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Abstract
Active Learning (AL) techniques aim to minimize the training data required to train a
model for a given task. Pool-based AL techniques start with a small initial labeled pool
and then iteratively pick batches of the most informative samples for labeling. Generally,
the initial pool is sampled randomly and labeled to seed the AL iterations. While recent
studies have focused on evaluating the robustness of various query functions in AL, little to
no attention has been given to the design of the initial labeled pool for deep active learning.
Given the recent successes of learning representations in self-supervised/unsupervised ways,
we study if an intelligently sampled initial labeled pool can improve deep AL performance.
We investigate the effect of intelligently sampled initial labeled pools, including the use of
self-supervised and unsupervised strategies, on deep AL methods. The setup, hypotheses,
methodology, and implementation details were evaluated by peer review before experiments
were conducted. Experimental results could not conclusively prove that intelligently sampled
initial pools are better for AL than random initial pools in the long run, although a
Variational Autoencoder-based initial pool sampling strategy showed interesting trends that
merit deeper investigation.
Keywords: Pre-registration, Machine Learning, Active Learning, Initial Pools

1. Introduction

With the success of convolutional neural networks (CNNs) in supervised learning on a wide
range of tasks, several large and high-quality datasets have been developed. However, data
annotation remains a key bottleneck for deep learning practitioners. Depending on the task,
data annotation cost may vary from a few seconds to a few hours per sample and, in many
real-world scenarios, supervision of domain experts is necessary (Bearman et al. (2016)).
Active learning (AL) methods aim to alleviate the data annotation bottleneck by labeling
only a subset of the most informative samples from a large pool of unlabeled data. Various
query methods (Gal et al. (2017); Sener and Savarese (2018); Beluch et al. (2018); Yoo and
Kweon (2019); Sinha et al. (2019); Mottaghi and Yeung (2019)) have been recently proposed
for AL in the context of deep neural network (DNN) models (deep AL). The problem is
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important in deep AL, since DNN models require large amounts of labeled data to learn.
In this work, we focus on the popular pool-based AL framework, which starts with a small
initial labeled pool after which AL is performed in multiple sample-label-train cycles.

AL has been well-explored in the context of traditional (shallow) machine learning
methods (Settles (2009)). Generally, before starting the AL cycles, a small randomly chosen
subset of a dataset (with size around 1-10% of the entire dataset), typically called the initial
pool, is labeled first to train an initial model. Across all AL efforts so far, to the best of
our knowledge, the initial pool is always sampled randomly and labeled (Gal et al. (2017);
Sener and Savarese (2018); Beluch et al. (2018); Yoo and Kweon (2019); Sinha et al. (2019);
Lewis and Gale (1994)). This initial pool design strategy has generally worked well for
AL in traditional/shallow ML models. However, the success of AL in DNNs has not been
convincing yet, especially when such models are trained on large-scale datasets. On one hand,
while there have been several encouraging newly proposed deep AL methods, deeper analysis
of those methods in (Munjal et al. (2020); Mittal et al. (2019); Lowell et al. (2019)) show
that AL struggles to outperform random sampling baselines when slight changes are made to
either datasets (class-imbalance) or training procedures (data augmentation, regularization,
etc.). Interestingly, to the best of our knowledge, the design of better initial labeled pools
received no attention by the deep AL community. Considering the tremendous success of
self-supervised learning methods in recent years (Chen et al. (2020); Gidaris et al. (2018);
Caron et al. (2018); Pathak et al. (2016); Noroozi et al. (2017); Noroozi and Favaro (2016);
Doersch et al. (2015)), we ask the question if choosing an initial labeled pool intelligently
can improve AL performance.

In our work, we propose to perform an empirical study of deep AL methods while using
initial labeled pools, sampled using methods other than random sampling. To investigate
the effect of intelligently sampled initial labeled pools on deep AL methods, we propose
two sampling techniques, leveraging state-of-the-art self-supervised learning methods and
well-known clustering methods. In particular, we propose the following ways of choosing the
initial pool:

• Sample datapoints that a state-of-the-art self-supervised model finds challenging, as
observed using the trained model’s loss on the data.

• Cluster the unlabeled pool first and then perform sampling across each cluster. Equal
proportions of datapoints are sampled from each cluster to make sure the chosen
samples span the entire dataset.

We hypothesize that AL methods (we focus our efforts on deep AL methods) can benefit
from more intelligently chosen initial pools, thus eventually reducing annotation cost in
creation of datasets. Our empirical study will seek to address the following specific questions:

• Can pool-based deep AL methods leverage design of intelligently sampled initial pools
to improve AL performance?

• Can we exploit latest advancements in self-supervised learning to boost deep AL
performance with no additional labeling cost?

• Are some initial pools better than others? What makes an initial pool good?
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In a realistic training setting with measures to avoid overfitting (i.e. regularization,
batch norm, early stopping), we hypothesize that the generalization error of AL models
starting with our initial pools will be lower than those of AL models starting with random
initial pools, across AL cycles. However, as AL cycles increase, we expect to see shorter
margins of error difference as the effect of our initial pools on the model performance could
diminish with increase in labeled pool size. Studying the use of unsupervised/self-supervised
learning in later epochs could be an interesting direction of future work. If initial pools do
contribute to better model performances, our work could make a positive contribution to: (i)
boosting AL performance with no additional annotation; (ii) developing datasets with lesser
annotation cost in general; and (iii) promoting further research in the use of unsupervised
learning methods for AL. On the other hand, if random initial pools perform better than
our initial pools, the community will still have useful insights about this rather unexplored
part of AL through this study.

2. Related Work

Analysis of Active Learning: In recent years, previous works have evaluated the ro-
bustness and effectiveness of deep AL methods for various tasks. Lowell et al. (2019) first
reported some obstacles of deploying AL in practice by empirically evaluating consistency of
AL gains over random sampling and transferability of active samples across models. Along
the same lines, Mittal et al. (2019) evaluated the performance of deep AL methods under
data augmentation, low-budget regime and a label-intensive task of semantic segmentation.
More recently, Munjal et al. (2020) comprehensively tested the performance variance of
deep AL methods across 25 runs of experiments. They considered various settings such
as regularization, noisy oracles, varying annotation and validation set size, heavy data
augmentation and class imbalance. However, none of these efforts have considered varying
the sampling strategy for the initial pool.

Exploiting Unlabeled Data: Our focus is on finding out if initial pools with certain
desirable qualities can bolster AL performance. We exploit self-supervised pretext tasks
to sample the initial pool more intelligently. Previous works have successfully managed to
integrate unlabeled data into AL using self-supervised learning and semi-supervised learning.
Siméoni et al. (2019) showed that initializing the target model with the features obtained
from self-supervised pretraining gives AL a kick-start in performance. Contemporaneously,
Mottaghi and Yeung (2019) also used this technique in combination with a GAN based AL
method and reported SOTA results on SVHN, CIFAR-10, ImageNet, CelebA datasets. This is
enough evidence that exploiting self-supervised learning methods can boost AL performance,
but the cited works operate in the model weight space. The importance of good initialization
in weight space (Mishkin and Matas (2016); He et al. (2015); Glorot and Bengio (2010))
is well understood by the deep learning community; To the best of our knowledge, there
have been no efforts in understanding the importance of good initialization in data space
for deep AL methods. In case of traditional AL (before deep learning’s popularity), there
have been handful of encouraging works that support our hypothesis (Kang et al. (2004);
Hu et al. (2010)). Both these works use k-means clustering to initialize the initial label pool,
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k-nearest neighbor algorithm for training and report better AL performance on small scale
text classification tasks.

Model Loss for AL: In our work, we use a trained model’s loss to identify the most
informative unlabeled samples. Existing AL methods largely rely on using the target model’s
loss for active sampling. Settles et al. (2007) first proposed an AL framework by calculating
Expected Gradient Length (EGL) where the learner queries an unlabeled instance which,
if labeled and added to the labeled pool, would result in the new training gradient of the
largest magnitude. More recently, Yoo and Kweon (2019) proposed a loss prediction module
which is attached to the target network to predict the loss value of unlabeled samples. In
contrast to these methods, we strictly rely on a self-supervised model’s loss, instead of the
target model, since the initial pool needs to be selected/sampled, before any model is trained
on the target data.

3. Methods and Experimental Protocol

In this section, we describe: (i) the notations and setting for pool-based AL cycles; (ii) our
strategies for sampling the initial pool; and (iii) the AL methods that are subsequently used
to build on top of the initial labeled pool. Implementation details and other considered
additional experiments and ablation studies are mentioned at the end of this section.

3.1. Pool-based Active Learning Setting

Given a dataset D, we split it into train (Tr), validation (V ), and test (Ts) sets. At the
beginning, the train set is also treated as an unlabeled (U) set, from which samples are
moved to a labeled set (L) after every AL cycle. Pool-based AL cycles operate on a set of
labeled data L0={(xi, yi)}NL

i=1 and a large pool of unlabeled data U0={xi}NU
i=1, and model Φ0

is trained on L0 in every AL cycle. In our setting, given L0 = ∅ to start with, a sampling
function Ψ(L0, U0,Φ0) parses xi ∈ U0, and selects k (budget size) samples. These samples
are then labeled by an oracle and added to L0, resulting in a new, extended L1 labeled
set, which is then used to retrain Φ. This cycle of sample-label-train repeats until the
sampling budget is exhausted or a satisfying performance metric is achieved. In our case,
we populate L0 using our proposed methods, discussed in Section 3.2. Sec 3.3 describes the
query methods we use to perform the traditional AL cycles after this initial pool selection.
We can confirm that there exists a good initial pool if the generalization error of models
starting with our initial pools is lower than those of models starting with random initial
pools across the AL cycles.

3.2. Proposed Initial Pool Sampling Strategies

We now describe our initial pool sampling strategies, which were briefly stated in Section 1.
Our methods are fundamentally motivated by the hypothesis that samples considered

challenging for an unsupervised/self-supervised setting can help bootstrap AL methods
through a more intelligent, well-guided choice of an initial labeled pool.
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Figure 1: Illustration of query strategies in traditional pool-based AL: (a) A toy dataset of
500 instances, evenly sampled from two class Gaussians; (b) Decision boundary of a
logistic regression model trained on the dataset; (c) Trained model’s CrossEntropy
loss on training instances; Decision boundary of logistic regression models trained
on 35 instances chosen (d) randomly (e) using Least Confidence method Lewis
and Gale (1994) (f) using Max-Entropy method Shannon and Weaver (1963); Best
viewed in color. Labeled instances are emphasized for clarity.

3.2.1. Self-Supervision Methods

As shown in Figure 1, well-known pool-based AL methods rely on choosing samples with a
high uncertainty of the target model trained on an initial labeled pool.

Since our focus is on choosing an initial labeled pool where there is no target model,
we cannot use these AL query methods since we do not have access to labels to calculate
the supervised model’s loss on training data. We hence train a self-supervised model on
the entire unlabeled pool and identify samples as "challenging", where the self-supervised
model’s loss is relatively higher than that of others. The recent success of self-supervised
learning in learning useful data representations (Doersch et al. (2015); Noroozi and Favaro
(2016); Noroozi et al. (2017); Gidaris et al. (2018); Caron et al. (2018); Chen et al. (2020))
motivates us to hypothesize that such a model could help us sample the most informative
datapoints without any supervision.

Let τ be any self-supervised task with an objective to minimize the loss function L. Let
θ be trained weights obtained by solving τ on the unlabeled data pool U . We want the
oracle to label and populate the initial pool L0 with datapoints sampled by solving:

arg max
i

Lτ (xi; θ) ∀xi ∈ U (1)

Since we are working with a learned model’s loss, any self-supervised task can be used,
making our proposed method task-agnostic. We have chosen tasks that are simple and easy
to interpret, such as image inpainting (Pathak et al. (2016)) and image rotation prediction
(Gidaris et al. (2018)). For example, in case of the rotation prediction task, our strategy can
be summarized as: if a trained rotation predictor struggles to rightly predict the rotation of a
sample, even after looking at it while training, then it is a hard sample - thus human labeling
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is needed. In addition to the above tasks, we will also train a Variational Autoencoder (VAE)
(Kingma and Welling (2014)) as one of our tasks where datapoints with highest loss i.e. hard
to reconstruct images are sampled for the initial pool. We want to do this to understand
how complexity of self supervised tasks (e.g. image inpainting task is more complex than
VAEs) relates to efficiency of the sampled initial pool using those tasks.

3.2.2. Unsupervised Learning (Clustering) Methods

Sampling bias is the most fundamental challenge posed by AL especially in case of uncertainty
based AL methods (Dasgupta (2011)). Assume AL is performed on a dataset with data
distribution D. But as AL cycles proceed, and datapoints are sampled and labeled based on
increasingly confident assessments of their informativeness, the labeled set starts to look less
like D. This problem is further exacerbated by highly imbalanced real-world datasets where
random initial samples, with high probability, may not span the entire data distribution
D. To overcome this, several works proposed diversity based methods (Sener and Savarese
(2018); Sinha et al. (2019)) whose fundamental goal is to sample unlabeled datapoints from
a non-sampled area of D such that all areas of D are seen by the target model. Motivated
by these methods and their success, we propose a clustering-based sampling method for
choosing the initial pool such that the sampled points spans all area of D (i.e., all clusters)
even before AL starts. In a way, this is analogous to exploration in AL (Bondu et al. (2010)),
albeit in an unsupervised way.

We assume that number of classes to be labeled (K) in the dataset D is known apriori.
If a clustering algorithm is applied on the unlabeled data U={xi}NU

i=1 to obtain K clusters
and every datapoint xi is assigned only one cluster Cj , we get K disjoint sample sets C
= {C1, C2, ..., CK}. If the initial pool budget is B samples, we sample B

K datapoints from
each cluster. Equal weight is given to each cluster to make sure initial pool is populated
with datapoints that span the entire D. As another variant to this method, we will also
experiment by sampling |Cj |∗B

NU
datapoints from each cluster, keeping the original cluster

proportions intact. We will use DeepCluster (Caron et al. (2018)) and k-means as clustering
methods in our experiments.

3.3. Active Learning Query Methods

In order to study the usefulness of the choice of the initial labeled pool across AL methods,
we need to study different AL query methods in later cycles of model updation. Modern
pool-based AL methods may be broadly classified into three categories. We will evaluate
the effectiveness of our sampling methods on AL methods from all three categories:

• Uncertainty Sampling: Least Confidence (LC) (Lewis and Gale (1994)), Max-
Entropy (ME) (Shannon and Weaver (1963)), Min-Margin (MM) (Scheffer et al.
(2001)) & Deep Bayesian AL (DBAL) (Gal et al. (2017))

• Diversity Sampling: Coreset (greedy) (Sener and Savarese (2018)) & Variational
Adversarial AL (VAAL) (Sinha et al. (2019))

• Query-by-Committee Sampling: Ensemble with Variation Ratio (ENS-varR)
(Beluch et al. (2018)) (3 ResNet18 models) & ensemble variants of Least Confidence
(ENS-LC), Max-Entropy (ENS-ME) and Margin Sampling (ENS-MM)
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All the above methods are already implemented in the AL toolkit offered by Munjal
et al. (2020), and we will leverage it to study the methods.

4. Implementation Details

Following recent deep AL efforts, we will use MNIST, CIFAR-10, CIFAR-100 and Tiny
ImageNet-200 (Le and Yang (2015)) datasets in our experiments. We use the AL methods,
model architectures, data augmentation schemes and implementation details from Munjal
et al. (2020) for our experiments.

For all datasets, we plan to tune hyperparameters using grid search. However, going
by previous works, we expect to use an Adam optimizer (Kingma and Ba (2015)) across
the datasets. For datasets CIFAR-10 and CIFAR-100, we expect to use learning rate (lr),
weight decay (wd) from Munjal et al. (2020) - (lr = 5e−4, wd = 5e−4) and (lr = 5e−4 and
wd = 0) respectively. For all datasets, we augment the data with random horizontal flips (p
= 0.5) and normalize them using statistics provided in 1, 2. We will use ResNet18 (He et al.
(2016)) for all our experiments.

AL Details: As usually done in most AL work, we will initialize L0 with 10% of the
unlabeled set U and in every AL cycle 10% of the original unlabeled set U will be sampled,
labeled and moved to labeled set Li. However, we expect some changes in AL cycle details
due to irregularities between datasets (e.g. MNIST is easier to learn compared to Tiny
ImageNet) and those changes will be reported appropriately post-experiments.

Performance Metrics: We will measure accuracy on the test set after every AL cycle
(including after the choice of the initial labeled pool). Our initial pool sampling strategies
will be compared against a random selection of the initial pool (the default option used
today), and all our results will be reported (as mean and std) over 5 trials to avoid any
randomness bias in the results.

We also plan to visualize the chosen initial labeled pool using t-SNE embeddings in
case this provides any understanding of sampling strategies that work best. We will also
examine overlap between every labeled pool acquired during all AL cycles when our initial
pool sampling strategy is used against a random choice. This would allow us to know if
initial pool played any role in altering the labeled pools (for better or worse).

4.1. Additional Experiments

In practice, populating the initial pool only with challenging datapoints may not be fully
conducive for learning. Hence, we plan to follow Roy et al. (2018) and split the sorted list
obtained by solving Eqn (1) into n equal-sized bins. If the initial pool budget size is B,
we query B

n highest scored images from the top (n− 1) bins (hard samples) and B
n lowest

scored images from the last bin (easy samples). So the resultant batch contains images from
different regions of the score space. In the experiments, we will use 2, 5 and 10 as the values
of n.
1. https://github.com/pytorch/examples/
2. https://github.com/kuangliu/pytorch-cifar
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Figure 2: Performance of each active learning query method with different initial pool
sampling strategies on CIFAR-10. There are 8 graphs shown, one for each active
querying method as mentioned in the graph titles. Each colored line in the graph
corresponds to an initial pool sampling method, as shown in the legend.

Additionally, we will test the usefulness of our sampling methods on AL for imbalanced
data. For this, we will follow Cui et al. (2019) to simulate a long-tailed distribution of classes
on CIFAR-10, by following power law.

5. Experimental Results

In this section, we first document the modifications to the original experimental protocol.
Then, we present the experimental results on MNIST, CIFAR-10, CIFAR-100 and Tiny
ImageNet datasets. Then, we discuss our experimental findings and evaluate the extent to
which intelligently sampled initial labeled pools help boost AL performance3. Finally, we
provide more training details needed for reproducing our results.

5.1. Modifications to the Original Proposal

Switching to Better Performing Tasks: We initially proposed to use image rotation
prediction (Gidaris et al. (2018)) and image inpainting (Pathak et al. (2016)) as the self-
supervision tasks. To make the experimental setting strong, we switched to a more popular
and stronger recent self-supervision method - SimCLR (Chen et al. (2020)). In case of
unsupervised clustering-based methods, we switched from DeepCluster (Caron et al. (2018))
to a more recent and state-of-the-art clustering method - SCAN (Van Gansbeke et al. (2020)),
which builds on top of SimCLR as a pretext task.

3. Our code is available at https://github.com/acl21/init-pools-dal

21

https://github.com/acl21/init-pools-dal


On Initial Pools for Deep Active Learning

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0
T

es
t

A
cc

ur
ac

y
Random

31.0

32.0

33.0

34.0

56.0

57.0

58.0

59.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A

cc
ur

ac
y

Least Confidence (LC)

30.0

31.0

32.0

33.0

34.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A

cc
ur

ac
y

Min-Margin (MM)

31.0

32.0

33.0

34.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A

cc
ur

ac
y

Max-Entropy (ME)

30.0

31.0

32.0

33.0

34.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A

cc
ur

ac
y

DBAL

31.0

32.0

33.0

34.0

56.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0
T

es
t

A
cc

ur
ac

y

ENS-varR

31.0

32.0

33.0

34.0
56.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

T
es

t
A

cc
ur

ac
y

Coreset

31.0

32.0

33.0

34.0

58.0

60.0

10 20 30 40 50 60
% of Labeled Data

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

T
es

t
A

cc
ur

ac
y

VAAL

31.0

32.0

33.0
55.0

56.0

57.0

58.0

Figure 3: AL Performance of each active learning query method with different initial pool
sampling strategy on CIFAR-100.

Adding Passive Learning to Experiments List: In addition to the AL query methods,
we run passive learning (random sampling) cycles starting with intelligently sampled initial
pools. This passive learning configuration is equivalent to placebo control group where
the intervention wouldn’t have direct impact on the final outcome, since we sample data
randomly each episode. This is done to check if the performance gains on active learning
due to an intelligently labeled initial pool are coincidental.

Miscellaneous Changes: Due to time and computational constraints, we repeated each
experiment 3 times instead of the proposed 5 repetitions. We report results on seven out of
ten proposed AL query methods, excluding ensemble variants of Least Confidence (ENS-LC),
Max-Entropy (ENS-ME) and Min-Margin (ENS-MM). For the same reason, we could not
perform the additional binning experiments described in Section 4.1. We also do not report
results of VAAL query method on Tiny ImageNet since one AL cycle with 5 episodes (1 run
of experiment) executed for over 100 hours on a single GeForce GTX 1080 Ti GPU. On
MNIST, we run 10 episodes of AL starting with 60 instances (0.1%) in the initial pool and
set the AL budget to 60 as well.

Using grid search, we obtained hyperparameters which are better than the ones mentioned
in the proposal. We report the final hyperparameter choices in section 6.

5.2. Initial Pool Sampling Details

For completeness, we briefly describe the methods used for our experiments below:

SimCLR: Contrastive learning methods, such as SimCLR (Chen et al. (2020)), learn
representations by contrasting positive pairs against negative pairs. Positive pairs include
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Figure 4: Tiny ImageNet: Our initial pools perform no better than random initial pools
across all AL configurations.

input images and their augmented variants. Ideally, a trained SimCLR model should have
comparatively low contrastive loss for positive pairs of a given image taken from the unlabeled
set. We design our sampling method on this fact. Firstly, we train a ResNet-18 SimCLR
model with the recommended augmentations: image horizontal flipping, Gaussian blur,
color jitter, and image gray-scale. After training the model, we assign each image in the
unlabeled pool a score - model’s average contrastive loss between an input image and four
of its augmented variants4. The higher the average contrastive loss, the harder it was for
the trained SimCLR model to learn that input, so we sample such images first.

VAE: We train a vanilla VAE model on the entire training data till convergence. We
then sample those data points from the training set whose reconstruction error was high
post-training. The higher the reconstruction error, the harder it was for the model to learn
such images, hence we sample them first. We chose VAE in particular to understand how
task complexity (the VAE reconstruction task is simpler than SimCLR’s) contributes to
initial pool efficiency.

SCAN and K-Means: SCAN (Van Gansbeke et al. (2020)) is a state-of-the-art clustering
method where feature learning and feature clustering are decoupled. SCAN builds on top
of features learned by any self-supervision task (in our case, we used SimCLR). At the
end of training, the SCAN model assigns a single cluster to each data point. In case of
K-Means, we apply K-Means algorithm to SimCLR-learned feature representations to get
cluster assignments. Once again, we chose these two clustering methods (one very simple,
K-Means, and one more sophisticated, SCAN) to understand the role of model complexity
w.r.t. the effectiveness of the initial pool.

4. MNIST dataset has gray-scale images so we average the contrastive loss over the other three augmentations.
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5.3. Results

5.3.1. Main Experiments

Figures 2-5 depict the main results of our experimental study on finding good initial pools
for AL. We first describe how the results are illustrated in Figures 2-5. We have one figure
for each of the following four datasets: CIFAR-10, CIFAR-100, Tiny ImageNet and MNIST.
Each plot inside the figures depicts the performance of one AL method with various initial
pool techniques. For instance, the plot titled VAAL (second row, right most) in Figure 2
shows the performance of models trained on data sampled by VAAL’s query method in
each episode, however initiated with different initial pool strategies (indicated by different
colored lines). For example, the red lines show that AL methods were started using the
SimCLR-based initial pool strategy. The plots are conventional AL plots where the x-axis
represents the percentage of labeled data used to train the model, and y-axis represents the
model’s performance on the test set.

We now briefly analyze the results of each initial pool sampling strategy.

SimCLR: In Figure 2 (CIFAR-10), before the first episode, models trained with SimCLR-
sampled initial pools show better performance than models trained on a randomly generated
initial pool across all eight configurations, including passive learning. However, this perfor-
mance gain in the beginning of the AL cycles did not contribute to the model in picking
better active samples. We can see that models starting with SimCLR-based initial pools
performed similar to the models which started with random initial pools at each episode of
the AL cycles. Similarly, on CIFAR-100, we see in Figure 3 that the models starting with
SimCLR sampled initial pools perform either same or worse than the models starting on
random initial pools at both ends of the AL cycles across all eight configurations. On Tiny
ImageNet (Figure 4) and MNIST (Figure 5), we see the same trend as that of CIFAR-100’s.

SCAN and K-Means: Across all datasets, none of the two clustering methods: SCAN
and K-Means, show signs of contributing to better model performances compared to random
initial pools.

VAE: Perhaps the most surprising behaviour we noticed among all the methods was
how VAE-sampled initial pools worked. Models trained with VAE sampled initial pools
consistently underperformed in the first episode of the AL cycles across all four datasets.
On CIFAR-10, in the first episode, the average test accuracy difference between models
trained with VAE initial pools and other initial pools was 12%. Similarly, there was a 11%
difference in case of CIFAR-100, 4.5% in case of Tiny Imagenet and 18% in case of MNIST.
We suspect this is due to the difference in models used for initial pool sampling and active
learning. It has been empirically shown that data points actively sampled by one model, say
VGG16, do not transfer well to another model, say ResNet-18 (Lowell et al. (2019); Munjal
et al. (2020)). To allow for smooth transfer of samples, we used the same ResNet18 model
for training SimCLR, SCAN and active learning episodes. However, following general trends
of use of VAEs, we use a simple VAE model with 4 convolutional layers each in the encoder
and the decoder, which may have resulted in this significant difference.

At the end of all AL cycles, on CIFAR-10, Tiny Imagenet and MNIST, we see that all
initial pools converge to largely similar test accuracy, suggesting no significant improvement
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Figure 5: MNIST.

in AL performance. But we see a different outcome in the case of CIFAR-100 (Figure 3).
On CIFAR-100, models starting with VAE-sampled initial pools, despite the bad start,
ultimately outperform the models starting with the other four initial pools in six out of the
seven configurations. In the passive learning configuration (control experiment), we notice
that VAE appears to be outperforming others but that happens only in the final episode of
the AL cycle, suggesting that this performance gain in six configurations was not a mere
coincidence. The models starting with VAE start to outperform their random counterparts
right after the second episode (20%), and we notice the VAE curve starting to diverge from
others. However, this behavior was only seen on CIFAR-100.

To summarize the findings, our proposed methods could not conclusively prove the
existence of good initial pools that help AL methods in the long run, although the use of
VAE-based initial pool strategy showed some interesting trends.

What explains the odd behavior of VAE sampled initial pools on CIFAR-100?
To investigate the reason behind the odd behavior of models started with VAE-based initial
pools, we study the class distribution of initial pools obtained by 4 methods - VAE, SCAN,
SimCLR and K-Means. To this end, we picked initial pools from the DBAL experiment.

Looking at the class frequencies of all CIFAR-100 initial pools in Figure 6, we notice a
clear difference between the VAE-sampled initial pool and the others. VAE-sampled initial
pool has more class imbalance and is particularly emphasizing on images from specific classes.
To verify if the VAE-based initial pool sampling technique is biased towards difficult classes,
we created two sets of CIFAR-100 classes: (1) Top 10 classes sampled by VAE, (2) 10 classes
with least per-class test accuracy w.r.t. the model in the final AL episode. We use (2) as a
proxy for “difficult” classes. We observed that both these sets have 4 classes in common.
While this overlap is not high enough to conclude that VAE sampling is biased towards
difficult classes, it nevertheless is an interesting future direction to pursue, and merits more
study.
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Figure 6: CIFAR-100: Class distribution of initial pools picked by various methods. Note
the apparent class imbalance in the initial pool picked by VAE. Is this the reason
for the performance gain?

5.3.2. Ablation Experiments

Comparing the Initial Pools: We used SimCLR representations to obtain t-SNE embed-
dings on all initial pools of a randomly chosen Max-Entropy (ME) experiment on CIFAR-10.
The t-SNE plots of 5000 data points are shown in Figure 7. Unsurprisingly, we see no
apparent inconsistencies or anomalies in either class distribution or inter-class relationships
across the four initial pools except for the VAE-sampled initial pool whose class distribution
is noticeably different than the others.

The other four initial pools are nearly identical. A confusion matrix with their overlap
statistics, shown in Figure 7, shows that all five initial pools roughly shared approximately
10% of the data points among themselves. Even with nearly 90% of unique data points,
all four initial pools contributed to largely similar model generalization error (as seen in
Max-Entropy graph of Figure 2).

Low-Budget AL: Is 10% of data points too many for the model? Is that why we are
unable to spot any potential performance differences between the four mostly unique initial
pools? To find out if a low query budget can help spot performance differences, we repeated
our experiments on CIFAR-10 for Max-Entropy (ME), Least Confidence (LC) and Deep
Bayesian (DBAL) AL query methods but with just 1000 samples (2% of the overall dataset
size) in the initial pool. We set the AL budget to 1000 and allowed the AL cycles to run up
to 10 episodes (22% of the overall dataset size). The results of these experiments (averaged
over 2 runs) are shown in Figure 8. All three AL methods benefit from VAE-sampled initial
pools, albeit marginally, while other initial pools do not contribute to any performance gain
compared to random initial pools.

Long-Tail CIFAR-10: One of the motivations behind our proposed unsupervised method
(Section 3.2.2) was to allow AL cycles to start with a balanced initial pool, which spans the
entire data distribution, when dealing with imbalanced datasets. To that end, we created
a Long-Tail CIFAR-10 with an imbalance factor of 50 (Cui et al. (2019)). We report the
experiment results on three AL methods (ME, LC, DBAL) averaged over 2 runs in Figure
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Figure 7: CIFAR-10: Initial pools visualized using t-SNE.
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Figure 8: CIFAR-10: In low budget AL setting, only VAE initial pools show marginal
performance gains over random initial pools.

9. Surprisingly, our unsupervised initial pool sampling methods did not help the three AL
methods. In fact, models trained on SCAN-based initial pools did consistently worse than
models trained on random initial pools. Once again, VAE-based initial pools positively
contribute to three AL methods albeit the performance gain is quite marginal.

6. More Training Details

In this section we mention more training details necessary for reproducing our experiments.
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Figure 9: Long-Tail CIFAR-10: Our unsupervised sampling methods (SCAN and K-Means),
motivated by this imbalance setting, did not improve LC, ME, DBAL query
method performances. In the long run, VAE-based initial pools show marginal
performance gains over random initial pools.

6.1. Slightly Modified ResNet18 Model

To add an extra projection layer as the penultimate layer of the model is a convention in
self-supervised learning methods (Chen et al. (2020); Grill et al. (2020)). To be consistant
with the ResNet18 model used for SimCLR and SCAN training, we added a projection layer
to the model just before the final fully connected layer. Projection dimension was set to 128
for MNIST, CIFAR-10/100, 512 for Tiny ImageNet experiments. Also, the official ResNet18
implementation doesn’t include any dropout layers in it. To allow for DBAL method to run
Monte Carlo simulations, we added a dropout layer with p=0.5 after the flattening layer.
We only did this for DBAL experiments.

6.2. Hyperparmeters for AL Training

For all experiments on all datasets, we set momentum = 0.9, wd = 3e−4, gamma = 0.1.
Other hyperparameter choices are as follows:

Dataset Epochs Optimizer Learning Rate Scheduler Batch Size
CIFAR-10/100 200 SGD 0.025 Cosine (0.1) 96

MNIST 100 Adam 0.005 None 64
TinyImageNet 100 Adam 0.001 None 200

Table 1: Hyper-parameters of AL Cycles

6.3. SimCLR, SCAN and VAE Training

For all four datasets we train SimCLR and SCAN with largely similar hyperparameters.
We use the official implementation of SCAN5 (includes SimCLR implementation as well)
for training and use their recommended hyperparmeters across all experiments. In case of

5. https://github.com/wvangansbeke/Unsupervised-Classification/
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CIFAR-100, we follow the standard practice and group the 100 classes into 20 super classes
before training SimCLR (the grouping details can be found in the official SCAN repository).
Evaluation metrics of our final SimCLR + SCAN + Self Labeling models are as follows:

Dataset ACC NMI ARI
CIFAR-10 0.70 0.46 0.38
CIFAR-100 0.44 0.41 0.25
MNIST 0.86 0.72 0.72

Tiny ImageNet 0.10 0.07 0.05

Table 2: Final Model Performances after Self-Labeling (SimCLR + SCAN + Self-Label)

In case of VAE training, we trained a Vanilla VAE6 on the entire training data with
hyperparameters as follows: optimizer = Adam, lr = 0.001, epochs = 100, momentum = 0.9,
wd = 5e−4, batch size = 200, for all four datasets. We used 5% of the training data as the
validation set. The model weights at epoch with best loss are saved for initial pool sampling.

7. Conclusion

In this paper, we proposed two kinds of strategies – self-supervision based and clustering
based – for intelligently sampling initial pools before the use of active learning (AL) methods
for deep neural network models. Our motivation was to study if there exist good initial pools
that contribute to better model generalization and better deep AL performance in the long
run. Our proposed methods and experiments conducted on four image classification datasets
couldn’t conclusively prove the existence of such good initial pools. However, a surprising
outcome of this study was how initial pools sampled with a simple VAE task contributed
to improved AL performance, better than more complex SimCLR and SCAN tasks. Even
though VAE-based initial pools worked better than random initial pools only on one dataset
(CIFAR-100), ablation studies on low budget CIFAR-10 settings as well as on Long-Tail
CIFAR-10 point towards potential in VAE-sampled initial pools. Are images that are hard
to reconstruct for VAEs good for generalization? Can better generative models like GANs
do better than VAEs? We leave this for future work. While our methods and findings could
not conclusively prove our hypothesis that AL methods can benefit from more intelligently
chosen initial pools, we are optimistic about the potential this research direction holds.
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