HdS () )
0 0

where S(-) is NPMLE of the survivor function S(-) given in Section 2.2, and S(-9)() is the
corresponding leave-one-out estimator excluding data from individual q.

2.3.3. RESPONSE IMPUTATION.

The idea of response imputation was introduced in Steingrimsson et al. (2019) to facilitate
a straightforward use of the observed data loss function for the CART algorithm when
data are right-censored. Theorem 4.1 in Steingrimsson et al. (2019) implied that one can
implement the Lo observed data loss functions by applying the Lo complete data CART
algorithm with some imputed dataset 7 = {(7'(0;, X;), Xi') i =1...,n}.

Note that using the complete data CART algorithm following imputation is equivalent
to using the following imputed loss function

Lo (T,7) ZZI X; € &) |T(04, X;)? — T(O0;, X;) B +/313] ) (10)

zlkl

where T(Oi, X;) is the imputed response for the ith subject in the dataset. Theorem 4.1
in Steingrimsson et al. (2019) showed that the CART algorithm makes decisions in the tree
growing, pruning and cross-validation steps, which do not depend on the term 7'(O;, X;)?.
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We extend the idea of response imputation to current status data. We can make
the imputed loss function (10) to be equivalent to the Ly CUT loss function (3) by let-
ting 7(0;, X;) = Vi(04, X;); or implementing the Ly PO loss function (8) by letting
T (0;,X;) = éu. The imputed values using CUT or POs are used as complete data in
building CART and they lead to the same CART model as we implement CART algorithm
with Lo CUT or PO observed loss functions, respectively.

At this point, we comment that our methods serve as a natural extension of the regression
tree to the current status data and they do not depend on the widely used proportional

hazard assumptions.

3. Simulation Studies

In this section, we empirically evaluate our proposed methods via simulation and compare
them to ad hoc imputation and the conditional inference tree approach of Fu and Simonoff
(2017).

3.1. Data Generation

We considered a sample size n = 500 with 500 replications. We generate (W7, Wa, W3, Wy, Ws)
from a multivariate normal distribution with zero mean and covariance matrix X, which is
of the form ¥ = I'5x5 or X, the correlation matrix of an AR(1) model with parameter 0.9.
They represent an independent and a highly correlated “autoregressive” dependence struc-
ture for the covariates, respectively. Based on these variables, we consider five covariates
generated as follows:

e X; =I(W; <0) (binary);

o Xo=1I(Wz < Qoazs)+2I(Qo25 < Wa < Qos)+ 3I(Qos < Wa < Qo.rs) +41(Qo.75 <
Ws), where @, is the o quantile of a standard normal distribution (ordinal);

o X3= I(Wg < Q0,25) + 2](@0,25 < W3 < Qo_75) + 3](@0_75 < Wg) (nominal);
o X, = e (continuous);
e X5 = W5 (continuous).

We suppose that the data structure has a tree form with three terminal nodes and the event
time at each terminal node follows a Weibull distribution. Thus, we assume:

e Node 1: T ~ Weibull(k1, A1) if Xo < 2;
e Node 2: T ~ Weibull(kg, \2) if Xy > 2 and Xy > ¢;

e Node 3: T ~ Weibull(ks, \3) if X7 >2 and Xy <.

We let ¢ = 1 if covariates are generated independently (X = ) and ¢ = %01 if covariates

are highly correlated (X = 32). We found c to be e?-6!! for such highly correlated covariates
to guarantee the proportion of subjects falling into three terminal nodes to be 50%, 25%,
and 25%, respectively. Several constraints are imposed to determine the shape and scale



SURVIVAL TREES FOR CURRENT STATUS DATA

parameters of the Weibull distributions including (i) the median of the marginal distribution
of T"is b; (ii) the 0.9 quantile of the distribution of T" at the second terminal node is 10;
(iii) k1 = k2 and k3 = 3; (iv) the means of the three terminal nodes are set to be 5u, 4u
and 2u, respectively. The node means are found as 7.48, 5.99, and 2.97, respectively.

We next generate the examination times. We let 7 denote a maximum time of interest
beyond which no assessments will be scheduled, and 7 is set as the 95th quantile of the
marginal distribution of 7'. We further let U* ~ I'(a, 8). The examination time is set as
U = min(U*, 7). We let p = P(T < U) represent the proportion of individuals who fail at
their examinations in the population. This set-up not only addresses the heterogeneity of
timings of the examination times across subjects but also allows us to investigate the effect
of informative assessments and the variability of the inspection times on performance by
choosing different values of p and Var(U*), respectively. For each specified p and Var(U*),
we can solve for o and § accordingly, followed by generating the assessments from the
gamma distribution with an upper limit 7. Table 1 provides a summary of parameter
configuration across various choices of p when Var(U*) is set to be 4.

Table 1: Parameter configuration for the distribution of the examination times when
Var(U*) is 4.

p a B PU* >T)

0.30 3.16 0.89 1.13x 1073
050 7.13 1.34 22x10°3
0.70 14.64 1.91 1.26 x 1072

3.2. Methods for Event Time Prediction

We propose regression trees for current status data based on the Lo observed data loss
functions using CUT in (3) and PO in (8). When predicting for event times, the Lo
CUT observed data loss function can be implemented with Lo complete data regression
trees based on CUT imputation and the imputed response is T(0;, X;) = Vi (04, X;)
in (4) with conditional means (5) and (6); the Ly PO observed data loss function can
be implemented with PO imputation and the imputed response 7' (0;,X;) = 61; given
in (9). Imputation based on the pseudo-observation (PO) T(0y, X;) = 61; utilizes the
linearly smoothed nonparametric estimator of the marginal survivor function of T' obtained
from the PAVA algorithm via the gpava function from the R package isotone. The form
of the CUT imputation 7(0;, X;) = Y;(0;, X;) involves unknown conditional survivor
function S(:|X), which is estimated semiparametrically under a Cox proportional hazard
model (CUT¢,,) or nonparametrically using the conditional inference trees proposed by Fu
and Simonoff (2017) (CUT¢on). The Cox model and conditional inference tree are built
upon the current status data and implemented by expressing the current status data in
the form of interval-censored data and using the functions ic.sp and ICtree from the R
packages icenReg and LTRCtrees, respectively, originally developed for interval-censored
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data. When using the package LTRCtrees, we can either use the conditional survivor
function estimates obtained from the package LTRCtrees (CUT¢,y,) or directly estimate
the conditional survivor functions by using the PAVA in each terminal node of the fitted
conditional inference tree (CUTconp).

We aim to compare the performance of our proposed regression tree based on response
imputation for predicting event times with the following benchmark methods:

e Oracle trees (O): the regression trees built on the uncensored event times Tj;

e Right imputation (R): When 7" < U, the imputed value takes U. If T > U, the
imputed value is chosen as the time point at which the marginal survivor function
estimate decreases to zero; in the case it does not decrease to zero, it is chosen as the
time point at which the marginal survivor function estimate reduces to the minimal
value.

e Midpoint imputation (M): When T' < U, the imputed value takes U/2. When T > U,
the imputed value takes the average of U and the right-imputed value;

e Conditional inference tree (CIT): conditional inference tree for interval-censored data
proposed by Fu and Simonoff (2017).

For response imputation, oracle tree, midpoint and right endpoint imputation, the re-
gression trees are built using the rpart function from the R package rpart with the argument
method = "anova'.

3.3. Algorithm Evaluation Metrics

Various evaluation metrics are considered to assess the performance of the methods through
the test dataset. The main attention is directed at prediction accuracy and the ability to
recover the true tree structure. The prediction error (PE) reflects the prediction accuracy
and is defined as

1 Ntest R
PE = i—T3)%
Ntest ; ('u )

where p; is the conditional expectation of T; given X; falling into a terminal node based on
the true tree structure (i.e., \yT'(1+ %1), Ao(14 %2), AsT'(1+ 1) in the three terminal nodes

of the true tree, respectively) and T; denotes the predicted event time of subject i calculated
based on the fitted tree. The evaluation metrics for recover the true tree structure include:

o Model Size: The average size of the fitted model (i.e., the number of terminal nodes
of the fitted tree). In our setting, the closer this is to 3 the better the algorithm
performs.

e Number of Predictors (# Predictors): This is the average number of predictors (i.e.,
the mean number of unique covariates the tree splits on). In our setting, the closer to
2, the better the performance.
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e Percent Correct (% Correct): This reflects the ability of the tree to split on the correct
covariates, regardless of the splitting points and the order of splits. This is reported
as the percentage of simulated samples for which the method split on both Xo and
X4, so the higher the percentage, the better the performance.

e Percent Without Noise (% w/o Noise): The ability to avoid noise variables. This
is reported as the percentage of simulated samples for which the method did not
inappropriately split on X;, X3, and X5, so higher percentages correspond to better
performance.

3.4. Prediction and Structure Recovery
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Figure 1: Prediction errors for predicting event times comparing proposed survival tree
algorithms for current status data and the benchmarks under various settings.

Figure 1 summarizes the performance of the proposed CART algorithm based on PO,
CUTcow, CUTconp, and CUT¢,y, compared to the benchmark approaches listed in Section
3.2. The set-ups with independent covariates are presented in the first row and the set-ups
with highly correlated covariates are presented in the second row. The proportion of indi-
viduals who fail at their examination times are 30%, 50%, and 70% in the three columns,
respectively, from left to right. Our proposed regression trees based on CUT¢o,p had the
best performance across the set-ups. The regression trees based on CUT¢oz, CUTcon and
PO also outperformed the conditional inference trees in all set-ups. All the methods per-
form worse than the oracle tree in predicting event times to a reasonable extent considering
how much less information the current status data contains than the complete data. Fur-
thermore, most tree algorithms deteriorate when the covariates are highly correlated and p
is smaller. Simulations were repeated and led to similar results for assessments with lower
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variance (Var(U*) = 1, results not shown). However, when the assessments are less infor-
mative, the conditional inference trees are less stable and may produce extremely large PEs
if some terminal nodes are full of right-censored individuals.

Table 2: Structure recovery measures comparing proposed survival trees algorithms for cur-
rent status data and the benchmarks under various settings.

Independent Covariates Highly Correlated Covariates
(6] PO CUTy, CUTenp CUT, CIT M R O PO CUTe CUTenp CUTe, CIT M R
p=03
Model Size 3.11 312 6.02 3.23 3.18 2.90 3.13 3.15 3.09 3.17 643 3.82 3.64 346 3.11 313
# Predictors  2.05 2.03 2.56 2.08 2.05 1.85 2.05 2.03 2.03 2.05 285 2.46 2.35 2.35 2.03 2.03
% Correct 95.6 91.0 59.4 83.2 85.0 67.0 934 88.6 97.0 89.4 41.0 29.8 35.4 17.8  92.8 88.4
% w/o Noise 95.6 94.2 60.0 87.6 89.8 89.8 944 92.6 97.0 91.0 41.2 30.8 37.2 204 942 91.8
p=05
Model Size 3.11  3.09 3.85 3.25 3.23 3.08 3.10 3.11 3.09 3.06 4.11 3.63 3.55 3.95 3.15 3.14
# Predictors  2.05 2.04 2.23 2.13 2.11 2.02 2.03 205 2.03 2.02 237 2.34 2.32 2.80 2.06 2.06
% Correct 95.6 95.6 81.4 88.2 89.8 82.8 96.8 95.6 97.0 974 702 65.2 67.4 15.8 94.6 934
% w/o Noise 95.6 96.0 81.6 88.6 90.2 904 96.8 95.6 97.0 97.6 70.4 65.2 67.4 16.4 946 93.4
p=0.7
Model Size 311 312 341 3.19 3.20 291 3.14 3.10 3.09 3.15 3.53 3.78 3.71 3.73 3.09 3.10
# Predictors 2.05 2.02 2.12 2.07 2.08 1.84 2.06 2.03 2.03 2.01 220 243 2.38 259 203 2.01
% Correct 95.6 90.2 80.2 86.8 86.8 69.2 944 9238 97.0 86.0 75.6 41.8 48.8 19.0 94.0 90.2
% w/o Noise 95.6 94.4 85.8 90.4 89.4 92.0 94.6 95.0 97.0 92.6 78.0 434 49.8 21.6 954 93.8

Table 2 summarizes the structure recovery performance of the proposed survival tree
models and the benchmarks. The left half of the table corresponds to the set-ups with
independent covariates and the right half contains those with highly correlated covariates.
The proportion of individuals found to fail at the examination times are 30%, 50%, and 70%
down the columns. The survival trees based on PO recover the underlying tree structure
well and their results are comparable to those of the oracle trees in all set-ups, which is
valuable as the current status data contains much less information than the complete data.
When the covariates are independent, the conditional inference trees perform well; how-
ever, the conditional inference trees frequently fail to recover the underlying tree structure
when the covariates are highly correlated as they tend to pick up some noise variables and
build larger trees than the true tree structure. The survival trees based on CUT¢onp and
CUTcon perform comparably well to or slightly worse than the oracle trees when covariates
are independent but their performance deteriorates in the set-ups with highly correlated
covariates as their conditional survivor functions estimated by conditional inference trees
and undermined by the compromised performance of conditional inference trees. It is note-
worthy that the survival trees based on CUT¢,,p and CUTg,, still perform consistently
better than the conditional inference trees. The regression trees based on CUTg,, do not
recover the underlying tree structure as well as other survival trees and they suffer from
higher computational costs. Similar results were found when the variability of assessments
is set to be smaller.

The regression trees based on midpoint imputation have small PEs as illustrated in Fig-
ure 1 and both midpoint imputation and right imputation recover underlying tree structure
very well across all set-ups as presented in Table 2. The PEs based on right imputation are

10
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not shown in Figure 1 as the PEs are too large to fit in the figures of the current scale. It
is noteworthy that the regression trees based on midpoint imputation lead to considerable
larger PEs than the other methods when assessments are less informative (p = 0.3 and 0.5)
and in the meanwhile assessment times are less variant (Var(U*) = 1) (results not shown).

4. Discussion

Here we propose strategies to construct observed data loss functions in place of complete
data loss in the CART algorithm when the available data arise from an independent current
status observation scheme. We build Lo complete data regression trees based on imputed
responses using CUT and PO, which enables us to reveal influential covariates and make
predictions. As shown in the simulation studies, our methods predict the event times
more accurately than the conditional inference tree approach across a variety of assessment
time models in terms of variance of the assessment times, the proportion of right-censored
individuals, and dependence structures among the covariates. Our methods are shown
to perform particularly well in recovering the underlying tree structures. Overall, when
aiming to fit regression trees based on current status data, we recommend the use of the PO
imputation approach and the CUT imputation based on the conditional survivor function
estimated using the pooled adjacent violators algorithm for each of the terminal nodes of
the conditional inference trees.

This work is based on the assumption that the inspection time is independent of the
failure time given the covariates, but given the covariates are selected in a data-driven
way this is essentially equivalent to a completely independent inspection time. If there
is concern about covariate dependent inspection time model, one can consider the use of
inverse density-weighted loss functions to ensure consistent estimation of the complete data
loss function. In ongoing work, we are adapting these regression tree algorithms for current
status data to accommodate ensemble methods such as random forests. Finally, we note
that the equivalence between the constructed observed data loss and the imputed loss only
holds under the Lo loss function in the CART algorithm - an extension of these methods
to deal with different loss functions is an area of future research.

References

P. K. Andersen and M. P. Perme. Pseudo-observations in survival analysis. Statistical
Methods in Medical Research, 19(1):71-99, 2010.

P. K. Andersen, J. P. Klein, and S. Rosthoj. Generalised linear models for correlated
pseudo-observations, with applications to multi-state models. Biometrika, 90(1):15-27,
2003.

P. K. Andersen, M. G. Hansen, and J. P. Klein. Regression analysis of restricted mean
survival time based on pseudo-observations. Lifetime Data Analysis, 10(1):335-350, 2004.

R. E. Barlow, D. J. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical Inference
Under Order Restrictions. New York: Wiley, 1972.

11



SURVIVAL TREES FOR CURRENT STATUS DATA

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression
Trees, volume 1. Taylor & Francis Group, 1984.

R.J. Cook and J.F. Lawless. Independence conditions and the analysis of life history studies
with intermittent observation. Biostatistics, epub:1-27, 2019.

J. Fan and 1. Gijbels. Local Polynomial Modeling and Its Applications. Chapman & Hall,
1996.

W. Fu and J. S. Simonoff. Survival trees for interval-censored survival data. Statistics in
Medicine, 36(1):4831-4842, 2017.

S. Han, A. C. Andrei, and K. W. Tsui. A semiparametric regression method for interval-
censored data. Communications in Statistics - Simulation and Computation, 43(1):18-30,
2014.

W.Y. Loh. Fifty years of classification and regression trees. International Statistical Review,
82(3):329-348, 2014.

M. Quenouille. Approximate tests of correlation in time series. Journal of the Royal Sta-
tistical Society, Series B, 11:18-84, 1949.

T. Robertson, F. T. Wright, and R. Dykstra. Order Restricted Statistical Inference. John
Wiley: New York., 1988.

D. Rubin and M. J. van der Laan. A doubly robust censoring unbiased transformation. The
International Journal of Biostatistics, 3:1ss. 1, Article 4, 2007.

J. A. Steingrimsson, L. Diao, and R. L. Strawderman. Censoring unbiased regression trees
and ensembles. Journal of the American Statistical Association, 114(1):370-383, 2019.

J. W. Tukey. Bias and confidence in not quite large samples. Annals of Mathematical
Statistics, 29:614, 1958.

12



	Introduction
	Survival Trees for Current Status Data
	Notation and Preliminary Remarks
	NPMLE of Survivor Function with Current Status Data
	The Observed Data Loss Functions
	Censoring Unbiased Transformations (CUT).
	Use of Pseudo-Observations.
	Response Imputation.


	Simulation Studies
	Data Generation
	Methods for Event Time Prediction
	Algorithm Evaluation Metrics
	Prediction and Structure Recovery

	Discussion

