
Proceedings of Machine Learning Research 148:236–254, 2021 NeurIPS 2020 Preregistration Workshop

Context-Adaptive Reinforcement Learning using
Unsupervised Learning of Context Variables

Hamid Eghbal-zadeh
†

hamid.eghbal-zadeh@jku.at
LIT AI Lab & Institute of Computational Perception, Johannes Kepler University, Linz, Austria

Florian Henkel† florian.henkel@jku.at
Institute of Computational Perception, Johannes Kepler University, Linz, Austria

Gerhard Widmer gerhard.widmer@jku.at

LIT AI Lab & Institute of Computational Perception, Johannes Kepler University, Linz, Austria

Abstract

In Reinforcement Learning (RL), changes in the context often cause a distributional change
in the observations of the environment, requiring the agent to adapt to this change. For
example, when a new user interacts with a system, the system has to adapt to the needs of
the user, which might differ based on the user’s characteristics that are often not observ-
able. In this Contextual Reinforcement Learning (CRL) setting, the agent has to not only
recognise and adapt to a context, but also remember previous ones. However, often in CRL
the context is unknown, hence a supervised approach for learning to predict the context is
not feasible. In this paper, we introduce Context-Adaptive Reinforcement Learning Agent
(CARLA), that is capable of learning context variables in an unsupervised manner, and
can adapt the policy to the current context. We provide a hypothesis based on the gener-
ative process that explains how the context variable relates to the states and observations
of an environment. Further, we propose an experimental protocol to test and validate our
hypothesis; and compare the performance of the proposed approach with other methods
in a CRL environment. Finally, we provide empirical results in support of our hypothesis,
demonstrating the effectiveness of CARLA in tackling CRL.

Keywords: Contextual Reinforcement Learning, Disentangled Representations

1. Introduction

In Reinforcement Learning, an agent interacts with an environment through receiving ob-
servations, executing actions, and receiving rewards. The goal of the agent is to maximise
the cumulative reward that is defined based on the task at hand. In some scenarios however,
the behaviour of the environment as well as the distribution of the observations can change
over time. Under certain conditions, the change in the observation distribution is caused
by some variability that changes the context of the environment. Therefore, a change in
context affects the distribution of the environment’s observations. As such changes may oc-
cur numerous times, not only does the agent have to adapt to the new contexts, but it also
has to remember the previous ones. This problem is known as Contextual Reinforcement
Learning (CRL).

As an example, consider a setting where users interact with a website, and the goal of
the website is to adapt to the user’s needs, which might change depending on the current

† Equal contribution.

© 2021 H. Eghbal-zadeh†, F. Henkel† & G. Widmer.

Context-Adaptive Reinforcement Learning

user. However, the behaviour of the user – the environment – is actually affected by some
unobserved parameters such as age and gender. If the goal of the agent – the website – is to
adapt to the needs of the user, it is often helpful to be able to infer the user’s characteristics
and adapt to them. Another example is a robot that sees the world through a camera,
where the time of the day (day/night) or the surrounding location can affect how the robot
perceives its environment. Hence, it is crucial that an agent can detect a context, and be
able to adapt to it.

Several approaches have been proposed to address this problem. For example, models
that can adapt to the changes of the environment by having better exploration strate-
gies (Gregor et al., 2016; Pathak et al., 2019), have been used to tackle environments with
changing dynamics. As the context changes, the exploitation of the current policy is no
longer as effective, and the agent’s previous policy will no longer be suitable to tackle the
changes in the environment. Hence, the agent needs to explore new observations, in order
to accumulate more reward. Another approach to adapt to new contexts, is to use op-
tions in a hierarchical reinforcement setting, where a meta-policy switches between a set
of available policies (Achiam et al., 2018; Eysenbach et al., 2018). Hallak et al. (2015) de-
fine a Contextual Markov Decision Process (CMDP), as a constrained Partially Observable
Markov Decision Process (POMDP), where each context is parameterised as an MDP. In
this setting, they propose a solution to tackle CRL assuming a fixed observation space over
different contexts, and the agent picking a suitable policy, given the available context. In
contrast to the Contextual MDPs as a special case of POMDPs, Jiang et al. (2017) propose
a generalisation of MDPs and POMDPs known as Contextual Decision Processes (CDPs),
where there is a general context space that the observations are drawn from. Although this
formulation is quite general, this work focuses on problems with low Bellman ranks, which
corresponds to MDPs with low-rank transition matrix, or small observation space.

In this paper, we provide a definition for Contextual Reinforcement Learning that as-
sumes changing the context, affects the distribution of the states of the environment, re-
sulting in a change in the distribution of the observations. Our definition is motivated by
the generative process in a contextual world, where the context variables affect the states
of the generative model of the world. Given this definition, we provide a solution using un-
supervised learning of the context variable that allows for a better adaptation of the policy
based on the context. More generally, in this work we are trying to answer the following
questions:

1. Does knowing the context variable help the policy to better adapt to different con-
texts?

2. What characteristics does a predictive model need to predict context from observa-
tions?

3. Can our learnt context variable help the policy to better adapt to different contexts?

In order to answer these questions, we conduct a set of experiments to test the performance
of an agent with and without knowing the context variable. Additionally, we conduct exper-
iments to investigate whether disentanglement is actually helpful for estimating the context.
Further, using our proposed approach, we estimate the context variable in an unsupervised
manner, and compare the performance of agents with and without this estimated variable.

237

Context-Adaptive Reinforcement Learning

2. Related work

Contextual RL: Contextual settings have been mainly explored in Multi-armed ban-
dits (Langford and Zhang, 2007). Hallak et al. (2015) propose contextual MDPs (CMDPs),
extending the standard MDP formulation with multiple contexts that change the underlying
dynamics. They introduce an algorithm that is able to detect different contexts and opti-
mize the CMDP. However, their work is focused on low-dimensional observation-spaces and,
only a small number of fixed contexts is considered. In contrast, our work is proposed for
high-dimensional observation-space such as images, and can deal with a variable number of
contexts as it incorporates a continuous multivariate context variable. Another work formu-
lates contextual decision processes as a generalization of MDPs and POMDPs (Jiang et al.,
2017), where the observations themselves or their history, respectively, form the context.
Our approach differs from this formulation by explicitly distinguishing between context and
observations, and having a generative view on the observations based on states that depend
on a context.

Eysenbach et al. (2018) propose to use mutual information between the context and the
observations as a learning signal, and the entropy of the policy over different contexts as
a regularisation term to improve exploration, and better adapt to the change of context.
This approach assumes the context variable is known to the policy. Achiam et al. (2018)
propose VALOR and use a variational auto-encoder (VAE) that first encodes context to
trajectory via policy, and subsequently decodes the trajectory back to the initial context
using a probabilistic recurrent decoder that assigns high probabilities to trajectories that
are unique to a context. Their approach also assumes that the context variable is known,
and is used as a supervised signal to train the decoder. A different model-based approach
is explained in (Pathak et al., 2019). An ensemble of dynamic models is trained to predict
next observation given the current observation and action. The variance over the output
of this ensemble is used as intrinsic reward to train the policy. This approach improves
the exploration, which is helpful in contextual settings as the agent better adapts to new
contexts.

Representation Learning for RL: Recently, several approaches to learn better rep-
resentations for RL have been proposed. Higgins et al. (2017b) propose DARLA following a
two stage learning approach. First, an agent learns disentangled state representations using
β-VAEs (Higgins et al., 2017a) from a high dimensional observation space. Second, based
on the previously learned disentangled state representation, the agent has to learn a policy
to solve a given task. In contrast to our work, the learned disentangled state representations
are not explicitly used to infer different contexts, and the policy is directly learned using the
disentangled features, while as we will explain, in our work the disentanglement is only used
for learning the context variable, and the agent can learn an unconstrained representation
from the observations, in addition to the context variable. Similarly, Stooke et al. (2020)
propose to decouple representation learning from the RL task. By applying image aug-
mentation (Kostrikov et al., 2020) and a contrastive loss for learning state representations
from raw pixel-observations, they are able to outperform end-to-end trained RL agents on
various environments. Such a contrastive learning approach was also applied in (Srinivas
et al., 2020).

238

Context-Adaptive Reinforcement Learning

3. Problem definition

In this section, we provide a generative view to Contextual Reinforcement Learning (CRL),
and detail the relation between context variables and the states of the environment. Based
on this view, we provide a solution for CRL that can automatically recognise the change in
the states of the environment, accordingly predict the new context, and adapt the policy
to the new context.

3.1. Contextual Reinforcement Learning

A Partially Observable Markov Decision Process (POMDP) is defined as a tuple (S,A,P,R,
Ω,O), with S being the state space, A the action space, P the transition probabilities, and
R the reward function. In this setting, the agent does not directly observe the true states
of the environment, but receives observation o ∈ Ω. This observation is generated from the
underlying system state s and the received action a, according to the probability distribution
o ∼ O(o | s, a).

In this work we consider finite-horizon episodic Contextual POMDPs (CPOMDPs). At
the beginning of each episode an agent will encounter a specific POMDP depending on
a randomly sampled context c ∈ C, which we assume to not change over time within an
episode. While for regular POMDPs, the goal of an RL agent is to learn a policy π(a | o)
that maximizes the expected cumulative reward, in CPOMDPs the agent has to learn a
policy π(a | o, c) that further depends on a context c.

3.2. A Generative View on Contextual Reinforcement Learning

Generative Process: We assume a generative process is in place such that everything
within the environment is happening in a two-step generative process. First, a multivari-
ate latent random variable z is sampled from a distribution P (z), where z corresponds to
semantically meaningful factors of variation of the observations (e.g, shape, colour of the
objects; density of objects). Second, the observation x is sampled from a conditional dis-
tribution P (x | z). We assume that the observation space has higher dimensionality than
the semantic space, hence, the data space can be explained with substantially lower dimen-
sional and semantically meaningful latent variable z, and is mapped to the high dimensional
observation space x.

Generative Process in Contextual Reinforcement Learning: In Contextual Re-
inforcement Learning, we assume that the environment Ez(ot, at) generates the next ob-
servation ot+1, given the current observation ot and action at, i.e., ot+1 = Ez(ot, at), with
z being a variable controlling its statics (e.g, shape or size of objects). In our generative
view, the observations of an episode are generated from a generative model Ez(ot, at) in 3
steps as follows. In the first step, a multivariate latent random variable c ∈ C is sampled
from a distribution P (c), where c corresponds to a context. In the second step, a multi-
variate latent random variable z is sampled from a conditional distribution P (z | c), where
z corresponds to the state of the environment that controls the statics, defining how the
environment generates the next observation, given he current observation and action during
an episode. In the third step, the next observation ot+1 is generated from the environment’s
generative model Ez(ot, at).

239

Context-Adaptive Reinforcement Learning

4. Proposed Approach

In this section, we propose Context-Adaptive Reinforcement Learning Agent (CARLA),
which is capable of adapting to new contexts in an environment, without any supervision
or knowledge about the available contexts.

CARLA consists of two parallel networks: a context network, and a representation net-
work. The context network aims at learning the context variable, while the representation
network is aiming at learning a suitable representation from the environment. The output
of these two networks are then further feed into the policy network, where an adaptive pol-
icy is formed given the environment variables and the context variable. The policy network
then adapts the current policy, based on the context variable. A block-diagram of CARLA
is provided in Figure 1 (left).

As detailed in Section 3.2, our assumption in the generative process is that the context
variables define the statics of the environment, which in turn defines the distribution of the
observations within an episode. The aim of the context network is to reverse this process
and estimate the context vector given the observations. As shown in Figure 1 (right),
it contains two main modules: a feature disentanglement module and a context learning
module. The context network first estimates the environment’s statics, and further uses
it to learn the context variable. This context factor is then feed to the policy network, in
order to adapt the policy to the current context.

The feature disentanglement module is an encoder part of a Variational Autoencoder
(VAE) (Kingma and Welling, 2014), which is trained with annealing the Kullback Leibler
(KL) Divergence term of the Evidence Lower Bound (ELBO). The VAE is trained using
random samples drawn from an experience replay buffer (Lin, 1992). The context learn-
ing module is trained online given the observations received in each episode, along with
the representation network and the policy network by optimizing the RL objective. This
module learns upon the disentangled states of the environment, extracted using the feature
disentanglement module explained above.

Observed
 State

Action

Environment

Agent

Representation
Network

Context
Network

Policy
Network

Context
 Variable

Env.
 Variable

Context
Variable

Fe
a
tu

re
D

is
e
n
ta

n
g

lm
e
n

t

C
o
n
te

x
t

Le
a
rn

in
gObserved States

Disentangled
Representation

Trained with RLTrained with ELBO

Figure 1: left) Block diagram of CARLA. right) Block diagram of the Context Network.
Hidden variables are shown with circles, while processing units are shown with
squares.

The graphical models for various approaches in CRL is provided in Figure 2. As can be
seen, our model has a different graphical model than DARLA (Higgins et al., 2017b) and

240

Context-Adaptive Reinforcement Learning

z

x

latent

data

decoder

Pθ(x|z)

encoder

qΦ(z|x)

τ

c

trajectory

context

decoder

PD(c|τ)

policy

πθ(a|s,c)

z

o

disentangled
representation

observed states

decoder

Pθ(o|z)

encoder

qΦ(o|s)

z

o

disentangled
representation

observed states

encoder
qΦ′ (z|o)

c

context

encoder
qΦ′′′(c|z)

r

decoder
Pθ(o|z)

encoder
qΦ′′(r|o)

VAE [11] DARLA [9] VALOR [1] CARLA (proposed)

representation

Figure 2: Comparison of the graphical models in different approaches. The solid lines rep-
resent generation, and the dashed line represent inference. Gray circles represent
observed variables, while white circles represent hidden variables.

VALOR (Achiam et al., 2018). The main idea in CARLA, is to learn disentangled factors
from the environment using pre-selected training data, in a similar manner to DARLA. In
contrast, CARLA uses a recurrent context network that can build the sequential relationship
for the disentangled factors, to predict the context variable, which might be useful in a
partially-observable setting to infer the dynamics. Further, CARLA allows the agent to
learn an unconstrained representation from the environment during training the agent via
interacting with the environment. Although VALOR uses a sequential decoder, it differs
from CARLA in various ways. For example VALOR assumes an observed context, in
contrast to CARLA which estimates the context variable using a sequence of disentangled
factors.

5. Experimental Protocol

In this section, we detail our experimental setup and evaluation strategy, in order to demon-
strate the effectiveness of the proposed approach in tackling CRL. In our evaluation, we are
testing several hypotheses to answer the following questions:

Does knowing the context help the performance of the agent?
To investigate this, we conduct an experiment testing whether adding a context variable
as an additional input to the policy network helps the policy to better adapt to context
changes. For evaluation, we will compare the performance in terms of the cumulative reward
of a baseline agent that does not use the context information, to an agent that has access
to this additional information.

What characteristics does a predictive model need to predict context from
observations?
In this experiment, we evaluate how well a context can be learned from the observations. Our
goal is to determine on the one hand which representations capture the most information
about the context in an unsupervised manner and on the other hand which modelling
technique (feed-forward vs. sequential) is more suitable to learn the context variable. To
this end, we investigate whether feature disentanglement helps in learning the context,

241

Context-Adaptive Reinforcement Learning

by training unsupervised VAEs. We compare a vanilla VAE (Kingma and Welling, 2014)
that does not perform feature disentanglement, to an annealed VAE (Burgess et al., 2018)
that incorporates it. Subsequently, given the features extracted by each of the VAEs, we
compare a feed-forward classifier to a recurrent one, for learning the context from a single,
or a sequence of representations, extracted by the VAEs from observations, respectively. A
train-test split on the observations and their respective context label is used to evaluate the
generalisation of the context classifiers.

Can our learnt context variable help the policy to better adapt to different
contexts?
Finally, to test our full setup, we compare CARLA with the context variable being jointly
trained using the RL objective, against two baseline agents in terms of the accumulated
reward. The first agent does not have the additional context information, which basically is
CARLA without the context network. For the second agent, we remove the representation
network and the context learning from CARLA leaving only the feature disentanglement,
which is thus similar to DARLA.

For all our experiments, we use a modified dynamic obstacle gridworld environment
(Chevalier-Boisvert et al., 2018a,b) as follows. The task of an agent will be to reach a
goal position, while collecting and avoiding certain objects. The agent receives a reward
of +1 and -1 for good and bad objects, respectively. Whether an object is good or bad
will be based on a certain context, e.g., a specific configuration of differently colored and
shaped objects that allow for a clear distinction between contexts. We consider a fully and
a partially observable variant of this environment to properly compare feed-forward and
recurrent context learning, by either showing the whole grid or a subset. For the VAEs,
we use the architecture from (Higgins et al., 2017b). However, as shown in (Burgess et al.,
2018), annealing the KL term provides a better disentanglement than the β-VAE, which was
used in (Higgins et al., 2017b). Hence, we use the annealing technique proposed in (Burgess
et al., 2018) for training the VAE. Similar to (Higgins et al., 2017b), we use an experience
replay buffer to draw i.i.d. samples for optimizing the VAE objective. For collecting the
observations we follow two different strategies. First, we will store observations that are
received by the agent during training in an online fashion. Second, as this might cause the
VAE to overfit to its recent experience and not generalize across all possible observations,
we will use a different agent to collect the observations that simply avoids all objects and
moves around in the world, similar to what is proposed in (Higgins et al., 2017b). To
train the RL agents, we use vanilla policy gradient as well as the hyperparameters reported
in (Achiam et al., 2018). For the context network, we compare two architectures: a 1-layer
LSTM (64 neurons), and a 1-layer MLP (64 neurons), and the policy network is always a
2-layer MLP (64 neurons). For all feed-forward hidden layers with non-linearities, we apply
ReLU activation (Nair and Hinton, 2010).

6. Experimental Results

In the following, we first briefly introduce the changes applied to the experimental protocol
and provide more details on the used environment as well as the evaluation. Afterwards,
we present the results to the questions posed in Section 5.

242

Context-Adaptive Reinforcement Learning

6.1. Modification to the experimental protocol

Due to computational limitations, the following changes are applied to the experimental
protocol. Instead of considering both a partial and a fully-observable setting, we limit
ourselves to a fully-observable environment. As a consequence we do not need to investigate
the use of a sequential model to learn context variables, allowing us to focus on feed-forward
neural networks. Regarding the hyperparameters we had to deviate from some of those
reported in (Achiam et al., 2018), which we explain in more detail in Section A.1 in the
Appendix.

Additionally, model evaluation will not be based on the cumulative reward only, but we
further consider a metric specifically targeted at assessing the object collection-avoidance
behaviour of the trained agents.

6.2. Environment and Evaluation Details

As explained in Section 5, we train and test our RL agents on a simplistic contextual
gridworld environment, where the task of the agent is to reach a goal position while collecting
and avoiding certain objects in the world. In particular, the environment is specifically
designed for a contextual setup which requires the agent to infer the current context, and
based on that decide what objects should be collected or avoided.1

Contexts are define using colour combinations for obstacle and goodie/agent. As shown
in Figure 3, for each colour combination there are two available contexts forming a context
pair. Overall we use 90 contexts (45 context pairs), where at the beginning of each episode
a random context is chosen. The colours used to create the contexts are provided in Table 3
in the Appendix.

Figure 3: Visualization of two context pairs in our contextual gridworld environment based
on (Eghbal-zadeh et al., 2021). The goal is always encoded as a green square and
randomly placed in a corner. The context is defined as the colour of the agent
(given as a triangle) and the colours are shared across a context pair, i.e., if the
agent has a yellow colour in one context it should collect yellow object (given as
circles), while avoiding red ones. However, in the second context the agent is red
and therefore has to collect red and avoid yellow objects.

Besides using the reward to evaluate the performance of the agents, we separately ex-
amine their behaviour in terms of the ability to distinguish between goodies and obstacles
as well as to reach the goal. It is important to mention that because we are in a con-
textual setting, distinguishing between different contexts, especially similar contexts, is of

1. Our environment can be found at: http://eghbalz.github.io/carla/

243

http://eghbalz.github.io/carla/

Context-Adaptive Reinforcement Learning

high importance to the success of the agent. In order to evaluate this important aspect, we
introduce additional evaluation measures. In non-contextual RL, these aspects are often
ignored, and agents are solely evaluated based on cumulative reward.

Similar to (Eghbal-zadeh et al., 2021), we use a Goodie/Obstacle Discrimination (GOD)
score for each context c:

GODc = max (0, OLc −GLc), (1)

where OLc and GLc indicate the obstacles and goodies left after an episode ends, averaged
across 50 episodes. OL and GL are normalized to [0, 1] by dividing with the number
of goodies and obstacles, respectively. Additionally, we consider a goal reached GRc score
indicating whether the goal was reached by the agent or not (again averaged over 50 episodes
for each context c). This is further extended to a per context pair (PCP) score ratio for
the set of all context pairs (ci, cj) ∈ C, by considering only if both contexts in a pair are
solved, based on a threshold value t:

GOD-PCP =
1

|C|
∑

(ci,cj)∈C

1min (GODci , GODcj)≥t, (2)

and

GR-PCP =
1

|C|
∑

(ci,cj)∈C

1min (GRci , GRcj)≥t, (3)

with 1min (·,·)≥t yielding 1 if min (·, ·) ≥ t and 0 otherwise.

6.3. Results and Discussion

Does knowing the context help the performance of the agent? The first research
question we address is whether knowing the context improves the performance of an RL
agent. To this end, we train an agent that does not have any contextual information (NC)
and one where the policy has an additional input indicating the ground truth context (GT).
Figure 4 summarizes the results of this experiment. Comparing the cumulative reward dur-
ing training in Figure 4(a), we observe that the GT agent is marginally better than NC.
However, the difference becomes more evident when we compare the agents in terms of the
goodie-obstacle-discrimination, as shown in Figure 4(b). As can be seen, the improvement
in goodie-obstacle-discrimination using GT information is significant, and the agent gains
significant abilities in distinguishing between similar contexts, as measured by our metric.
These results suggest that having additional access to contextual information can indeed
improve the performance of an agent. Since it is not feasible to always provide ground
truth information of a context, we next investigate whether contextual information can be
inferred in an unsupervised manner.

What characteristics does a predictive model need to predict context from
observations? In order to evaluate the characteristics of the context-encoders used in
our experiments, we conduct a set of experiments to evaluate different VAEs, and choose
the best-performing model. We choose 3 VAE models, namely GECO (Rezende and Viola,
2018), Annealed-VAE (Burgess et al., 2018), and Beta-VAE (Higgins et al., 2017a) (with 3
different β values; the VAE with β = 1 represents the Vanilla-VAE discussed in Section 5).

244

Context-Adaptive Reinforcement Learning

(a) (b) (c)

Figure 4: Non contextual (NC) agent vs. an agent that is provided with additional ground
truth information (GT). Figure 4(a) is the cumulative reward over training
epochs, Figure 4(b) is the goodie-obstacle discrimination ratio and Figure 4(c)
the goal reached ratio averaged across 8 different random seeds. The shaded area
indicates the standard deviation.

In order to compare the VAE models, we conduct two sets of experiments: 1) context
classification, and 2) disentanglement evaluation.

For context classification, we first uniformly draw 50k samples from the 90 different
contexts used in our environment, then encode them using the VAE’s encoder. We then train
a classifier on the embeddings of the VAE encoder, using the context labels. Subsequently,
the classifier has to predict the context, given an image drawn from the environment. We use
a 2-layer MLP, as well as a linear model for classifying context using the VAE embeddings.
A random 80%training-20%testing split is incorporated to test the generalisation of the
context classifier for each VAE. The results of context classification are provided in Table 1.
As can be seen, GECO achieves the best performance among different VAEs.

In order to compare the disentanglement performance of different VAEs, we conduct
disentanglement evaluation based on the β-VAE score introduced in (Higgins et al., 2017a).
These results can be found in Table 2. It can be again observed that GECO performs best
in disentanglement among all other VAEs. Based on these results, we choose GECO as
the VAE model, to be used in our proposed agent. The detailed procedure of the disen-
tanglement evaluation alongside with reconstructed examples, reconstruction error and KL
divergence of different VAEs is provided in Appendix B.

Can our learnt context variable help the policy to better adapt to different
contexts? In Figure 5 we compare our proposed method (CARLA) to the non contex-
tual (NC) and ground-truth (GT) agents from before as well as to an agent that uses
a pre-trained VAE to extract state features, as done in DARLA (Higgins et al., 2017b).
Both CARLA and DARLA use the same pre-trained VAE which has been trained using
GECO. A comparison using Beta and GECO VAE is shown in Figure 7 in the Appendix.
For CARLA, we additionally analyze two different ways of combining the contextual infor-
mation: 1) simply concatenating the contextual information to the encoded state, and 2)
using the Feature-wise Linear Modulation (FiLM) layer (Perez et al., 2018) which we refer
to as CARLA-CG and CARLA-FG, respectively. A discussion about the different ways
of combining contextual information is provided in Section A.1 in the Appendix. We also

245

Context-Adaptive Reinforcement Learning

Table 1: Context classification accuracy on a train-test split for a linear and MLP classifier.
Higher is better, best results are marked bold.

VAE Classifier Train Test Classifier Train Test

GECO

MLP

0.7708 0.6968

Linear

0.5481 0.5003
Annealed 0.6906 0.6363 0.3044 0.2581
Betaβ=10 0.2061 0.1885 0.0302 0.0227
Betaβ=2.5 0.5141 0.4087 0.1552 0.1121
Betaβ=1 0.7164 0.6798 0.4806 0.4391

Table 2: Evaluating disentanglement in VAEs. Higher is better, best results are marked
bold.

β-VAE Score Train Test

GECO 0.90 0.90
Annealed 0.86 0.87
Betaβ=10 0.54 0.54
Betaβ=2.5 0.82 0.83
Betaβ=1 0.83 0.84

investigated the effect of updating the VAE encoders on the performance of the agents, and
provide the results and the discussion in Section C of the Appendix. While all methods
seem to be equally good in reaching the goal (as visualized in Figure 5(c)), we see a clear dif-
ference in the goodie-obstacle discrimination shown in Figure 5(b). DARLA’s performance
seems to be the lowest among all methods, in terms of the cumulative reward and GOD,
indicating that disentangled state-features alone are not sufficient to solve this task. Both
CARLA variants outperform the NC, GT, and DARLA agents, with CARLA-CG achieving
a higher GOD-PCP score than CARLA-FG.

We also investigate an online version of CARLA, where the policy and context network
(the VAE) are trained from scratch, during training, and no pre-training was used. For
that, we maintain a queue of 50k samples from the latest observed states to train the
VAE. The VAE is only trained with the VAE objective, and the RL objective updates the
state features, policy and value function. A pseudo-code of our Online CARLA algorithm
can be found in Algorithm 1 in the Appendix. In these experiments, we update the VAE
30 times more than the policy (m = 30 in Algorithm 1). These results are provided in
Figure 6. As can be seen, Online CARLA achieves similar performance to CARLA using a
pre-trained VAE, outperforming non-contextual agents. We observe an increase in variance
in cumulative reward in some epochs, which can be resolved by further adjusting the update
frequency of the VAE.

246

Context-Adaptive Reinforcement Learning

The details of hyperparameters and architectures used in our experiments are provided
in Section A in the Appendix.

(a) (b) (c)

Figure 5: Comparison of non contextual (NC), ground truth (GT), DARLA and CARLA
agent. DARLA and CARLA use GECO VAE, and for CARLA we use concatena-
tion (CARLA-CG) as well as FiLM (CARLA-FG) to incorporate contextual in-
formation. Figure 5(a) is the cumulative reward over training epochs, Figure 5(b)
is the goodie-obstacle discrimination ratio and Figure 5(c) the goal reached ratio
averaged across 8 different random seeds. The shaded area indicates the standard
deviation.

(a) (b) (c)

Figure 6: Comparison of Online and Offline CARLA. Figure 6(a) is the cumulative reward
over training epochs, Figure 6(b) is the goodie-obstacle discrimination ratio, and
Figure 6(c) the goal reached ratio averaged across 8 different random seeds. The
shaded area indicates the standard deviation.

7. Conclusion

Although a non-contextual agent could still achieve high rewards, by carefully evaluating
the behaviour of the agents and using our proposed GOD measure, we discovered that non-
contextual agents cannot very well distinguish between similar contexts. Furthermore, we
demonstrated that by providing context information as ground-truth to the agent, this issue
can be alleviated and the ability of an agent to distinguish between similar context can be
significantly improved. Additionally, we showed that we can provide the context information
to the agent by using disentangled features. However, we have observed that providing the
agent only with this information is not enough, and the agent needs to additionally learn
state features itself and adapt to the changes in the environment. All in all, our results

247

Context-Adaptive Reinforcement Learning

suggest that incorporating context information using disentangled features is a very effective
way of improving the ability of agents to distinguish between different contexts and, as a
result, perform better.

In order to have an agent that can dynamically learn from the environment without
the need of offline pre-training, we further investigated an online version of our contextual
agent, namely Online CARLA. As discussed, our results demonstrated the effectiveness
of Online CARLA in achieving better performances in terms of distinguishing between
different contexts, outperforming non-contextual agents, and achieving performances on
par with CARLA that uses a pre-trained VAE, but without the need of any pre-training.

While in this paper, we focus on a setting where the context can be directly inferred
from single states, in future work we would like to address problems in partially-observable
settings where this not possible. To that end, a sequential model can be incorporated in the
CARLA architecture for learning the context variables. Furthermore, it will be important
to see whether the proposed architecture can be used in more complex environments.

Acknowledgments

This work has been partially supported by Google Cloud, and the European Research Coun-
cil (ERC) under the EU’s Horizon 2020 research and innovation program (grant agreement
number 670035). The LIT AI Lab is supported by the Federal State of Upper Austria.
We also gratefully acknowledge the support of NVIDIA Corporation with the donation of
a Titan X GPU used for this research. We would also like to thank Carlo D’Eramo and
Davide Tateo of the Intelligent Autonomous Systems group, at the University of Darm-
stadt, and José A. Arjona-Medina from the Machine Learning Institute, at the Johannes
Kepler University of Linz and Dynatrace Research, for the fruitful discussions throughout
this project.

References

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option
discovery algorithms. arXiv preprint arXiv:1807.10299, 2018.

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume
Desjardins, and Alexander Lerchner. Understanding disentangling in beta-vae. arXiv
preprint arXiv:1804.03599, 2018.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan
Saharia, Thien Huu Nguyen, and Yoshua Bengio. Babyai: A platform to study the
sample efficiency of grounded language learning. In Proceedings of the 6th International
Conference on Learning Representations (ICLR), 2018a.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld envi-
ronment for openai gym. https://github.com/maximecb/gym-minigrid, 2018b.

Hamid Eghbal-zadeh, Florian Henkel, and Gerhard Widmer. Learning to infer unseen con-
texts in causal contextual reinforcement learning. In Self-supervision for Reinforcement
Learning (SSL-RL) Workshop, ICLR, 2021.

248

https://github.com/maximecb/gym-minigrid

Context-Adaptive Reinforcement Learning

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all
you need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070,
2018.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control.
arXiv preprint arXiv:1611.07507, 2016.

Assaf Hallak, Dotan Di Castro, and Shie Mannor. Contextual markov decision processes.
arXiv preprint arXiv:1502.02259, 2015.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), 2017a.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander
Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Lerchner. DARLA: Improv-
ing zero-shot transfer in reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning (ICML), 2017b.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E. Schapire.
Contextual decision processes with low Bellman rank are PAC-learnable. In Proceedings
of the 34th International Conference on Machine Learning (ICML), 2017.

Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In Proc.
of the 3rd International Conference on Learning Representations (ICLR), 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of
the 2nd International Conference on Learning Representations (ICLR), 2014.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

John Langford and Tong Zhang. The epoch-greedy algorithm for contextual multi-armed
bandits. In Proceedings of the 20th International Conference on Neural Information
Processing Systems, 2007.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321, 1992.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier Nonlinearities Improve Neu-
ral Network Acoustic Models. In Proc. of the 30th International Conference on Machine
Learning (ICML), 2013.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on Machine Learning
(ICML), 2010.

249

Context-Adaptive Reinforcement Learning

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via dis-
agreement. arXiv preprint arXiv:1906.04161, 2019.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM:
Visual reasoning with a general conditioning layer. In Proc. of the 32nd AAAI Conference
on Artificial Intelligence, pages 3942–3951, 2018.

Danilo Jimenez Rezende and Fabio Viola. Taming vaes. arXiv preprint arXiv:1810.00597,
2018.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised repre-
sentations for reinforcement learning. In Proceedings of the 37th International Conference
on Machine Learning (ICML), 2020.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. arXiv preprint arXiv:2009.08319, 2020.

Supplementary Material

Appendix A. Experimental Details

A.1. Architectures and Hyperparameters

All agents are trained using two separate Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 7e−4 and 1e−3 for policy and value function, respectively. The discount
factor γ is set to 0.97 and entropy regularization is used with a coefficient of 0.01 to en-
courage exploration. Updates are performed every 4096 transitions which are collected by
8 parallel actors (512 per actor). For each policy update, we perform 30 value function up-
dates which showed to improve training stability and mitigate convergence to sub-optimal
behaviour. Overall the agents are trained for 3000 epochs, where one epoch corresponds to
4096 transitions.

State Encoder: The state encoding network consists of four 4× 4 convolutional layers
with 16, 16, 32 and 32 channels and a stride of 2. ReLU activation function (Nair and
Hinton, 2010) is applied between all layers.

Context Encoder: If applicable, agents use a separate context encoding network
which is the encoder of a Convolutional Variational Autoencoder (VAE) as described in
Appendix B. Unless specified, this encoder is pre-trained and not updated during training
of the RL agents.2

Policy and Value Networks: The policy and value networks use two fully-connected
layers of size 64, ReLU activation and a linear output layer of size 3 for the policy and 1
for the value function. State and context encoder are shared across both.

Combining Contextual Information: In order to incorporate context information
captured by the VAE encoders, we investigate two different approaches. In the first ap-
proach, we simply concatenate the VAE embeddings with the flattened state encoder em-
beddings, and further pass it to the policy/value networks. While this approach is fairly

2. VAEs are only updated in Online CARLA, and those specified with Upt.

250

Context-Adaptive Reinforcement Learning

simple and does not introduce any additional parameters, it allows the policy to adapt to
the contextual information.

Additionally, as specialized layers have been developed for combining different sources
of information e.g, in a multi-modal RL setting, we incorporate such modules into our
agent. In particular, we apply a Feature-wise Linear Modulation (FiLM) layer (Perez et al.,
2018), using disentangled features to control a weight and a bias term for the state features,
followed by a normalisation layer as follows:

FiLM(x) = norm(γ(c) · x + β(c)), (4)

with x being the state encoder embeddings, c being the VAE embeddings, and γ and β
being two linear layers. For normalization, we use batch-norm (Ioffe and Szegedy, 2015).
We report results using both concatenation and FiLM layer in our CARLA agent. Based on
our results, it seems that while both techniques are successful in incorporating contextual
information, the simple concatenation performs better, while introducing no additional
parameters.

Algorithm 1: Online Carla

Initialise policy π, value v, state encoder φ, context encoder/decoder ψenc and ψdec
Initialise empty VAE-Buffer B with length L
for i = 1 to n do

collect trajectory τ of length T following policy π
add observations from τ to B (overwrite oldest sample if max length L is reached)
update π, v and φ using the RL objective with trajectory τ
for j = 1 to m do

update ψenc and ψdec using VAE loss with samples from B
end

end

A.2. Defined Contexts

To create the context for our experiments we use 11 distinct colours as shown in Table 3.3

One of them is used as a fixed goal colour, while the remaining 10 allow us to create 45
unique colour combinations. These colour combinations are then used to generate context
pairs, e.g., given the combination red/gold, we create two contexts, one where the obstacle
is red and the goodie and agent is gold, and one where obstacle is gold and goodie and agent
is red. Overall, this results in 90 distinct contexts (45 context pairs).

Appendix B. VAE Details

B.1. Training and Architecture

A Convolutional Variational Autoencoder (VAE) (Kingma and Welling, 2014) architecture is
used with four convolutional layers with channels 32, 32, 64, 64, kernels 8, 4, 3, 3, and strides

3. Colour selection based on https://mokole.com/palette.html

251

https://mokole.com/palette.html

Context-Adaptive Reinforcement Learning

Table 3: Used colours to create the contexts.

Goal Obstacles/Goodies

lime
saddlebrown, forestgreen, steelblue, darkblue, red

gold, aqua, fuchsia, moccasin, hotpink

4, 2, 1, 1, and no padding for the encoder. The decoder uses the reversed architecture of the
encoder, with transposed convolutional layers instead of convolutional layers. The Leaky
Rectified Linear Units (Maas et al., 2013) with a negative slope of 0.002 were used as
the non-linearity for the hidden layers of the VAE. The model was trained using Adam
optimizer with learning rate of 5e−4 and batch-size of 128, for 100 epochs, on a dataset
comprised of 50k random samples from the environment using the train contexts, which
were collected and used as the training data. All VAEs incorporate a Gaussian prior, using
MSE as reconstruction error. Both KL and reconstruction losses are first summed across
all dimensions, then divided by the batch-size, before being combined. In GECO, we set
the target reconstruction to 6, and in Annealed-VAE, we aim for achieving the final KL
of 21, which are the hyperparameters that we found to work best for each method. We
train 3 different β-VAEs with beta values of β = 1 (Vanilla VAE), β = 2.5, and β = 10.
Random samples from the dataset, and their reconstructions using our fully trained VAE
are provided in Table 5.

Table 4: VAE reconstruction and KL comparison. In each mini-batch, KL and MSE are
summed over all dimensions, then are divided by the batch-size. Lower is better,
best results are marked bold.

MSE KL

GECO 5.89 21.15
Annealed 9.83 21.03
Betaβ=10 56.02 1.66
Betaβ=2.5 23.69 8.77
Betaβ=1 8.12 17.09

B.2. Evaluating Disentanglement

In order to evaluate the disentanglement in our VAEs, we follow the approach proposed
in (Higgins et al., 2017a), and we adapt this measure to our environment. We define a
ground-truth factor as a 9-dimensional vector, modelling agent, goodie, and the goal. Each
of these entities have 3 values: one value for colour, one for the x position, and one for the
y position. Given this 9-dimensional vector, we can then render an image with the agent,
the goal, and the goodie, with specified locations, and colours for each of these entities.

252

Context-Adaptive Reinforcement Learning

The β-VAE score is calculated by using a ground-truth factor, and altering one of the
following factors: (1) goal location, (2) agent location, (3) agent colour, (4) goodie colour,
and (5) goodie location.

We then generate samples from both the original, and the altered ground-truth factor,
further compute the embedding of the two generated samples using a VAE encoder. The
difference between these two embeddings are then calculated and is used as a feature, along
with the factor itself as ground-truth label, to train a linear classifier. This classifier is
then evaluated on a set of unseen difference vectors. A higher accuracy indicates better
disentanglement of the encoder.

To reduce the variance, we create 3 different versions of the altered ground-truth, from a
given ground-truth factor, and calculate 3 difference-vectors from it. The average of these 3
difference-vectors are then used as feature for training the linear classifier, as recommended
in (Higgins et al., 2017a).

B.3. VAE Reconstruction Examples

Orig. GECO Annealed Betaβ=1 Betaβ=2.5 Betaβ=10

Table 5: Original (left), and reconstructed samples from different VAEs.

Appendix C. Additional Results

Comparing different VAEs in RL agents: In Figure 7 we compare the performance of
DARLA and CARLA trained with two different VAE setups – Beta VAE (with beta = 2.5),
and GECO. While DARLA fails to solve the task with both VAEs, we observe a higher
performance using GECO. For CARLA the difference is not as distinct. When using FiLM
to incorporate contextual information, Beta VAE (CARLA-FB) outperforms its GECO
counterpart (CARLA-CG). When concatenation is used (CARLA-CB/CARLA-CG) the
performance is very similar, with Beta VAE being slightly better for higher threshold values.

253

Context-Adaptive Reinforcement Learning

(a) (b) (c)

Figure 7: Comparison of DARLA and CARLA with Beta (B) and GECO (G) VAE. For
CARLA, we additionally compare concatenation (C) and FiLM (F) to incorpo-
rate contextual information. Figure 7(a) is the cumulative reward over training
epochs, Figure 7(b) is the goodie-obstacle discrimination ratio and Figure 7(c)
the goal reached ratio averaged across 8 different random seeds. The shaded area
indicates the standard deviation.

VAE pre-training as warm-up: In Figure 8 we compare the performance of DARLA
and CARLA agents, where the pre-trained VAE encoder was allowed to be updated via the
RL loss, during the training. We can observe that by allowing the encoder to update via
the RL loss, the features can be better aligned with the policy, which results in performance
improvements in both CARLA and DARLA agents. Specially, in DARLA we can observe
a significant performance improvement when the encoder is allowed to be updated. This
suggests that aligning the state/context features with the policy during training is beneficial
to improve the performance of the agents.

(a) (b) (c)

Figure 8: Comparison of non contextual (NC), DARLA and CARLA with GECO VAE.
For DARLA and CARLA we include variants where the VAE encoder is frozen or
updated during training, respectively. For CARLA we additionally compare con-
catenation (C) and FiLM (F) to incorporate contextual information. Figure 8(a)
shows the cumulative reward, Figure 8(b) shows the goodie-obstacle discrimi-
nation ratio, and Figure 8(c) the goal reached ratio averaged across 8 different
random seeds. The shaded area indicates the standard deviation.

254

	Introduction
	Related work
	Problem definition
	Contextual Reinforcement Learning
	A Generative View on Contextual Reinforcement Learning

	Proposed Approach
	Experimental Protocol
	Experimental Results
	Modification to the experimental protocol
	Environment and Evaluation Details
	Results and Discussion

	Conclusion
	Experimental Details
	Architectures and Hyperparameters
	Defined Contexts

	VAE Details
	Training and Architecture
	Evaluating Disentanglement
	VAE Reconstruction Examples

	Additional Results

