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Abstract

3D Morphable Models have long played a key role in the construction of statistical shape
models. While earlier models employed Principal Component Analysis, recent work has
migrated towards mesh autoencoder models for the construction of lightweight, non-linear
shape models that facilitate state-of-the-art reconstruction and the capture of high-fidelity
details. Doing so results in a loss of interpretability and regularisation in the model latent
space. To address this, we propose PCA retargeting, a method for expressing linear PCA
models as mesh autoencoders and thereby retaining the gaussianity of the latent space.
To encourage the capture of mesh details outside the expressive range of a PCA model,
we introduce “free” latent space parameters. Experiments demonstrate the successful re-
targeting of the PCA models as mesh autoencoders. The introduction of “free” latent
parameters have a greater impact when smaller latent vector sizes are used, but do not
lead to any gains in reconstruction fidelity.

1. Introduction

3D Morphable Models (3DMMs) are one of the foremost technologies for the statistical
analysis and modelling of the human face and body. Earlier examples typically employed
principal component analysis (PCA) for model construction Blanz and Vetter (Jul 1, 1999),
however recent years have seen the successful application of geometric deep learning leading
to impressive gains in model reconstruction accuracy and representational power. Many
of these gains comes from the introduction of convolutional mesh autoencoders Ranjan
et al. (2018) and increased efficiency of mesh convolution operators Bouritsas et al. (2019);
Defferrard et al. (2016); Fey et al. (2018); Gong et al. (2019).

As with standard autoencoder models, convolutional mesh autoencoders are subject
to the loss of linear independence and regularity in the latent space that is inherent in
PCA models. An example of where this might be problematic would be an attempt to
create a blendshape model using a mesh autoencoder network. A blendshape model can be
considered as a weighted sum of target expressions that can be combined with a neutral mesh
to achieve facial animation Cao et al. (2014); Cheng et al. (2018). The linear independence
of distinct blendshapes is paramount to their success. As autoencoder models do not offer
any control over the latent space distribution, this linear independence cannot be preserved
and autoencoder models of the human face typically address expressions in isolation Ranjan
et al. (2018).
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In this paper we propose the concept of PCA retargeting, a means of converting a
PCA model to a mesh autoencoder format. Our aim is to train an autoencoder model to
accurately reconstruct a target mesh while constraining the latent space to mimic the shape
parameters the target mesh would produce in a PCA model. Autoencoders are typically
trained end-to-end, where the reconstruction loss is calculated based on the output of the
decoder and backpropagated through the network. This encourages the model to find
an optimal encoding in the bottleneck layer that will permit the decoder to accurately
reconstruct an input from its latent representation. To faithfully retarget a PCA model as
an autoencoder, however, the latent space of the autoencoder model must follow the PCA
shape space as precisely as possible. To enforce this constraint on the latent space, we draw
inspiration from variational autoencoders (VAEs). VAEs can be considered autoencoders
whose encoding space has been regularised during training to ensure desirable properties for
data generation Kingma and Welling (2014); Rezende et al. (2014). A Gaussian distribution
is often imposed on the latent space, though von Mises-Fisher Davidson et al. (2018); Xu
and Durrett (2018) and Dirichlet distributions Joo et al. (2020) have also proven effective.
This desired latent distribution is achieved by adding a regularisation term to the loss
backpropagated through the model. By imposing a loss on the model latent space, we aim
to compel the encoder to learn the desired latent representation.

The representational power of a PCA model is constrained by the number of linear
eigenvectors it contains, and large models are required to achieve high resolution meshes
Booth et al. (2018). To allow the retargeted model to represent high-fidelity mesh details,
we propose to extend the length of the autoencoder latent vector beyond the number of
shape parameters used in the retargeting process. As these additional parameters will not
be constrained to follow the PCA shape parameters, the intention is that they will model
details that are not expressed within the shape variation of the PCA model. We refer to
these additional parameters as “free” latent variables.

Our analysis will address two main questions; 1) Can a PCA model be retargeted as
a mesh autoencoder? 2) Can “free” latent parameters be used as an inexpensive means
of capturing high-fidelity details? Experiments will be conducted using a large-scale facial
dataset, and latent representations of varying sizes will be explored. We hypothesise that
imposing rigid constraints on the latent space will allow for the training of an autoencoder
model that operates as a neural analogue to a PCA model and that the introduction of
“free” latent variables will permit the encoding of high frequency mesh details that can be
lost when later PCA model eigencomponents are omitted.

2. Related Work

3D Morphable Models (3DMMs) facilitate the continuous parameterisation of shape vari-
ation for a given object class by performing dimensionality reduction on training dataset
of meshes Blanz and Vetter (Jul 1, 1999). Gaussian Processes Liithi et al. (2018) and lin-
ear blend-skinning Loper et al. (2015); Romero et al. (2017) have both been used for the
construction of 3DMMs, though Principal Component Analysis (PCA) is perhaps the most
prevalent approach Blanz and Vetter (Jul 1, 1999); Booth et al. (2018); Dai et al. (2017);
Liithi et al. (2018); Ploumpis et al. (2020). Let X be a set of n densely registered meshes,
{x1, 9, ...,x,}, sampled from a given distribution D, where each mesh has d vertices con-
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nected in a fixed topology. By making a gaussianity assumption, an arbitrary instance,
xz* € D, can then be represented as a linear combination of the k largest eigenvectors of the
covariance matrix of X:

k
T+ Zi:l o; U (1)

where Z is the mean shape, U; is the i*! shape eigenvector, and «; is the corresponding
eigenvalue. Given the linear model representation, the largest shape variations are captured
within the first eigenvectors. High resolution models therefore require a larger number of
eigenvectors to be retained, while high finer details can be omitted when later principal
components are discarded.

Advances in the field of geometric deep learning have led to the generalisation of neural
networks to non-Euclidean domains, such as graphs and manifolds Bronstein et al. (2017).
These emerging techniques have been applied across multiple domains, including computer
graphics Boscaini et al. (2016); Masci et al. (2015), molecular prediction Veselkov et al.
(2019), node classification Kipf and Welling (2016), and social network analysis Monti et al.
(2019); Tan et al. (2019). Many approaches have been applied to extend standard 2D
convolutions to non-Euclidean domains, including spectral methods Bruna et al. (2014);
Fey et al. (2018); Levie et al. (2019); Tang et al. (2019), local charting based approaches
Boscaini et al. (2016); Lim et al. (2018); Masci et al. (2015), and convolution operators
that act directly on 3D mesh topology Bouritsas et al. (2019); Gong et al. (2019). New
methods for graph coarsening have also been developed Diehl et al. (2019); Ying et al. (2018),
while advances in mesh pooling and unpooling operations have led to the introduction of
convolutional mesh autoencoders, an effective means of modelling 3D data Ranjan et al.
(2018).

Feature disentanglement permits an intuitive understanding of the latent space of deep
generative models. Supervised methods typically require a-priori knowledge of the nature
and quantity of generative factors Hinton et al. (2011); Kulkarni et al. (2015); Reed et al.
(2014). Higgins et.al. presented 5-VAE, a reformulation of the standard VAE framework
that allowed for a disentangled representation of generative data factors by introducing a 8
coefficient Higgins et al. (2017). Mathieu et al. argue that while 8-VAE allows for control
over the extent of overlap between latent data encodings, it does little to ensure that the
aggregate data encodings conform to a desired structure. Instead, they present an approach
that permits a desired latent encoding to be achieved by careful choice when defining the
prior Mathieu et al. (2019). GANs Chen et al. (2016), Wasserstein Autoencoders Gaujac
et al. (2020), different interpretations of VAEs Kulkarni et al. (2015); Shao et al. (2020), and
mutual information maximisation Bachman et al. (2019); Hjelm et al. (2019); Tschannen
et al. (2020) have also been applied successfully for feature disentanglement. In this work, as
the desired latent encoding is known in advance, this problem is explored from a supervised
angle.

3. Model Architecture and Training

Our mesh autoencoder model follows the architecture design of Bouritsas et al. (2019). The
encoder is comprised of five mesh convolutional and pooling layers. The decoder architecture
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Figure 1: Network Architecture.

is the reverse of the encoder; five convolutional layers, each followed by a mesh unpooling
layer. To facilitate the mesh pooling and unpooling operations, we follow the approach of
Ranjan et al. (2018). In each pooling layer the number of mesh vertices will be reduced by
a factor of 4. Spiral convolutions with a fixed length of 9 will be used in all convolution
layers Gong et al. (2019). The complete network architecture is shown in Figure 1.

The framework will be implemented in PyTorch Paszke et al. (2017). Model hyperpa-
rameters and loss weights will be determined using a grid-search strategy.

3.1. Losses

For a given input mesh, x, an L1 reconstruction loss will be applied to the decoder output, Z.
To encourage the latent vector representation to conform to the desired encoding, zpcq, we
add a regularisation term to the loss function. In standard VAE models, the regularisation
terms typically manifests as the Kullback-Leibler (KL) divergence between the desired and
achieved encoding distributions. Here, the desired latent encoding follows a standard normal
distribution by design. As such, the KL regularisation term is replaced by an L1 loss on
the difference between the desired latent encoding, 2., and the achieved encoding, Zpc,.
Defining Aycc and A.c4 as the weights applied to the reconstruction and regularisation loss,
respectively, the updated loss function takes the form:

loss = )\recHw — f»‘H + /\regHcha - épcaH (2)

3.2. “Free” Latent Variables

In addition to the latent vector components reserved to correspond with the principal com-
ponents of the PCA model, we also propose to extend the latent vector size by including [
additional variables. As discussed in the Introduction, PCA models capture the modes of
greatest variation in first few principal components while the later components are reserved
for the higher frequency details. These later components are often omitted for reasons
of model size and computational speed, and this can lead to a “smoothing” of the mesh
surface. By adding [ “free” variables to the latent vector, we aim to capture these higher
frequency details while preserving the advantage of independence among the model compo-
nents provided by the orthogonal bases of the PCA models.

To conform with the distribution of the other latent variables, we would prefer that the
distribution of additional “free” latent variables also take the form of a standard normal
distribution with zero mean and unit variance. A KL divergence will be used to encourage
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the “free” variables to follow the desired Gaussian distribution. Defining the PCA latent
variables as z,¢, and the “free” latent variables as zf,.., the complete loss function will take
the form:

loss = Arecllr — 2| + AregllZpea = Zpeall + Areg KLIN (przgyes 02, ) N (O, )] (3)

where p, free and o, Free? the mean and standard deviation of the “free” latent variables,
will be calculated per batch during training. The full length of the latent vector is now given
as the combined length of z,., and zfc.. For the “free” latent variables, no assumption of
independence between variables will be made, as this criteria is not enforced by the proposed
loss function.

4. Experimental Protocol

Tests will be conducted using latent vectors of size 16, 32, 64, and 128. For each latent
vector size, three models will be trained and the mean and standard deviation results will
be reported. Autoencoder models will be compared to baseline PCA models with the
corresponding number of principal components. The number of model parameters will be
recorded in each case.

4.1. Dataset

Models will be evaluated using the MeIn3D facial database Booth et al. (2018) which consists
of more than 10,000 scans registered to a template with 28,431 vertices. Data will be split
into 9k training and 1k testing meshes. Random stratified sampling will be applied to
maintain gender, age, and ethnic proportions.

To obtain the desired latent vector encoding for all meshes, a PCA model will be con-
structed from the training dataset. The first 128 principal components will be retained.
Shape parameter vectors, «, for each instance will be obtained by projecting the mesh
instance onto the model. Following the probabilistic interpretation of PCA models, each
parameter, «;, is an independent random variable. Each «; follows a Gaussian distribution
with zero mean and a variance of \;, where 32); is the i-th PCA eigenvalue. A shape vector
with & components can therefore be normalised as follows:

so— 1 Q. Ok (4)
pca /A17 /)\27 Y /)\k

The normalised vector, zpc,, now follows a Gaussian distribution with zero mean and
unit variance.

4.2. Autoencoder Accuracy

Encoder-Decoder Accuracy To evaluate the success of the PCA retargeting, we will
first independently assess the encoder and decoder networks. To assess the encoder accuracy,
all meshes in the test set will be passed through the encoder network and their latent space
embeddings, Z.q, retrieved. These will be compared to the ground-truth normalised shape
parameters, zp.q, for the corresponding meshes. The decoder reconstruction accuracy for
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a given mesh from the normalised shape parameters will be determined by passing these
parameters through the decoder network. The reconstruction error will be calculated as
the per-vertex euclidean distance between the ground truth and reconstructed meshes and
compared to the reconstruction error for the PCA model.

End-to-end Reconstruction Accuracy To evaluate the model in a holistic manner,
each mesh in the training set will be fed through the autoencoder model and the end-to-end
reconstruction error will be calculated. This error will be compared to the reconstruction
accuracy of the PCA model under the same circumstances; each mesh in the test set will
be projected into the shape space of the PCA model and the retrieved shape parameters
will be used to obtain the model reconstruction.

4.3. “Free” Latent Variables

Experiments will be conducted using 16 and 64 principal components to better understand
how the number of PCA components impacts the presence of high-fidelity mesh details.
“Free” variable lengths of 4, 8, and 16 will be assessed and their conformity to a Gaussian
distribution will be evaluated. The reconstruction error for all meshes in the test set will be
calculated and compared to that of the standard autoencoder model and the PCA model.

High Frequency Details The presence of high-fidelity mesh details will be evaluated
via the Gaussian curvature of the mesh. The Gaussian curvature, IC, for a given vertex on
a mesh surface is give as a product of the principal curvatures, x; and k9, at that point
Meyer et al. (2003). By calculating the Gaussian curvature at each point for all meshes
reconstructed using the autoencoder, the autoencoder with “free” latent variables, and the
PCA model, we can ascertain whether the introduction of the the “free” latent variables
permits an increase in reconstruction detail and, if so, in which mesh regions.

5. Results
5.1. PCA Models

PCA models were constructed from a training dataset of 8,233 densely registered facial
samples. Four models were constructed which contained 16, 32, 64, and 128 principal shape
components and retained 91.94%, 96.25%, 98.36%, and 99.30% of the overall shape variance,
respectively. The test dataset contained 915 samples.

5.2. Model Architecture

Following a grid search, a learning rate of 0.001 with Adam optimisation was used. Optimal
reconstruction and regularisation weights were determined to be 0.9 (Ayec) and 1.2 (Areg),
respectively. Filter sizes of [16, 16,32, 32, 32] were used in the encoder layer of all models.
The reverse was applied to the decoder. All grid searches were performed using a mesh
autoencoder model with 16 PCA and 0 “free” latent variables.

5.3. Autoencoder Accuracy

Encoder, decoder and end-to-end reconstruction accuracy for the retargeted autoencoders
and PCA models are given in Table 5.3. As the PCA weights for all training and testing
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instances were taken as ground truth for the model encoding, encoder accuracies are not
reported for the PCA model. Model sizes are also recorded, where autoencoder models
are shown to have far fewer parameters than the corresponding PCA models. For smaller
latent vector sizes, the retargeted autoencoder performs almost identically PCA model in
both decoder and end-to-end reconstruction accuracy. As the size of the latent vector
increases, the PCA model slightly outperforms that retargeted autoencoder. This may be
partially attributed to the higher encoder error when a larger latent vector size was used.
Differences between decoder and end-to-end reconstruction accuracies are small. This can
likely be attributed to the low encoder error at all latent vector sizes. The encoder error
was shown to increase in an approximately linear fashion with the size of the latent vector.

Interpolation through the latent space is smooth and demonstrates good agreement
between both PCA and AE models as shown in Figure 5.3. The greatest errors occurred at
the shape extremes of the model principal components.

Model LVs Encoder Decoder (mm) E2E (mm) Params.
16 N/A 0.72 £ 0.50 0.72 +£0.50 1,364K
PCA 32 N/A 0.49 £0.35 0.49 £0.35 2, 729K
64 N/A 0.32£0.24 0.32£0.24 5,458 K
128 N/A 0.21 £0.17 0.21 £0.17 10,917K
16 0.017 £ 0.019 0.71£0.49 0.71 £0.50 90K
AR 32 0.025 £ 0.031 0.49 +0.36 0.49 £ 0.36 119K
64 0.044 4-0.051 0.33+0.25 0.334+0.25 176 K
128 0.088 +0.102 0.24 £0.19 0.25£0.20 201K

Table 1: Encoder, decoder, and end-to-end accuracy for the assessed latent variables sizes.
The number of model parameters is also reported.
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Figure 2: Interpolation in the latent space from —3o0 to +3c along the first principal com-
ponent (left) and between two shape instances randomly sampled from a multi-
variate Gaussian distribution (right).
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5.4. “Free” Latent Variables

The impact of introducing the “free” latent variables is reported in Table 5.4. All “free”
latent variables were set to zero when evaluating the decoder accuracy in isolation. The
accuracy of the PCA latent variable encodings was unaffected by the addition of the “free”
latent variables, as was the accuracy of the decoder in isolation. When 16 PCA latent
variables were used, the addition of the “free” latent variables allowed for an increased
end-to-end reconstruction accuracy. This accuracy increased for larger “free” latent vari-
able sizes. When 64 PCA latent variables were used, the introduction of the “free” latent
variables did not have any impact. In both cases, the “free” latent variables conformed to
a Gaussian distribution with zero mean and unit variance.

To assess the impact of the “free” latent variables on the fidelity of mesh reconstruc-
tions, the Gaussian curvature of all reconstructed samples from the test set was calculated.
As only the magnitude of the curvature, K, was of interest, the absolute value was used
when calculating curvature statistics. All autoencoders reported a higher mean Gaussian
curvature than the PCA models. The Gaussian curvature for both PCA and autoencoder
models was also higher when a larger number of latent variables were used. The similar
curvature values for all autoencoder models indicates that the inclusion of the “free” latent
variables did not lead to higher fidelity mesh reconstructions.

The shape changes captured by the “free” latent variables for a model with 16 PCA and
4 “free” latent variables are shown in Figure 5.4.

Model LVs Encoder Decoder (mm) E2E (mm) Gauss. Curv.
PCA 16 N/A 0.72 £ 0.50 0.72 £ 0.50 0.0679 + 0.4681
64 N/A 0.32 +£0.24 0.32 +0.24 0.0681 + 0.4681
AE 16 0.017+£0.019 0.71£0.49 0.71 £0.50 0.0704 + 0.4680
0 free LVs 64 0.044 £+ 0.051 0.33 £0.25 0.33£0.25 0.0707 £ 0.4679
AE 16 0.017+£0.018 0.72 £0.50 0.65 £0.46 0.0707 £ 0.4679
4 free LVs 64 0.044 £+ 0.052 0.33 £0.25 0.33 £0.25 0.0708 + 0.4678
AE 16 0.017 +0.020 0.72 £0.50 0.61 £0.43 0.0705 + 0.4680
8 free LVs 64 0.043 £+ 0.051 0.33 £0.25 0.33 £0.25 0.0708 + 0.4679
AE 16 0.016 +0.019 0.72 £0.50 0.54 £0.39 0.0705 + 0.4680
16 free LVs 64 0.043 + 0.050 0.33 £0.25 0.33 £0.25 0.0707 + 0.4679

Table 2: Encoder, decoder and end-to-end (E2E) model accuracy for the assessed latent
variables sizes. Gaussian Curvature is reported for E2E reconstructions.

6. Findings

The primary hypothesis of this work was that a linear 3DMM constructed using principal
component analysis could be retargeted as a non-linear convolutional mesh autoencoder. As
the reconstruction errors for the test dataset were very similar for the PCA and autoencoder
models, we conclude that the results support this hypothesis. Decoder and end-to-end
autoencoder accuracy were also noted to be very similar to each other. This result, combined
with the low encoder error across all latent vector sizes, indicate a high degree of accuracy in
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Figure 3: Shape changes captured by the “free” latent variables from —3¢ to +3c.
Heatmaps show the per-vertex Euclidean distance between these extremes.

the encoding of the PCA latent vector into the latent space of the autoencoder. While the
decoder error decreases as more components are added to the autoencoder latent space, the
encoder error increases when larger latent vectors sizes are used. One reason for this may
be that as the latent vector size increases, it becomes more difficult to maintain high levels
of accuracy across the larger number latent variables. A second reason is that successive
components in the latent vector represent increasingly small directions of shape variance.
With such minimal shape changes it may be more difficult for the model to accurately learn
these shape variations and how they are related to the encoder values.

The second hypothesis tested in this work was that the introduction of free latent vari-
ables in the latent layer of the convolutional mesh autoencoder would facilitate more accu-
rate mesh reconstructions than could be achieved using PCA latent variables alone. This
was shown to be the case when lower PCA latent vector sizes were used, but the impact
of the “free” latent variables was negligible for larger PCA latent vector sizes were used.
This is explained by the percentage of shape variance has not been captured by the PCA
components at these latent vector sizes. The model with 16 PCA components expresses
only 91.94% of the total shape variance of the training set, and the “free” latent variables
are more effective at increasing the model capacity and reconstruction accuracy. When
64 components are used, however, these already express 98.36% of the shape variance and
there is less scope for the “free” variables to improve the reconstruction quality. Gaussian
curvature experiments demonstrated that the inclusion of the “free” latent variables had
little impact on the fidelity of the mesh reconstructions. All autoencoders were shown to
produce higher fidelity meshes than their PCA counterparts using this metric.

In conclusion, this work demonstrates the successful conversion of a linear PCA model to
a non-linear mesh autoencoder, allowing for equivalent reconstruction accuracy at a smaller
model size. The “free” latent variables allows for more accurate mesh reconstructions at
smaller PCA latent vector sizes, but do not impact the fidelity of the reconstructed meshes.

7. Documented Modifications

An additional grid search was performed to determine the optimal weight for the “free”
latent variable component of the loss term, Ag;. A model with 16 PCA and 8 “free” latent
variables was used. This was required to prevent posterior collapse during training, where
the decoder ignored the values of zf... in the latent vector, resulting in a model that
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performed equivalently to one trained using PCA latent variables only. The optimal KL
weight term, Ay, was determined to be 0.001. The updated loss term took the form:

loss = Arecl|z — &[] + Areg([[2pea = Zpeall + At E LN (b2, 02, ), N(0,1)]) - (5)
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