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Abstract
We propose a novel deep learning framework that focuses on decomposing the motion or
the flow of the pixels from the background for an improved and longer prediction of video
sequences. We propose to generate multi-timestep pixel level prediction using a framework
that is trained to learn the temporal and spatial dependencies encoded in the video data
separately. The proposed framework, called Velocity Acceleration Network or VANet, is
capable of predicting long term video frames for a static scenario, where the camera is
stationary, as well as in dynamic partially observable cases, where the camera is mounted
on a moving platform (cars or robots). This framework decomposes the flow of the image
sequences into velocity and acceleration maps and learns the temporal transformations
using a convolutional LSTM network. Our detailed empirical study on three different
datasets (BAIR, KTH and KITTI) shows that conditioning recurrent networks like LSTMs
with higher order optical flow maps results in improved inference capabilities for videos.

1. Introduction and Related Works

Prediction is an integral part of our day to day planning and decision making process and
it often requires us to understand the complex interactions between the dynamics of various
objects in the environment. This is why it is often considered as a fundamental component
of intelligence (Bubic et al., 2010). Video prediction often decodes much useful information
about the surroundings in a format which is rich in information and can be exploited by
learning algorithms. However, the nature of the complex interactions between the dynamics
of the different objects in a scene, makes long term video prediction a daunting learning
problem (Finn et al., 2016), (Finn and Levine, 2017), (Mathieu et al., 2016), (Villegas
et al., 2017), (Gao et al., 2019), (Villegas et al., 2019). Based on the state of the art
literature, multi-time step video prediction can be broadly divided into two categories: (i)
Video prediction in a fully observable static background where the camera remains still
during the course of the recording (Finn and Levine, 2017), (Mathieu et al., 2016), (Villegas
et al., 2017); and (ii) Video prediction in dynamic background where the camera is mounted
on a moving platform (such as car or a mobile robot). The latter case is often referred to
as prediction in partially observable scenario in the literature (Gao et al., 2019), (Villegas
∗ corresponding author
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et al., 2019). The notion of partial observability comes from the continuous occlusion of the
background from the motion of the camera.

In the context of automation, planning of different manipulation tasks is often asso-
ciated with video prediction in a fully observable environment where the camera is fixed
and stationary. However, in the case of motion planning problems of autonomous cars and
mobile robots, we mostly deal with a partially observable environment as the camera keeps
moving. Combining video prediction with model based policy gradient algorithms (Kaiser
et al., 2020) or planning algorithms in Hafner et al. (2019), improves sample efficiency of
reinforcement learning algorithms by reducing the required number of episodic interactions
with the environment compared to other model free methods without compromising per-
formance. Moreover, Ebert et al. (2018) and Dasari et al. (2019) have recently shown how
visual predictions can aid robot control problems, especially in unstructured environments.

In the last decade, the major focus of understanding spatio-temporal dynamics of video
prediction was mostly confined to the case of fully observable environments with static
cameras (Srivastava et al., 2015), (Oh et al., 2015), (Vondrick et al., 2016), (Finn et al., 2016),
(Mathieu et al., 2016), (Villegas et al., 2017), (Xu et al., 2018), (Wichers et al., 2018). Most
of these frameworks exploit some form of optical flow and content decomposition paradigm
to generate pixel level predictions. Many times these predictions were coupled with an
adversarial training in order to generate realistic images. However, with the availability of
high compute power, there is a recent trend in generating high fidelity video predictions
with various generative architectures such as Generative Adversarial Networks (GAN) and
Variational Autoencoders (VAE) as given in Liang et al. (2017), Denton and Fergus (2018),
Babaeizadeh et al. (2018), Lee et al. (2018), Castrejon et al. (2019), Gao et al. (2019) and
Villegas et al. (2019).

A few of these recent works, Gao et al. (2019) and Villegas et al. (2019) tried to address
the partial observability problem in dynamic scene prediction with the ‘hallucination’ powers
of the generative (GAN and VAE) models. While these frameworks seem to generate realistic
predictions for the moving camera problem, their accuracy comes at the cost of high on-
board compute capabilities, a luxury that most small or medium scale robots cannot afford.
Instead of using stochastic frameworks, we focus on addressing this problem by observing
the physics of motion in two different inertial frames: one associated with the moving
camera and the other one associated with the dynamic objects in the scene. Our framework
is designed with the simple idea of using the relative velocity of the object as it appears
in the inertial frame associated with the camera. For a motion planning problem, the
realistic approximation of the scene in the background does not play any significant role.
However, performance of the motion planner or the policy generator would largely depend
upon how accurately we can approximate the relative motion of the objects in the scene
with respect to the camera. Objects would appear to move faster or slower than their
original velocities in the image frames as the velocity of the camera influences the relative
velocities of the objects. This observation led to the idea of decomposing the flow of the
pixels into two different components of velocity and acceleration. Previous works (Villegas
et al., 2017) on decomposition of video sequences into motion and content, stopped at the
point of using the velocity maps or first order pixel difference maps of two consecutive
frames. Those frameworks work well for fully observable scenarios where the camera is
stationary. However, when the recording agent itself is dynamic, we need to decompose the
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motion further into the second order pixel difference maps that we refer to as acceleration
maps along with the velocity maps. Deterministic models often suffer from the problem of
collective averaging of predicted pixels values resulting in blurry image frames compared to
their stochastic counterparts. However, unlike VAEs, deterministic models do not require
large computational resources which makes them suitable for small scale robotic applications
and this is why we propose to study the comparative performance of the proposed second
order deterministic visual prediction model with stochastic frameworks such as SVAP (Lee
et al., 2018) and SVG (Denton and Fergus, 2018)
In this paper we have conducted a fairly extensive empirical study on the performance of our
generalised physics based deterministic prediction framework, VANet, and compared it to
the state of the art generative architectures in the context of a generalised problem of video
prediction in a partially observable environment. We also propose a new generalised loss
function that helps the deep frameworks learn to reconstruct the velocity and acceleration
maps associated with each video frame.

2. Video Prediction with Proposed VANet

For a generalised set up, where the camera is mounted on a dynamic platform moving on a
smooth trajectory, the relative velocity vector of any object appearing on the camera frame
gets modified continuously. We intend to capture the dynamics of this changing relative
velocity vector with a first order pixel difference or velocity map and a second order pixel
difference map that we call acceleration map. Thus, we need 3 consecutive image frames
(xt,xt−1,xt−2) at timestep t, t − 1 and t − 2 to make prediction of the future frame xt+1

at timestep t+ 1, where xt ∈ Rw×h×c represents the image frame at time t with dimension
w × h × c. Due to the physics based design of our framework our network is highly
interpretable. Our framework can be thought of as the next generation and more improved
version of the Motion and Content network (MCNet) proposed by Villegas et al. (2017).
While MCNet pioneered the idea of disentangling first order pixel difference map from images
sequences with a motion encoder for unsupervised video prediction, we further generalised
it to incorporate the complex interactions between the dynamics of the camera and object
inertial frames. The entire algorithm which we refer to as the Velocity Acceleration Network
(VANet) as shown in figure 1, can be decomposed into the following components:

I. Velocity Encoder: The velocity encoder (fvel), parameterised with θvel, is designed
to capture the temporal dependencies embedded in the velocity map of two consecutive
image frames, xt and xt−1 at time t and t − 1, respectively. This network takes the
velocity map vt = (xt − xt−1) ∈ Rw×h×c at time t as input and maps them into
two tensors: velocity feature encoding vent ∈ Rw

′×h′×c′ and the memory cell state
cvelt ∈ Rw

′×h′×c′ at time t as:

(vent , c
vel
t ) = fvel(vt,v

en
t−1, c

vel
t−1; θ

vel) (1)

The memory cell state cvelt captures the temporal structure embedded in the velocity
maps of v1:t. fvel is designed with convolutional LSTM (Shi et al., 2015) networks and
in essence, embeds the velocity component of the pixel space into a low dimensional
spatio-temporal feature space.
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Figure 1: Architecture of VANet while being trained on the KITTI raw dataset. The net-
work learns the temporal dependencies from the velocity and acceleration encoders
which takes the first and second order pixel difference maps as inputs, respectively.
The content encoder takes the last or nth frame as input to encode the spatial
information. Content convolution network combines the spatial encoding with the
motion features. Similarly, the residues from the content, velocity and accelera-
tion encoders are fused together in the residue convolution network. Finally, the
decoder generates the predicted future frame.

II. Acceleration Encoder: The acceleration encoder (facc) parameterised with θacc is
designed similar to the velocity encoder with only difference of capturing the temporal
dependencies embedded in the acceleration map of two consecutive velocity maps,
vt and vt−1 at time t and t − 1, respectively. This network takes acceleration map
at = (vt − vt−1) ∈ Rw×h×c as input and generates two tensors: acceleration feature
encoding aent ∈ Rw

′×h′×c′ and the memory cell state cacct ∈ Rw
′×h′×c′ at time t as

follows:
(aent , c

acc
t ) = facc(at,a

en
t−1, c

acc
t−1; θ

acc) (2)

The memory cell state cacct captures the temporal structure embedded in the acceler-
ation maps of a1:t. This encoder is also designed with convolutional LSTM networks
and maps the acceleration component of the pixel space into a low dimensional spatio-
temporal latent space.

III. Content Encoder: The content encoder (f con), parameterised with θcon, is designed
to encapsulate the spatial information embedded in the latest image frame xt with
a convolutional neural network. The idea here is to map the high dimensional image
frames xt ∈ Rw×h×c into a low dimensional spatial feature embedding xent ∈ Rw

′×h′×c′ .
Mathematically, it can be represented as:

xent = f con(xt; θ
con) (3)
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IV. Content Convolution Network: This is the part where we start combining the
spatial encoding xent coming from the content encoder network with the motion en-
coding of vent and aent . We first combine velocity and acceleration encoding, [vent ,aent ]

∈ Rw
′×h′×2c

′
, through convolution operations to create the final relative velocity en-

coding vrel
en
t ∈ Rw

′×h′×c′ as:

vrel
en
t = fmotion([vent ,a

en
t ]; θmotion) (4)

We then combine the relative velocity encoding vrel
en
t with the spatial feature encod-

ing tensor xent with layers of convolution operation and generate the spatio-temporal
feature embedding for the next time-step, x̂ent+1 ∈ Rw

′×h′×c′ given as

x̂ent+1 = f conv([xent ,vrel
en
t ]; θconv) (5)

Here, fmotion and f conv are both designed using CNN having bottleneck architec-
ture (Hinton and Salakhutdinov, 2006), that first projects tensor pairs [vent ,a

en
t ] and

[xent ,vrel
en
t ] into a low dimensional feature space and then pulls them back to the

original feature space of w′ × h′ × c′ .

V. Residue Convolution Network: The idea of temporal transformation of the residues
generated from the f con in order to compensate for the loss of information from mapping
the high dimensional image frames xt ∈ Rw×h×c to a low dimensional feature space
xent ∈ Rw

′×h′×c′ was introduced in Villegas et al. (2017). We carry forward the same
idea of multi-scale motion-content residue network but with a modified relative residue
velocity encoding [v̌enrelt ]

i ∈ Rwi×hi×ci at layer i given as:

[v̌enrelt ]
i = fmotionres ([v̌ent , ǎ

en
t ]; θmotionres )i (6)

where, [v̌ent ]i and [ǎent ]i are the residue velocity and acceleration encoding from the ith

layer of fvel and facc, respectively. The relative residue velocity encoding [v̌enrelt ]
i is

then combined with the content residue [x̌ent ]i generated from the ith layer of f con as:

[rent+1]
i = f convres ([x̌ent , v̌

en
relt ]; θ

conv
res ) (7)

Like the content convolution network, fmotionres and f convres also uses the CNN bottleneck
architecture to combine the tensor pair of [v̌ent , ǎent ] and [x̌ent , v̌

en
relt

].

VI. Decoder: Finally, we up-pool the spatio-temporal feature embedding x̂ent+1 and com-
bine it with the residual encoding of [rent+1]

i in a layer-wise manner to generate the final
prediction of x̃t+1. The decoder network gdec maps the reduced dimensional x̂ent+1 ∈
Rw
′×h′×c′ back into the high dimensional pixel level representation of x̃t+1 ∈ Rw×h×c,

which is same as the original image frames, given as:

x̃t+1 = gdec([x̂ent+1, r
en
t+1; θ

dec) (8)

where, rent+1 is a list of all residual encoding from f convres from all its layers. The decoder,
gdec uses deconvolutional neural networks (Zeiler et al., 2011) which basically consists
of multiple successive operations of deconvolution, rectification and unpooling. The
residual embeddings from f convres is combined via the connection between the Residual
Convolution Network and the decoder in a layer-wise manner. The final output layer
is passed through a tanh non-linearity.
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3. Inference and Training

3.1. Inference of multi-time step prediction

In Section 2 we discussed how to make prediction for immediate future frame xt+1 at time-
step t with image frames xt, xt−1 and xt−2 at timesteps {t, t−1, and t−2} and velocity maps
vt and vt−1. However, for multi-time step prediction, the network observes the velocity and
acceleration maps for the last n frames as the difference between image frames xt and xt−1

and velocity maps vt and vt−1, where t ∈ {2, n}, and we assume x1 is the first observed
frame. From this history of past n frames the velocity and acceleration encoders learns the
relative pixel dynamics of the scene and then the final frame xn is given as input to the
Content Encoder. The network then transforms xn into x̃t+1 with the learned dynamics
features. For t ∈ [n + 1, n + T ], where T is the desired number of prediction steps, VANet
starts using its own prediction as input to generate the velocity and acceleration maps.

3.2. Training and Loss function

Since, VANet shares many structural similarities with the architecture of MCNet in Mathieu
et al. (2016), we also divided the loss function L into two major sub-loss functions as:

L = αLimage + βLadv (9)

where, Limage and Ladv constitutes the image loss and loss from adversarial training, respec-
tively, and α, β ∈ R+. We further subdivide Limage into two components: (i) reconstruction
loss Lrecon and (ii) the total gradient difference loss LTGDL as follows:

Limage = Lrecon + LTGDL (10)

The reconstruction loss Lrecon is the total Lp norm distance between the ground truth image
frame xn+i and predicted future frames x̃t+i for i ∈ {1, .., T} averaged over the entire dataset
of D = {xi1,··· ,n,n+1,··· ,n+T }Ni=1 and is given by:

Lrecon(xn+1:n+T , x̃n+1:n+T ) =
n+T∑
i=n+1

‖xn+i − x̃n+i‖p (11)

with p = 1 or 2. We introduce the total gradient difference loss (LTGDL) which is further
divided into gradient difference loss from the predicted image frames (LGDL) and velocity
gradient difference loss from the velocity maps generated from the predicted image frames
(LV GDL) as:

LTGDL = LGDL + LV GDL (12)

where,

LGDL(x, x̃) =
n+T∑
t=n+1

w,h∑
i,j

||xt,i,j − xt−1,i,j | − |x̃t,i,j − x̃t−1,i,j ||λ+

+||xt,i,j − xt,i−1,j | − |x̃t,i,j − x̃t,i−1,j ||λ + ||xt,i,j − xt,i,j−1| − |x̃t,i,j − x̃t,i,j−1||λ
(13)
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Here, LGDL in Eq. (12) is similar to the Lgdl loss in Villegas et al. (2017) in that it gives
an average of the gradient difference loss between the predicted frames and ground truth.
However, unlike Villegas et al. (2017), we also include the component of temporal difference
loss: ||xt,i,j −xt−1,i,j | − |x̃t,i,j − x̃t−1,i,j ||λ in the expression of LGDL in Eq. (13), so that the
velocity encoder can learn the pixel dynamics more efficiently. Here, λ can be chosen to be
1 or 2. Further,

LV GDL(x, x̃) =
n+T∑
t=n+1

w,h∑
i,j

||vt,i,j − vt−1,i,j | − |ṽt,i,j − ṽt−1,i,j ||λ+

+||vt,i,j − vt,i−1,j | − |ṽt,i,j − ṽt,i−1,j ||λ + ||vt,i,j − vt,i,j−1| − |ṽt,i,j − ṽt,i,j−1||λ
(14)

The expression for velocity gradient difference loss LV GDL given in Eq. (14) is similar to
that of LGDL in Eq. (13) with the replacement of x and x̃ with the ground truth velocity
maps v and predicted velocity maps ṽ, respectively. The LV GDL loss is designed so that
the acceleration encoder can disentangle and approximate the motion of the pixel dynamics
to the second order.

Due to the averaging effect to the reconstruction loss Limage and the blurring effects
introduced with the convolution operations, we add an adversarial loss Ladv to the total loss
L in Eq. (9). Similar to Mathieu et al. (2016), Ladv is defined as:

Ladv = −logD([x1:n, G(x1:n)]) (15)

where, [x1:n] is the concatenation of all input images and G(x1:n) = [x̃n+1:n+T ] generates
the concatenation of all the predicted future images. Let [xn+1:n+T ] be the concatenation
of all ground truth images and D(.) be the output from the discriminator network which is
trained with the loss function:

Ldec = −logD([x1:n, [xn+1:n+T ])− log(1−D([x1:n, G(x1:n)])) (16)

4. Experimental Setup and Methodology

In order to test the proposed framework, we tested it with three different task objectives
following similar empirical analysis done by Villegas et al. (2019). We have evaluated the
performance of the network with respect to the structural integrity of the predicted frames
with respect to the ground truth. We also conducted rigorous studies using five different
metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), VGG Cosine
Similarity, Fréchet Video Distance (FVD) (Unterthiner et al., 2018).

1. Object Interaction: We evaluated our network on the BAIR towel pick dataset
given by Ebert et al. (2018) in order to evaluate its performance in different object
interaction tasks. This dataset represents the interaction between different objects and
a manipulator. Due to the stochastic nature of the interaction between the objects and
the manipulator, our deterministic faces some limitation in long term prediction tasks.
However, this type of detailed comparative analysis helps to establish a baseline for the
limitation of deterministic video prediction networks in comparison to their stochastic
neighbors like SVG (Villegas et al., 2019).
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2. Structured Motion: One of the well established structured motion prediction datasets
is the KTH (Schuldt et al., 2004) human action dataset. Although this dataset is
recorded in a fully observable setting, tracking the complex human motion for long
duration is a daunting task. Thus, comparing the performance of VANet with SVG and
MCNet establishes how our proposed framework performs in comparison to the state
of the art generative as well as deterministic methods. The analysis of the compara-
tive performance between VANet and MCNet is of particular interest here as it would
help us understand whether the proposed generalised approach toward decomposing
motion into velocity and acceleration maps provides any improvement or not.

3. Partial Observability: Given that the primary objective of the proposed VANet is
to generate predictions of object motion in a partially observable scenario, we focus
majority of our testing and comparative analysis on this type of tasks. Right now,
the only dataset that provides the scope of analysing our network’s performance in a
partially observable scenario, is KITTI (Geiger et al., 2013) dataset. Here, the video is
recorded from a camera fixed on the dashboard of a moving car. Thus, the background
of the images keeps getting updated and creates complex interactions between the
moving objects on the streets and the relative velocity of the camera.

Ablation Study

We have also conducted a thorough ablation study on our proposed framework by removing
various components from it. We have already studied the effects of removing the accelera-
tion encoder from the network when we compare between the performance between VANet
and MCNet. However, due to the modular nature of our proposed loss function we can
further study the effects of turning off various components of the loss function while back
propagating through the network. We trained VANet without the adversarial loss which we
refer to as the VANetwoGAN to study how adversarial training effects generative capabilities
of VANet. For VANetwoGAN the loss function in Eq. (9) is simply L = Limage. We also
trained VANetNoTD which stands for VANet with no temporal difference loss. In order to
train VANetNoTD, we modified the expression for LTGDL to contain only spatial difference
terms and no temporal difference terms. For example, we modified LGDL and LV GDL from
Eq. (13) and Eq. (14) respectively, for VANetNoTD as:

LGDL(x, x̃) =
n+T∑
t=n+1

w,h∑
i,j

||xt,i,j − xt,i−1,j | − |x̃t,i,j − x̃t,i−1,j ||λ+

+||xt,i,j − xt,i,j−1| − |x̃t,i,j − x̃t,i,j−1||λ
(17)

LV GDL(x, x̃) =
n+T∑
t=n+1

w,h∑
i,j

||vt,i,j − vt,i−1,j | − |ṽt,i,j − ṽt,i−1,j ||λ+

+||vt,i,j − vt,i,j−1| − |ṽt,i,j − ṽt,i,j−1||λ
(18)
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(a) (b) (c)

Figure 2: Comparative analysis on the performance of FVD score (lower is better) of VANet,
MCNet and SVG on 3 different datasets of BAIR, KTH and KITTI shown respec-
tively

(a) (b) (c)

Figure 3: Frame wise quantitative analysis of VANet, MCNet and SVG on BAIR dataset
for predicting 10 frames into future conditioned on the past history of 10 frames.
We have plotted the mean performance index for VGG Cosine Similarity, PSNR
and SSIM (left to right) on the test data-set for each of the networks.

5. Experimental Results

5.1. Object Manipulation with Robotic Arm

We used the towel pick data-set from Ebert et al. (2018) for capturing the stochastic nature of
interaction between a robotic manipulator and various objects. The predicted future frames
are conditioned on the action taken by the manipulator. However, in order to capture the
true stochastic nature of the predicted future frames, our network is trained to predict future
frames conditioned only on the past images frames. This makes our study different from the
previous works by Villegas et al. (2019) and Denton and Fergus (2018) where the networks
were hard-coded so that the predictions were also conditioned on the action taken by the
manipulator. Our predictions are trained to be conditioned on the past 10 frames and
predicts 10 future frames at both training and test time. Similar to Villegas et al. (2019)
we also resized the original image resolution from 48× 64 to 64× 64 during training.

The network is trained on 27,744 small clips of a robotic arm picking and placing towel
objects in the work-space and tested on 1584 video clips of 20 frames each. We trained with
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(a) (b) (c)

Figure 4: Frame wise quantitative analysis of VANet, MCNet and SVG on KTH human
action dataset for predicting 20 frames into future based on the past history of 10
frames. We have plotted the mean performance index for VGG Cosine Similarity,
PSNR and SSIM (left to right) on the test data-set for each of the networks.

(a) (b) (c)

Figure 5: Frame wise quantitative analysis of VANet, MCNet and SVG on KITTI dataset
for predicting 25 frames into future conditioned on the past history of 5 frames.
We plotted the mean performance index for VGG Cosine Similarity, PSNR and
SSIM (left to right) on the test data-set for each of the networks

Adam optimizer (Kingma and Ba, 2015) with a learning rate of 0.0001, β1 = 0.5 and batch
size of 8. The other hyper-parameters for the training are chosen as: β = 0.0001, α = 1.0.

Quantitative Evaluation: As discussed in Section 4. we used 4 different evaluation
metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), VGG16
Cosine Similarity, Fréchet Video Distance (FVD), respectively, to provide a detailed
comparative study on the performance of VANet with respect to other stochastic as
well as deterministic video prediction networks. Since VANet is a direct extension of
the previous deterministic framework of MCNet by Villegas et al. (2017), we chose
MCNet as the baseline for deterministic video prediction frameworks for our analy-
sis. There are multiple stochastic frameworks already available in the literature such
as SVG by Denton and Fergus (2018), SAVP by Lee et al. (2018) and high fidelity
stochastic RNN networks by Villegas et al. (2019) for the task of object manipulation.
We chose the work on stochastic learned priors by Denton and Fergus (2018) as the
baseline for stochastic frameworks, since most of the current state of the art variational

367



Decomposing camera and object motion for an improved video sequence prediction

inference frameworks are direct extension of the stochastic video generation work by
Denton and Fergus (2018).
Out of the 4 evaluation matrices, FVD measures the spatio-temporal perturbations
of the generated videos in its entirety with respect to the ground truth based on the
Fréchet Inception Distance (FID). FID is used to evaluate the quality for images from
generative frameworks. We presented the box-plots of FVD index from VANet, MC-
Net and SVG in Fig. 2(a). For frame-wise evaluation we provided the comparative
performance plots on VGG16 cosine similarity index in Fig. 3(a), similar to the pre-
vious works by Villegas et al. (2019) and Lee et al. (2018). VGG16 cosine similarity
index measures the cosine similarity between the flattened high level feature vectors ex-
tracted from the VGG network (Simonyan and Zisserman, 2015) provides insights into
the differences between the generated and ground truth video frames at the perceptual
level. PSNR and SSIM are the most commonly used frame level similarity indexes in
the current literature and are plotted in Fig. 3(b) and Fig. 3(c), respectively.
From Fig. 3(a), Fig. 3(b) and Fig. 3(c), it can be seen that at frame level for
the towel manipulation task, both the deterministic frameworks VANet and MCNet
performs similarly. However, the lower FVD score of VANet compared to MCNet
suggests that as a whole the videos generated from VANet are slightly better than
the ones generated by MCNet. The similar performace of MCNet and VANet for the
object manipulation task was expected for this particular dataset since VANet does
not offer any considerable advantage over MCNet when the videos are captured from
a stationary platform. It should also be noted from Fig 2(a) that SVG outperforms
both MCNet and VANet on the towel picking task since SVG is capable of animating
the inherent stochastic nature of the task by learning the associated noise priors.

Qualitative Evaluation: We provide the raw video frames from VANet, MCNet and
SVG in Fig. 6 which shows that both VANet and MCNet suffers from blurring effects
after the first few predicted frames due to the averaging all future effect ((Villegas
et al., 2019) and Denton and Fergus (2018)) of deterministic frameworks. Although in
case of VANet the averaging effect is lesser than MCNet.

5.2. Structured Human Motion

Next, we trained VANet, MCNet and SVG on the KTH (Schuldt et al., 2004) human action
dataset. We use Adam optimization with learning rate of 0.0001, batch size of 8, β1 = 0.9,
β = 0.001 and α = 1.0 for training VANet. We train MCNet and SVG on KTH dataset
following the hyper-parameters specified in Villegas et al. (2017) and Denton and Fergus
(2018), respectively. During training the networks make predictions for the next 10 frames
conditioned on 10 frames from the past. During test time the networks generate 20 frames
into the future. Each image frame is resized to the resolution of 64× 64 during training and
inference. The KTH action data-set contains 6 different category of human action: walking,
running, jogging, hand-waving, clapping and boxing, respectively, which are divided into
training and test sets containing 1528 and 787 small video clips, respectively.

Quantitative Evaluation: The comparative performance-plots on 4 different in-
dexes: FVD, VGG cosine similarity, PSNR and SSIM are shown in Fig. 2(b) and Fig.
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t=1 t=5 t=9 t=11 t=13 t=15 t=17 t=19

Ground Truth

VANet

MCNet

SVG

Figure 6: Raw image frames from the predictions on BAIR dataset by VANet, MCNet and
SVG network. We provided 10 input frames as history to the network and 10
future frames are predicted.

t=1 t=5 t=7 t=11 t=13 t=14 t=15 t=18 t=19 t=20 t=21 t=22

Ground Truth

VANet

MCNet

SVG

Figure 7: Predictions on KTH Human Action dataset by VANet, MCNet and SVG network.
the networks predicts 20 frames into future conditioned on the 10 image frames
from the past.

4, respectively. From the plots given in Fig. 4, it can be easily inferred that VANet
clearly outperforms MCNet in both frame wise similarity indexes as well as on the
overall integrity of generated videos as indicated from the lower FVD score.

Qualitative Evaluation: Examples of raw video frames from the test set generated
by VANet, MCNet and SVG are provided in Fig. 7. From Fig. 7, we can see that all
the 3 networks produce decent predictions of up to 15 frames into the future from the
10 past input frames. Out of the 3 datasets in our study, KTH human action dataset
is the least stochastic one. However, the challenge here is to approximate the complex
dynamics between different limbs of the human body involved in the 6 different actions
and from Fig. 4 and Fig. 7 we can infer that all the 3 networks perform adequately
on this dataset.
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t=1 t=3 t=5 t=6 t=7 t=8 t=13 t=14 t=15 t=20 t=21 t=22

Ground Truth

VANet

MCNet

SVG

Figure 8: Predictions on partially observable KITTI dataset by VANet, MCNet and SVG.
During training the networks were training on 5 input frames and a future pre-
diction of 10 frames. During inference we increase the predicted frames to 25
frames

5.3. Partially Observable Car Driving

Finally, we train our network on the KITTI (Geiger et al., 2013) dataset to test its perfor-
mance in a partially observable scenario. The dataset contains video clips from the front
camera of a car driving down the the streets in Germany. While the original KITTI Raw
dataset is much larger, we only selected the videos from the 3 sub-categories of the city,
residential neighborhoods, and on the road similar to Villegas et al. (2019). Unlike Villegas
et al. (2019) we have taken 50 videos as training set and the remains 11 videos containing
clips from all 3 sub-categories are used for testing. These 50 videos are then broken down
into smaller video clips of 30 frames each during training and for the test set, the videos are
broken down into clips of 40 frames each. We also maintained a gap of 5 frames between each
clip during both training and testing time so that each clip is different from the other. We
trained the network to predict 10 frames into future from 5 frames from the past. However,
during testing we generated 25 frames into future conditioned on the 5 frames from past.
We used Adam optimizer with learning rate of 0.0001, batch size of 8, β1 = 0.9, β = 0.0001
and α = 1.0. We used these similar hyper-parameters for training MCNet too. For training
SVG, we followed the parameter provided by Denton and Fergus (2018) to train the Towel
pick dataset.

Quantitative Evaluation: The plots for the quantitative performance analysis on
the 4 different indexes of FVD, VGG cosine similarity, PSNR and SSIM are given in
Fig. 2(c) and 5, respectively for VANet, MCNet and SVG. Since this is a scenario
which encapsulates the complicated interaction between the dynamics of the objects
(for instance, other cars on the road) and the camera platform, we can observe the
clear difference between the quality of predictions generated by VANet and MCNet in
Fig. 5.

Qualitative Evaluation: Examples of raw video frames from the test set generated
by VANet, MCNet and SVG are provided in Fig. 8. For Fig. 8, we can see that in
case of MCNet, the image quality starts to degrade rapidly after the first 4-5 predicted
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(a) (b) (c)

Figure 9: Ablation study of VANet, VANet without adversarial training and VANet without
temporal difference loss in LTGDL on KTH human action dataset for predicting
20 frames into future based on the past history of 10 frames. We have plotted
the median FVD scores, mean performance index for VGG Cosine Similarity and
PSNR values on the test data-set for each of the networks.

frames. With VANet, this degradation rate is much slower and it can generate decent
predictions of up to 15 frames into the future (second row from top in Fig. 8). We also
noticed from our simulations that both MCNet and VANet sometimes tend to over
estimate the velocity of an upcoming car. However, this over estimation of velocity is
rarer and much smaller in case of VANet compared to MCNet.

6. Discussion

The comparative performance analysis between VANet and MCNet clearly shows that
VANet outperforms MCNet on both the dynamic evaluation of the entire generated video
with lower FVD scores and higher VGG16 cosine similarity, SSIM and PSNR values for
better frame-wise structural integrity. The only time MCNet achieves a higher structural
similarity score is with the VGG16 cosine similarity index for KTH human action dataset.
However, the lower FVD score of VANet and higher SSIM and PSNR values suggests that
VANet generates better predictions for the future.

We also point out that from the frame-wise similarity plots given in Fig. 3, Fig. 4 and
Fig. 5, it appears that performance of SVG is poorer compared to VANet. We believe this
has happened due to insufficient number of training iteration of the network. However, we
can see that SVG clearly out-performs the other two networks with a lower FVD score for
the towel manipulation task.

7. Ablation Study

As discussed in Section 4 we also conducted an ablation study on the effects of switching off
various generative and temporal component of the loss functions given in Eq. (9). A quick
review of PSNR values in Fig. 9(b) suggests that all the networks performs similar to each
other. However, the relatively lower FVD score of VANet and VANetNoTD in Fig. 9(a) and
higher VGG16 similarity index compared to VANetwoGAN in Fig. 9(c) suggests that the
adversarial training provides considerable improvement in the quality of the predictions.
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8. Conclusion

In this paper we have presented a novel physics-based video prediction framework called
VANet that exploits first and second order pixel difference flow maps for better approxi-
mation of object and camera motion. We have presented a comprehensive study on the
performance of VANet compared to two other states of the art stochastic (SVG) and deter-
ministic (MCNet) video prediction framework on three different video datasets. Each of our
3 datasets: BAIR towel pick, KTH human motion and KITTI autonomous car, represents
unique challenges for the video predictions task.

The detailed study on the performance of VANet provides an empirical proof that higher
order optical flow maps (in this case the first and second order pixel difference maps) can
improve the approximating capabilities of the Spatio-Temporal prediction frameworks. This
however raises another interesting question on the relation/trade-off between the degree of
quantitative improvement in the quality of the generated predictions and the highest order
of the optical flow map required by the network.

More details on our project with our code can be found here: https://meenakshisarkar.
github.io/Motion-Prediction-and-Planning/vanet/
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