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Abstract

Convolutional neural networks (CNNs) have made significant advancement, however, they
are widely known to be vulnerable to adversarial attacks. Adversarial training is the most
widely used technique for improving adversarial robustness to strong white-box attacks.
Prior works have been evaluating and improving the model average robustness without
class-wise evaluation. The average evaluation alone might provide a false sense of robust-
ness. For example, the attacker can focus on attacking the vulnerable class, which can
be dangerous, especially, when the vulnerable class is a critical one, such as “human” in
autonomous driving. We propose an empirical study on the class-wise accuracy and robust-
ness of adversarially trained models. We find that there exists inter-class discrepancy for
accuracy and robustness even when the training dataset has an equal number of samples
for each class. For example, in CIFAR10, “cat” is much more vulnerable than other classes.
Moreover, this inter-class discrepancy also exists for normally trained models, while adver-
sarial training tends to further increase the discrepancy. Our work aims to investigate the
following questions: (a) is the phenomenon of inter-class discrepancy universal regardless
of datasets, model architectures and optimization hyper-parameters? (b) If so, what can
be possible explanations for the inter-class discrepancy? (c) Can the techniques proposed
in the long tail classification be readily extended to adversarial training for addressing the
inter-class discrepancy?

Keywords: Fair Machine Learning, Class-wise Robustness, Adversarial training

1. Introduction

Convolutional neural networks (CNNs) (LeCun et al., 2015) have achieved enormous success
in a wide range of vision applications (Zhang et al., 2019a; Kim et al., 2019, 2020; Pan
et al., 2020; Zhang et al., 2020d, 2021a; Kim et al., 2021; Zhang et al., 2020c). However,
they are still widely known to be vulnerable to adversarial examples (Szegedy et al., 2013;
Goodfellow et al., 2015). Numerous endeavors have been attempted to improve adversarial
robustness of deep classifiers, and adversarial training, to our best knowledge, is the only
one that has not been broken by strong white-box attacks (Goodfellow et al., 2015; Madry
et al., 2018; Carlini and Wagner, 2017). Prior works mainly report the model accuracy
and robustness averaging on samples from all classes without class-wise evaluation. This
average performance alone might be misleading for giving a wrong sense of robustness.
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Figure 1: Inter-class discrepancy for standard model. First row: accuracy w/o (left) and
w/ (right) mean subtracted. Second row: robustness w/o (left) and w/ (right)
mean subtracted.

For example, in autonomous driving, a well-performing model with high accuracy and/or
robustness averaging on all classes is particularly dangerous if a certain important class,
such as human, is vulnerable.

Recognizing its practical relevance, we perform an empirical study to evaluate the class-
wise accuracy and robustness of adversarially trained models. Preliminary investigation is
conducted for CIFAR10 on ResNetl8 (He et al., 2016) with both standard training (see
Figure 1) and adversarial training (see Figure 2). There are several intriguing observations.
First, there is a non-trivial inter-class discrepancy, even though the long-tail issue does not
exist, i.e. each class is balanced with the same number of training samples. Second, a simi-
lar trend can be observed for the adversarially trained model, more notably, the inter-class
discrepancy is more significant than that of a standard model. Third, the imbalance is the
most significant for the adversarially trained model. Overall, it suggests that there exists
inter-class discrepancy under balanced training dataset and adversarial training makes the
inter-class discrepancy more serious. Beyond the already widely recognized importance on
the model robustness, we argue that fairness in terms of decreasing the inter-class discrep-
ancy also deserves the attention from the machine learning community.

Our empirical analysis will address the following questions regarding class-wise accuracy
and robustness:

e Is the phenomenon of inter-class discrepancy universal in other setups?

e What are possible explanations for this inter-class discrepancy in accuracy and robust-
ness?

e Can the techniques proposed in the long-tail setup be readily extended to adversarial
training for addressing the inter-class discrepancy?
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Figure 2: Inter-class discrepancy for adversarially trained model. First row: accuracy w/o
(left) and w/ (right) mean subtracted. Second row: robustness w/o (left) and w/
(right) mean subtracted.

2. Related work

2.1. Adversarial examples

CNNs are widely known to be vulnerable to adversarial examples (Szegedy et al., 2013;
Goodfellow et al., 2015; Ilyas et al., 2019; Benz et al., 2020c, 2021a, 2020a), which has
inspired numerous investigations on both image-dependent attack (Szegedy et al., 2013;
Goodfellow et al., 2015; Madry et al., 2018) and universal attack (Moosavi-Dezfooli et al.,
2017; Zhang et al., 2020a,b; Benz et al., 2020b; Zhang et al., 2021b,c; Benz et al., 2021b)
and defense (Qiu et al., 2019; Yuan et al., 2019). Most of the defense techniques have been
broken, and currently, adversarial training (Goodfellow et al., 2015; Madry et al., 2018)
is the most widely adopted one, empirically proven effective. In the past few years, nu-
merous adversarial training methods (Zhang et al., 2019b; Wang and Zhang, 2019; Shafahi
et al., 2019; Zhang et al., 2019c; Wong et al., 2020) have been proposed for improving
either effectiveness or efficiency. Despite different motivations and implementations, they
all fall into a min-max optimization problem (Madry et al., 2018), i.e. adversarial attack
solving the loss maximization problem to generate adversarial examples and network train-
ing minimizing the loss to update the network weights. Adversarial training leads to some
interesting findings. For example, adversarial training leads to higher robustness while at
the cost of accuracy, inspiring to bridge the gap for the trade-off between robustness and
accuracy (Zhang et al., 2019c). Adversarial training leads to a model with more robust
features (Ilyas et al., 2019), consequently reducing information while improving transfer-
ability (Terzi et al., 2020). Adversarially trained models have also been found to be more fit
for down-stream transfer learning (Utrera et al., 2020). Complementary to their findings,
we empirically find that adversarial training increases inter-class discrepancy for accuracy
and robustness.
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2.2. Inter-class discrepancy in long tail recognition

The inter-class discrepancy problem in long-tail recognition is a fundamental issue in ma-
chine learning. In the real world setting, the long-tail problem exists when data is inherently
imbalanced (Kendall et al., 1946), which undermines the performance of algorithms that do
not take this problem into account (Buda et al., 2018; Japkowicz and Stephen, 2002). Due
to its practical relevance, there is a body of work devoted to tackling this problem (He and
Garcia, 2009). The core issue in the long tail recognition lies in low accuracy for the rare
classes, and various techniques have been developed to improve the accuracy of those rare
classes. Our results suggest that there exists an inter-class discrepancy for accuracy and
robustness for a balanced dataset, especially, adversarial training leads to a more significant
inter-class discrepancy. Conceptually, the vulnerable class in the adversarial training is sim-
ilar to the rare class in the long tail recognition, since the accuracy of them is low and needs
to be improved. Straightforwardly, the techniques proposed to solve the long tail recogni-
tion might also help mitigate the inter-class discrepancy for the accuracy and/or robustness
of adversarially trained models. There are two common techniques in long-tail recognition
for handling a class-imbalanced dataset. The first one is to modify the dataset to reduce
the imbalance. One can either collect more data samples for the deficient classes (Chawla
et al., 2002; He et al., 2008) or remove samples from the abundant classes to increase balance
(Drummond et al., 2003). Alternatively, the sampling strategy can be designed to increase
the sampling frequency for the rare classes during training. The second technique is called
cost-sensitive learning, which modifies misclassification costs to account for the imbalance
in the number of samples (Tang et al., 2008; Elkan, 2001; Huang et al., 2016). A recent
method (Cui et al., 2019) introduces the weighting factors for each class to re-balance the
loss function. These weights are inversely proportional to the effective number of samples
for every class. (Cao et al., 2019) proposes a new re-balancing optimization procedure with
a new loss function to encourage larger classification margins for deficient classes.

3. Methodology and experimental protocol

3.1. Is the phenomenon of inter-class discrepancy universal in other setups?

To test how universal the inter-class discrepancy for accuracy and robustness is, we mainly
take into account three factors, i.e. datasets, model architectures and optimization methods.
For dataset, we plan to test it on various benchmark datasets, including MNIST (LeCun
et al., 1998), SVHN (Netzer et al., 2011), CIFAR10 (Krizhevsky et al., 2009), CIFAR100
(Krizhevsky et al., 2009), TinylmageNet, ImageNet (Deng et al., 2009). For models, we
plan to evaluate on the most seminal models ranging from networks stacking a few convolu-
tional layers to very deep networks, specifically including LeNet (LeCun et al., 1998), VGG
family (VGG16 and VGG19) (Simonyan and Zisserman, 2015), ResNet family (ResNet18
and ResNet50) (He et al., 2016), DenseNet family (DenseNet121 and DenseNet169) (Huang
et al., 2017), Inception family (GoogleNet, Inception-v3) (Szegedy et al., 2015). For op-
timization factors, we mainly consider optimizer, and learning rate schedule and weight
decay.

To check whether the same phenomenon can be observed on the above datasets, we will
adopt ResNet18 to train a standard and adversarially trained model for each dataset and
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evaluate the class-wise accuracy and robustness. For the ImageNet dataset, to avoid expen-
sive computation, we will use the online available pre-trained ResNet50, for both standard
and adversarially trained ones. For various models, we will test them only on CIFARI10
dataset for avoiding redundancy. For the optimization factors, we will test them with CI-
FAR10 on ResNetl8, but with different optimizers, such as SGD and ADAM, different
learning rate schedule (stepwise decrease and cyclic), and different weight decay factors.

Additionally, it would be interesting to see whether the vulnerable class changes during
the training. Thus, we will also report the trend of class-wise accuracy and robustness
during the whole training stage.

3.2. What might be possible explanations for the inter-class discrepancy?

At this stage, we assume that the results from the above investigation would support the
following conclusion: The phenomenon of inter-class discrepancy should exist universally
for a wide range of datasets on various model architectures with different optimization
hyper-parameters. In the balanced dataset setup, each class has the same number of train-
ing samples, which increases the chance that the model architectures and/or optimization
strategies might influence this phenomenon. We aim to analyze the following results:

e Is the same trend of inter-class discrepancy observed for different networks trained on
the same dataset, i.e. a robust/vulnerable class on model A is also robust/vulnerable on
model B? If so, we can conclude that the inter-class discrepancy has little to do with
model architectures. Otherwise, model architecture can be one factor that causes the
phenomenon of the inter-class discrepancy.

e Similarly, we can check the trend regarding different optimization factors. If the same
trend is observed for models trained with different optimization, such as standard train-
ing vs. adversarial training, or SGD vs. ADAM, we can conclude that this inter-class
discrepancy has little to do with optimization factors. Otherwise, optimization factors
can be one factor influencing the inter-class discrepancy.

Another important factor is the semantic features in a dataset. We can conduct ex-
periments on CIFAR100, which has super-classes, under which multiple sub-classes share
similar semantic features. We can visualize a matrix of ground-truth classes and predicted
classes. For example, for samples from ground-truth class z, we can count the number of
predicted classes and the majority of the samples are likely to be predicted as x. If class
z is semantically similar to class y, we expect that there would be a non-trivial amount of
samples misclassified to be class y. Vice versa, there would also be a nontrivial amount of
samples from ground-truth class y misclassified to be class z. Cross-class feature similarity,
represented by the cosine similarity between the output logit vector of two different ground-
truth labels, might be a good metric to measure the similarity between classes. Specifically,
we measure the average logit vector for samples from each ground-truth label and then
perform cross-class feature cosine similarity. If a label has high cross-class feature similarity
with other labels, it means the model perceives it to be close to other labels, which might
lead to the samples from this label being vulnerable to misclassification.

Feature perspective. Recently, adversarial robustness has been attributed to non-
robust features in the dataset (Ilyas et al., 2019). It has been shown in (Ilyas et al., 2019)
that both robust features and non-robust features are useful for classification. It would be
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interesting to distinguish whether robust or/and non-robust features lead to the inter-class
discrepancy. Following (Ilyas et al., 2019), we will construct a dataset that has non-robust
features, and train a new model on them and perform class-wise accuracy evaluation. As a
control study, we will also construct a robust dataset and repeat the above procedure.

3.3. Can the techniques from long tail be extended to adversarial training?

Since our setup has a balanced number of samples for each class, we mainly evaluate the
cost-sensitive learning strategy, by giving higher weight on the vulnerable class(es). Since
we do not know the performance yet, it is challenging to provide more concrete procedures.
We take the following two scenarios into account. First, we assume each class is equally
important for the model and the target is to decrease the inter-class discrepancy while
minimizing the decrease of the overall average accuracy and/or robustness. Second, we
assume that a certain class is critical and the target is to increase the accuracy and/or
robustness for that class while minimizing the decrease of accuracy/robustness for other
classes. Additionally, we consider including a regularizer term to decrease the inter-class
cosine similarity. For adversarial training, we will experiment with a targeted attack by
choosing the vulnerable or important class as the target class, which intuitively might make
that class more robust. Depending on the performance, we will tailor the above strategies
accordingly.

3.4. Additional explorations for robustness against natural corruptions

It has been shown in (Gilmer et al., 2019) that corruptions such as noise corruptions,
fog or contrast influence standard and adversarially trained models differently. It would
be insightful to see whether they might influence the class-wise performance differently.
Moreover, comparing and analyzing the behavior between adversarial perturbation and
natural corruptions can provide insight into the phenomenon of the inter-class discrepancy.

4. Experimental Results

The content above is the same as that in the original proposal except for some fixed minor
language issues. The content below presents the experimental results that follow the pro-
tocol in the proposal. To improve readability, we structure the experimental results in the
same order as the proposal.

4.1. The Universality of the Class-wise Accuracy Phenomenon

Dataset and Model Architectures. We report the class-wise phenomenon for different
model architectures trained on different datasets. Since we are mainly interested in the inter-
class discrepancy, we report the accuracy deviations from the average accuracy for each class
as well as the cosine similarities between the distributions of the different models trained on
a given dataset. Figure 3 shows the results on the digit classification datasets MNIST and
SVHN. For different model architectures, a similar trend regarding the accuracy deviation
can be observed. For MNIST, the LeNet architecture shows overall higher deviations than
the ConvNet architecture. On SVHN, apart from a few classes, most architectures exhibit
similar tendencies. This can be further observed from the cosine similarity matrices. The
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cosine similarity between the class-wise distribution between ConvNet and LeNet is 0.64
on MNIST. The average cosine similarity on SVHN is close to 0.84. Figure 4 and Figure 5
show the results on CIFAR and ImageNet image classification datasets, respectively. For
the image classification datasets, it is more apparent that different model architectures
show very similar trends for different classes. For example in Figure 4 for CIFAR10 and
CIFARI100 all cosine similarity values are above 0.93 and 0.83, respectively. In Figure 5
for the ImageNet dataset with 1000 classes the cosine similarity of the class-wise accuracy
distributions is always higher than 0.88. Wide-ResNet and ResNext exhibit the highest
similarity with a value of 0.95.
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Figure 3: Class-wise deviation from the average accuracy (left) and cosine similarity of the
class-wise accuracies of different model architectures (right) on digit classification
datasets MNIST (top) and SVHN (bottom).

Influence of Optimization Factors. Here, we investigate the influence of gradient
optimizer, learning rate schedule, and weight decay. The baseline was trained with stochas-
tic gradient descent (SGD) and a weight decay of le~*. As an alternative to SGD, we test a
model trained with the ADAM (Kingma and Ba, 2015) optimizer. Instead of a weight decay
of 1e~4, we train an additional model with a weight decay of 1le~>. To test the influence of
the learning rate schedule, we experiment with the cyclic learning rate (Smith, 2017). The
accuracy deviation and cosine similarity plot are shown in Figure 6. It can be observed that
none of the investigated optimization techniques has a significant influence on the class-wise
accuracies, which is indicated by the cosine similarities being consistently higher than 0.97.

Evolution of Class-wise Accuracy Distribution During Training. Figure 7
shows the evolution of the class-wise accuracies during training for the task of digit classi-
fication and Figure 8 for image classification. It can be observed that in the early stages of
training, the class-wise accuracies are very noisy and fluctuate significantly. In the latter
stage of training with a smaller learning rate, there still exists the inter-class discrepancy
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Figure 4: Class-wise deviation from the average accuracy (left) and cosine similarity of the
class-wise accuracies of different model architectures (right) for different network
architectures trained on CIFAR10 (top) and CIFAR100 (bottom).
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Figure 5: Class-wise deviation from the average accuracy (left) and cosine similarity of the
class-wise accuracies of different model architectures (right) for different network
architectures trained on Tiny-ImageNet (top) and ImageNet (bottom).
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which, however, becomes more stable. For example, for MNIST, class 10 stays being the
most vulnerable in the later epochs of training.
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Figure 7: Class-wise accuracies during model training for digit classification.
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Figure 8: Class-wise accuracies during model training for image classification.

Adversarially Trained Models. We further investigate the class-wise accuracies and
robustness of adversarially trained models. Figure 9 shows the comparison of a standard
trained ResNet50 and adversarially trained ResNet50 as well as their cosine similarities. We
observe that even between a normally trained model and an adversarially trained model a
similar distribution can be observed. However, adversarially trained models usually exhibit
higher class-wise discrepancies than models with standard training, as already indicated in
our preliminary results in Figure 1 and Figure 2. The results suggest that robustness might
be at odds with class-wise fairness. The class-wise accuracy deviations of adversarially
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trained models are shown in Figure 10 for 5 different adversarially trained models which are
trained with PGD (Madry et al., 2018) bounded in the lp-ball with an allowed perturbation
magnitude of € = 3.0 (Salman et al., 2020). From the cosine similarity plot in Figure 11, it
can be observed that all investigated adversarially trained models exhibit a high similarity,
above 0.92, which is overall higher than that observed for the standard trained models in
Figure 5. The results indicate that the similarity between robust models is higher than that
of non-robust models, suggesting that robust models seem to learn similar robust features.
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Figure 9: Class-wise deviation from the average accuracy (left) and cosine similarity (right)
of a standard trained and adversarially trained ResNet50 architecture trained on
ImageNet.
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Figure 10: Class-wise deviation from the average accuracy of adversarially trained architec-
tures trained on ImageNet.

4.2. Possible Explanations of the Class-wise Accuracy Discrepancy

Our above results demonstrate that the class-wise discrepancy phenomenon is universal in
various setups regardless of the dataset classification type, model architectures, optimization
factors, etc. Moreover, we find that on the same dataset, the cosine similarity between
different models is always very high, indicating the class-wise discrepancy lies in the feature
distribution of the dataset instead of model architectures or optimization factors. Thus,
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Figure 12: Confusion matrix of CI-
FAR10 on ResNet56.

we conjecture that the reason for low accuracy or robustness for a certain class can be
attributed to the fact that another class having very similar features. For example, in
CIFARI10, the class "cat” and "dog” have the lowest accuracies because they share more
semantically similar features than other classes. To illustrate this, we plot a confusion
matrix in Figure 12 where class 4 and 6 represent ”"cat” and "dog”, respectively. In the
shown confusion matrix, the numbers indicate how many samples from the row class index
are classified as the column class index. It is worth highlighting that the matrix shows a
highly symmetric pattern, demonstrating the bidirectional confusion (or misclassification)
between two classes often has a similar probability.
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Figure 13: Confusion matrices for a ResNet56 trained on ImageNet for the entire dataset
(left), and its super-classes ordered version (right).

A Study of the Class-wise Accuracy for Super-classes. With the assumption that
confusion is more likely to happen between classes with similar semantic features, such as
different dog breeds, we perform a study on CIFAR100 consisting of 20 super-classes, each
having 5 sub-classes with semantically similar features. Figure 13 (left) shows that most
confusions are located close to the diagonal, which already indicates that most confusions
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happen among the super-class. Note that the diagonal values were zeroed out, for better
visualization. Further, since the CIFAR-100 dataset is not semantically sorted, we sort
the class indices according to the CIFAR-100 super-classes. To further investigate this, we
zoom in into the “people” super-class, for which the confusion matrix is shown in Figure 13
(center) as well as the confusion from the “people” super-class to the “reptiles” super-class
in Figure 13 (right). It can be observed that the confusions are significantly higher among
classes belonging to the super-class than towards a different super-class, where nearly no
confusions can be observed.

Investigation from the Feature Perspective. Inspired by (Ilyas et al., 2019; Benz
et al., 2020a), we generate datasets containing mainly non-robust features (NRFs) and ro-
bust features (RFs) from a standard model and an adversarially trained model, respectively.
Figure 14 presents a ResNet18 trained NRFs and RFs (Madry et al., 2018). The results
suggest that the class-wise discrepancy is observed on both, suggesting the robustness of the
dataset features does not have a significant influence on the class-wise accuracy distribution.

CIFARLO CIFARLO

25
5.0

N ResNet18 (NRF)
=75 ResNetls (RF)

10

Accuracy Deviation (%)

Class Number

Figure 14: Class-wise accuracy deviation (left) and cosine similarity (right) for a ResNet18
trained on non-robust features (NRFs) and robust features (RFs).

4.3. Attempts to Mitigate the Class-wise Imbalance

Towards Fair Standard and Robust Training. We attempted to use the values of
the confusion matrix as a regularizer to decrease the overall class-wise accuracy imbalance.
Unfortunately, this approach did not lead to promising results, either significantly decreasing
the overall accuracy or having only a limited effect on the class-wise imbalance. Here, we
propose a simple approach to achieve a more balanced class-wise accuracy distribution.
The method can be briefly summarized as a class-wise weighting of the cross-entropy loss.
Hereby, the weighting adapts according to the class-wise accuracy deviations from the mean
with a moving average. Specifically, given a weighting vector v € RY, whereby C indicates
the number of classes and ~. indicates the weighting specific for class ¢. In the beginning,
~ is initialized to be all ones. After each epoch, the class-wise accuracies 7 € RC and the
overall accuracy ¢ € R are calculated. Based on the class-wise accuracy deviations from the
mean, i.e. (7 — (), the weighting values are updated with a value of «, which we set to 0.05.
In short, the weighting value for a class is increased, if the class-wise accuracy is below the
mean and the weighting value is decreased, if the class-wise accuracy is above the mean.
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Mathematically, this can be expressed as:

_ « lf (TC_C)S()?
%%Jr{—a if (e — ¢) > 0. ®

In Figure 15, we present the results on ResNet56 for our fair weighting approach. For
both standard training and adversarial training, the class-wise accuracy deviations are no-
ticeably smaller than for the normal training without weighting. Specifically for normal
standard training, the worst accuracy deviation is around —9% which is decreased to less
than —3% for our fair weighting strategy. The improved fairness is at a small cost of overall
accuracy, dropping from 92.9% to 91.1%. Similar observations can be made for adversar-
ial training where the worst accuracy deviation decreases from around —30% to around
—10%, at the cost of overall clean accuracy dropping from 78.9% to 75%. Moreover, we
are interested in whether the class-wise robustness under adversarial attack also gets more
imbalanced, which is confirmed by the results in Figure 15 (right). For example, the worst
robustness deviation decreases from more than —30% to around —15% with overall robust
accuracy dropping from 48.8% to 40.2%. It is worth mentioning that the robustness of most
vulnerable class 4 increases by around 7% with our fair training strategy.
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Figure 15: Comparison of the fair training method compared to normal model training for
standard training (left) and adversarial training (center). For the adversarially
trained models, the performance is also shown under adversarial attack (right).

Increasing the Class-wise Accuracy of an Important Class. In certain scenarios
a specific class can be more important than others. For example in the case of autonomous
driving the class “pedestrian” might be more important to detect than other classes. Hence,
for such a class a higher class-wise accuracy would be required. We test if the weighting
strategy can also be used to increase only the accuracy of an important class. Therefore
we do not update the weight, but keep them fixed, with pre-defined values. Previously, we
observed that for CIFAR-10 the class with index 4 usually exhibits the highest negative
accuracy deviation from the mean accuracy. Hence, increasing class number 4 is the most
challenging scenario, which we adopt for the following experiments. We set all values of ~
to 1, except for 4, which we set to a higher value. Table 1 shows the influence of different
~v4 on the class-wise accuracy deviations and the cosine similarity. With increasing values
of 74, an increase in the class-wise accuracy of 4 can be observed. However, the average
accuracies also decrease with increasing 4 values.
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Class-wise weight for class 4 (v4) | 1 10 20 50 100

Class-wise accuracy for class 4 (14) | 83.7 84.1 84.6 93.1 97.0
Overall accuracy (¢) 929 90.8 89.1 80.2 60.9

Table 1: Class-wise and overall accuracy result for increasing class with index 4 for different
values of 4.
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Figure 16: Class-wise accuracy deviation (left) and cosine similarity (right) for evaluating
the influence of natural corruptions.

4.4. Additional Explorations for Robustness Against Natural Corruptions

Hendrycks and Dietterich (2019) demonstrates that DNNs can be vulnerable to corrup-
tions. The authors (Hendrycks and Dietterich, 2019) provided corrupted CIFAR10 datasets,
namely CIFAR10-C, on which we evaluate the class-wise accuracy deviations. We present
the results on CIFAR10 with ResNet56 for different corruptions in Figure 16. Under corrup-
tions, it is expected that the model accuracy significantly decreases. Specifically, the mean
accuracies are 93.7%, 59.5%, 91.9%, 75.0%, 41.6%, 79.8%, 74.2% and 86.5% for without
(clean), adversarial examples, brightness, contrast, Gaussian noise, defocus blur, frost, fog
and pixelate corruption, respectively. It is worth mentioning that under adversarial pertur-
bation, the most vulnerable class is still class 4, i.e. cat, while it becomes class 6 for most
natural corruptions. For example, with the natural frost and pixelate corruptions, class 6
is significantly more vulnerable than other classes. Another interesting phenomenon is that
the accuracy of class 7 with Gaussian noise is strikingly higher than other classes and a
significant amount of images from other classes are misclassified as class 7.

5. Conclusion

Overall, this work performs an empirical study on the class-wise accuracy and robustness.
We find that the phenomenon of inter-class discrepancy occurs in a wide range of setups,
regardless of the dataset, model architecture, optimizer, learning schedule, etc. Adversarial
training seems to make this inter-class discrepancy more serious, suggesting robustness
might be at odds with inter-class fairness. The inter-class discrepancy can be, at least
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partially attributed to the fact that some classes share more similar features to other classes,
causing confusion between those classes of similar features. Additionally, we find that the
feature robustness, i.e. robust features or non-robust features, does not have much to do
with this discrepancy phenomenon. Finally, we attempt to mitigate this phenomenon by
adaptively adjusting the class-wise loss weight. The side effect is that it decreases the overall
accuracy or robustness, further suggesting inter-class fairness might be not easily achieved
without the cost of overall performance. Increasing the accuracy of a certain important
class also leads to an overall accuracy decrease.
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