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Abstract

We propose a nonparametric generalization of
belief propagation, Kernel Belief Propagation
(KBP), for pairwise Markov random fields. Mes-
sages are represented as functions in a repro-
ducing kernel Hilbert space (RKHS), and mes-
sage updates are simple linear operations in the
RKHS. KBP makes none of the assumptions
commonly required in classical BP algorithms:
the variables need not arise from a finite do-
main or a Gaussian distribution, nor must their
relations take any particular parametric form.
Rather, the relations between variables are rep-
resented implicitly, and are learned nonparamet-
rically from training data. KBP has the advan-
tage that it may be used on any domain where
kernels are defined (Rd, strings, groups), even
where explicit parametric models are not known,
or closed form expressions for the BP updates
do not exist. The computational cost of mes-
sage updates in KBP is polynomial in the train-
ing data size. We also propose a constant time
approximate message update procedure by rep-
resenting messages using a small number of ba-
sis functions. In experiments, we apply KBP to
image denoising, depth prediction from still im-
ages, and protein configuration prediction: KBP
is faster than competing classical and nonpara-
metric approaches (by orders of magnitude, in
some cases), while providing significantly more
accurate results.

1 Introduction
Belief propagation is an inference algorithm for graphical
models that has been widely and successfully applied in a
great variety of domains, including vision (Sudderth et al.,
2003), protein folding (Yanover & Weiss, 2002), and turbo
decoding (McEliece et al., 1998). In these applications,
the variables are usually assumed either to be finite dimen-
sional, or in continuous cases, to have a Gaussian distri-
bution (Weiss & Freeman, 2001). In many applications of
graphical models, however, the variables of interest are nat-

Appearing in Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2011, Fort Laud-
erdale, FL, USA. Volume 15 of JMLR: W&CP 15. Copyright
2011 by the authors.

urally specified by continuous, non-Gaussian distributions.
For example, in constructing depth maps from 2D images,
the depth is both continuous valued and has a multimodal
distribution. Likewise, in protein folding, angles are mod-
eled as continuous valued random variables, and are pre-
dicted from amino acid sequences. In general, multimodal-
ities, skewness, and other non-Gaussian statistical features
are present in a great many real-world problems. The corre-
sponding inference procedures for parametric models typ-
ically involve integrals for which no closed form solutions
exist, and are without computationally tractable exact mes-
sage updates. Worse still, parametric models for the rela-
tions between the variables may not even be known, or may
be prohibitively complex.

Our first contribution in this paper is a novel generalization
of belief propagation for pairwise Markov random fields,
Kernel BP, based on a reproducing kernel Hilbert space
(RKHS) representation of the relations between random
variables. This extends earlier work of Song et al. (2010)
on inference for trees to the case of graphs with loops. The
algorithm consists of two parts, both nonparametric: first,
we learn RKHS representations of the relations between
variables directly from training data, which removes the
need for an explicit parametric model. Second, we pro-
pose a belief propagation algorithm for inference based
on these learned relations, where each update is a linear
operation in the RKHS (although the relations themselves
may be highly nonlinear in the original space of the vari-
ables). Our approach applies not only to continuous-valued
non-Gaussian variables, but also generalizes to strings and
graphs (Schölkopf et al., 2004), groups (Fukumizu et al.,
2009), compact manifolds (Wendland, 2005, Chapter 17),
and other domains on which kernels may be defined.

A number of alternative approaches have been developed to
perform inference in the continuous-valued non-Gaussian
setting. Sudderth et al. (2003) proposed an approximate
belief propagation algorithm for pairwise Markov random
fields, where the parametric forms of the node and edge
potentials are supplied in advance, and the messages are
approximated as mixtures of Gaussians: we refer to this
approach as Gaussian Mixture BP (this method was in-
troduced as “nonparametric BP”, but it is in fact a Gaus-
sian mixture approach). Instead of mixtures of Gaussians,
Ihler & McAllester (2009) used particles to approximate
the messages, resulting in the Particle BP algorithm. Both
Gaussian mixture BP and particle BP assume the potentials
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to be pre-specified by the user: the methods described are
purely approximate message update procedures, and do not
learn the model from training data. By contrast, kernel BP
learns the model, is computationally tractable even before
approximations are made, and leads to an entirely differ-
ent message update formula than the Gaussian Mixture and
Particle representations.

A direct implementation of kernel BP has a reason-
able computational cost: each message update costs
O(m2dmax) when computed exactly, where m is the num-
ber of training examples and dmax is the maximum degree
of a node in the graphical model. For massive data sets
and numbers of nodes, as occur in image processing, this
cost might still be expensive. Our second contribution is
a novel constant time approximate message update proce-
dure, where we express the messages in terms of a small
number ` � m of representative RKHS basis functions
learned from training data. Following an initialization cost
linear in m, the cost per message update is decreased to
O(`2dmax), independent of the number of training points
m. Even without these approximate constant time updates,
kernel BP is substantially faster than Gaussian mixture BP
and particle BP. Indeed, an exact implementation of Gaus-
sian mixture BP would have an exponentially increasing
computational and storage cost with number of iterations.
In practice, both Gaussian mixture and particle BP require
a Monte Carlo resampling procedure at every node of the
graphical model.

Our third contribution is a thorough evaluation of kernel BP
against other nonparametric BP approaches. We apply both
kernel BP and competing approaches to an image denoising
problem, depth prediction from still images, protein con-
figuration prediction, and paper topic inference from ci-
tation networks: these are all large-scale problems, with
continuous-valued or structured random variables having
complex underlying probability distributions. In all cases,
kernel BP performs outstandingly, being orders of magni-
tude faster than both Gaussian mixture BP and particle BP,
and returning more accurate results.

2 Markov Random Fields And Belief
Propagation

We begin with a short introduction to pairwise Markov ran-
dom fields (MRFs) and the belief propagation algorithm.
A pairwise Markov random field (MRF) is defined on an
undirected graph G := (V, E) with nodes V := {1, . . . , n}
connected by edges in E . Each node s ∈ V is associated
with a random variable Xs on the domainX (we assume
a common domain for ease of notation, but in practice
the domains can be different), and Γs := {t|(s, t) ∈ E}
is the set of neighbors of node s with size ds := |Γs|.
In a pairwise MRF, the joint distribution of the variables
X := {X1, . . . , X|V|} is assumed to factorize according to
a model P(X) = 1

Z

∏
(s,t)∈E Ψst(Xs, Xt)

∏
s∈V Ψs(Xs),

where Ψs(Xs) and Ψst(Xs, Xt) are node and edge poten-
tials respectively, and Z is the partition function that nor-
malizes the distribution.

The inference problem in an MRF is defined as calculat-
ing the marginals P(Xs) for nodes s ∈ V and P(Xs, Xt)
for edges (s, t) ∈ E . The marginal P(Xs) not only pro-
vides a measure of uncertainty of Xs, but also leads to a
point estimate x?s := argmaxP(Xs). Belief Propagation
(BP) is an iterative algorithm for performing inference in
MRFs (Pearl, 1988). BP represents intermediate results of
marginalization steps as messages passed between adjacent
nodes: a message mts from t to s is calculated based on
messages mut from all neighboring nodes u of t besides
s, i.e.,

mts(Xs) =

∫
X

Ψst(Xs, Xt)Ψt(Xt)
∏
u\s

mut(Xt)dXt. (1)

Note that we use
∏

u\s to denote
∏

u∈Γt\s, where it is un-
derstood that the indices range over all neighbors u of t ex-
cept s. This notation also applies to operations other than
the product. The update in (1) is iterated across all nodes
until a fixed point,m?

ts, for all messages is reached. The re-
sulting node beliefs (estimates of node marginals) are given
by B(Xs) ∝ Ψs(Xs)

∏
t∈Γs

m?
ts(Xs).

For acyclic or tree-structured graphs, BP results in node
beliefs B(Xs) that converge to the node marginals P(Xs).
This is generally not true for graphs with cycles. In many
applications, however, the resulting loopy BP algorithm
exhibits excellent empirical performance (Murphy et al.,
1999). Several theoretical studies have also provided in-
sight into the approximations made by loopy BP, partially
justifying its application to graphs with cycles (Wainwright
& Jordan, 2008; Yedidia et al., 2001).

The learning problem in MRFs is to estimate the node and
edge potentials, which is often done by maximizing the ex-
pected log-likelihood EX∼P?(X)[logP(X)] of the model
P(X) with respect to the true distribution P?(X). The re-
sulting optimization problem usually requires solving a se-
quence of inference problems as an inner loop (Koller &
Friedman, 2009); BP is often deployed for this purpose.

3 Properties of Belief Propagation
Our goal is to develop a nonparametric belief propagation
algorithm, where the potentials are nonparametric func-
tions learned from data, such that multimodal and other
non-Gaussian statistical features can be captured. Most
crucially, these potentials must be represented in such a
way that the message update in (1) is computationally
tractable. Before we go into the details of our kernel BP
algorithm, we will first explain a key property of BP, which
relates message updates to conditional expectations. When
the messages are RKHS functions, these expectations can
be evaluated efficiently.
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Yedidia et al. (2001) showed BP to be an iterative algorithm
for minimizing the Bethe free energy, which is a variational
approximation to the log-partition function, logZ, in the
MRF model P(X). The beliefs are fixed points of BP al-
gorithm if and only if they are zero gradient points of the
Bethe free energy. In Section 5 of the Appendix, we show
maximum likelihood learning of MRFs using BP results in
the following equality, which relates the conditional of the
true distribution, the learned potentials, and the fixed point
messages,

P?(Xt|Xs) =
Ψst(Xs, Xt)Ψt(Xt)

∏
u\sm

?
ut(Xt)

m?
ts(Xs)

, (2)

where P?(Xs) and m?
ts(Xs) are assumed strictly positive.

Wainwright et al. (2003, Section 4) derived a similar rela-
tion, but for discrete variables under the exponential fam-
ily setting. By contrast, we do not assume an exponential
family model, and our reasoning applies to continuous vari-
ables. A further distinction is that Wainwright et al. spec-
ify the node potential Ψs(Xs) = P?(Xs) and edge poten-
tial Ψ(Xs, Xt) = P?(Xs, Xt)P?(Xs)

−1P?(Xt)
−1, which

represent just one possible choice among many that satis-
fies (2). Indeed, we next show that in order to run BP for
subsequent inference, we do not need to commit to a par-
ticular choice for Ψs(Xs) and Ψ(Xs, Xt), nor do we need
to optimize to learn Ψs(Xs) and Ψ(Xs, Xt).

We start by dividing both sides of (1) by m?
ts(Xs), and

introducing 1 =
∏

u\s
m?

ut(Xt)
m?

ut(Xt)
,

mts(Xs)

m?
ts(Xs)

=

∫
X

Ψst(Xs, Xt)Ψt(Xt)
∏

u\sm
?
ut(Xt)

m?
ts(Xs)

×
∏

u\s

mut(Xt)

m?
ut(Xt)

dXt. (3)

We next substitute the BP fixed point relation (2) into (3),
and reparametrize the messages mts(Xs) ← mts(Xs)

m?
ts(Xs) , to

obtain the following property for BP updates (see Section
6 in the Appendix for details):

Property 1 If we learn an MRF using BP and subse-
quently use the learned potentials for inference, BP updates
can be viewed as conditional expectations,

mts(Xs) =

∫
X
P?(Xt|Xs)

∏
u\s

mut(Xt) dXt

= EXt|Xs

[∏
u\s

mut(Xt)

]
. (4)

Using similar reasoning, the node beliefs on convergence
of BP take the form B(Xs) ∝ P?(Xs)

∏
t∈Γs

m?
ts(Xs). In

the absence of external evidence, a fixed point occurs at the
true node marginals, i.e., B(Xs) ∝ P?(Xs) for all s ∈ V .
Typically there can be many evidence variables, and the
belief is then an estimate of the true conditional distribution
given the evidence.

The above property of BP immediately suggests that if be-
lief propagation is the inference algorithm of choice, then
MRFs can be learned very simply: given training data
drawn from P?(X), the empirical conditionals P̂(Xt|Xs)

are estimated (either in parametric form, or nonparametri-
cally), and the conditional expectations are evaluated us-
ing these estimates. Evidence can also be incorporated
straightforwardly: if an observation xt is made at node t,
the message from t to its neighbor s is simply the empirical
likelihood function mts(Xs) ∝ P̂(xt|Xs), where we use
lowercase to denote observed variables with fixed values,
and capitalize unobserved random variables.

With respect to kernel belief propagation, our key insight
from Property 1, however, is that we need not explicitly
recover the empirical conditionals P̂(Xt|Xs) as an inter-
mediate step, as long as we can compute the conditional
expectation directly. We will pursue this approach next.

4 Kernel Belief Propagation
We develop a novel kernelization of belief propagation,
based on Hilbert space embeddings of conditional distri-
butions (Song et al., 2009), which generalizes an earlier
kernel algorithm for exact inference on trees (Song et al.,
2010). As might be expected, the kernel implementation
of the BP updates in (4) is nearly identical to the ear-
lier tree algorithm, the main difference being that we now
consider graphs with loops, and iterate until convergence
(rather than obtaining an exact solution in a single pass).
This difference turns out to have major implications for the
implementation: the earlier solution of Song et al. is poly-
nomial in the sample size, which was not an issue for the
the smaller trees considered by Song et al., but becomes
expensive for the large, loopy graphical models we address
in our experiments. We defer the issue of efficient imple-
mentation to Section 5, where we present a novel approxi-
mation strategy for kernel BP which achieves constant time
message updates.

In the present section, we will provide a detailed deriva-
tion of kernel BP in accordance with Song et al. (2010).
While the immediate purpose is to make the paper self-
contained, there are two further important reasons: to pro-
vide the background necessary in understanding our effi-
cient kernel BP updates in Section 5, and to demonstrate
how kernel BP differs from the competing Gaussian mix-
ture and particle based BP approaches in Section 6 (which
was not addressed in earlier work on kernel tree graphical
models).

4.1 Message Representations
We begin with a description of the properties of a message
mut(xt), given it is in the reproducing kernel Hilbert space
(RKHS) F of functions on the separable metric space X
(Aronszajn, 1950; Schölkopf & Smola, 2002). As we will
see, the advantage of this assumption is that the update pro-
cedure can be expressed as a linear operation in the RKHS,
and results in new messages that are likewise RKHS func-
tions. The RKHS F is defined in terms of a unique pos-
itive definite kernel k(xs, x

′
s) with the reproducing prop-

erty 〈mts(·), k(xs, ·)〉F = mts(xs), where k(xs, ·) indi-
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cates that one argument of the kernel is fixed at xs. Thus,
we can view the evaluation of message mts at any point
xs ∈ X as a linear operation in F : we call k(xs, ·)
the representer of evaluation at xs, and use the shorthand
k(xs, ·) = φ(xs). Note that k(xs, x

′
s) = 〈φ(xs), φ(x′s)〉F ;

the kernel encodes the degree of similarity between xs and
x′s. The restriction of messages to RKHS functions need
not be onerous: on compact domains, universal kernels
(in the sense of Steinwart, 2001) are dense in the space of
bounded continuous functions (e.g., the Gaussian RBF ker-
nel k(xs, x

′
s) = exp(−σ ‖xs − x′s‖

2
) is universal). Ker-

nels may be defined when dealing with random variables
on additional domains, such as strings, graphs, and groups.

4.2 Kernel BP Message Updates
We next define a representation for message updates, un-
der the assumption that messages are RKHS functions.
For simplicity, we first establish a result for a three node
chain, where the middle node t incorporates an incom-
ing message from u, and then generates an outgoing mes-
sage to s (we will deal with multiple incoming messages
later). In this case, the outgoing message mts(xs) eval-
uated at xs simplifies to mts(xs) = EXt|xs

[mut(Xt)].
Under some regularity conditions for the integral, we can
rewrite message updates as inner products, mts(xs) =
EXt|xs

[〈mut, φ(Xt)〉F ] =
〈
mut,EXt|xs

[φ(Xt)]
〉
F us-

ing the reproducing property of the RKHS. We refer to
µXt|xs

:= EXt|xs
[φ(Xt)] ∈ F as the feature space em-

bedding of the conditional distribution P(Xt|xs). If we
can estimate this quantity directly from data, we can per-
form message updates via a simple inner product, avoiding
a two-step procedure where the conditional distribution is
first estimated and the expectation then taken.

An expression for the conditional distribution embedding
was proposed by Song et al. (2009). We describe this ex-
pression by analogy with the conditioning operation for a
Gaussian random vector z ∼ N (0, C), where we partition
z = (z>1 , z

>
2 )> such that z1 ∈ Rd and z2 ∈ Rd′ . Given the

covariances C11 := E[z1z
>
1 ] and C12 := E[z1z

>
2 ], we can

write the conditional expectation E[Z1|z2] = C12C
−1
22 z2.

We now generalize this notion to RKHSs. Following Fuku-
mizu et al. (2004), we define the covariance operator CXsXt

which allows us to compute the expectation of the prod-
uct of function f(Xs) and g(Xt), i.e. EXsXt

[f(Xs)g(Xt)],
using linear operation in the RKHS. More formally, let
CXsXt : F 7→ F such that for all f, g, h ∈ F ,
EXsXt

[f(Xs)g(Xt)] = 〈f, EXsXt
[φ(Xs)⊗ φ(Xt)] g〉F

= 〈f, CXsXt
g〉F (5)

where we use tensor notation (f ⊗ g)h = f 〈g, h〉F . This
can be understood by analogy with the finite dimensional
case: if x, y, z ∈ Rd, then (x y>)z = x(y>z); furthermore,
(x>x′)(y>y′)(z>z′) = 〈x⊗ y ⊗ z, x′ ⊗ y′ ⊗ z′〉Rd3

given x, y, z, x′, y′, z′ ∈ Rd. Based on covariance op-
erators, Song et al. define a conditional embedding op-
erator which allow us to compute conditional expecta-

tions EXt|xs
[f(Xt)] as linear operations in the RKHS. Let

UXt|Xs
:= CXtXsC−1

XsXs
such that for all f ∈ F ,

EXt|xs
[f(Xt)] =

〈
f, EXt|xs

[φ(Xt)
〉
F =

〈
f, µXt|xs

〉
F

=
〈
f, UXt|Xs

φ(xs)
〉
F . (6)

Although we used the intuition from the Gaussian case in
understanding this formula, it is important to note that the
conditional embedding operator allows us to compute the
conditional expectation of any f ∈ F , regardless of the
distribution of the random variable in feature space (aside
from the condition that h(xs) := EXt|xs

[f(Xt)] is in the
RKHS on xs, as noted by Song et al.). In particular, we
do not need to assume the random variables have a Gaus-
sian distribution in feature space (the definition of feature
space Gaussian BP remains a challenging open problem:
see Appendix, Section 7).

We can thus express the message update as a linear opera-
tion in the feature space,

mts(xs) =
〈
mut, UXt|Xs

φ(xs)
〉
F .

For multiple incoming messages, the message updates fol-
low the same reasoning as in the single message case, albeit
with some additional notational complexity (see also Song
et al., 2010). We begin by defining a tensor product repro-
ducing kernel Hilbert space H := ⊗dt−1F , under which
the product of incoming messages can be written as a sin-
gle inner product. For a node t with degree dt = |Γt|, the
product of incoming messages mut from all neighbors ex-
cept s becomes an inner product inH,∏

u\s
mut(Xt) =

∏
u\s
〈mut, φ(Xt)〉F

=

〈⊗
u\s

mut, ξ(Xt)

〉
H
, (7)

where ξ(Xt) :=
⊗

u\s φ(Xt). The message update (4)
becomes

mts(xs) =

〈⊗
u\s

mut, EXt|xs
[ξ(Xt)]

〉
H
. (8)

By analogy with (6), we can define the conditional embed-
ding operator for the tensor product of features, such that
UX⊗t |Xs

: F → F⊗ satisfies

µX⊗t |xs
:= EXt|xs

[ξ(Xt)] = UX⊗t |xs
φ(xs). (9)

As in the single variable case, UX⊗t |xs
is defined in terms of

a covariance operator CX⊗t Xs
:= EXtXs

[ξ(Xt) ⊗ φ(Xs)]
in the tensor space, and the operator CXsXs . The operator
UX⊗t |Xs

takes the feature map φ(xs) of the point on which
we condition, and outputs the conditional expectation of
the tensor product feature ξ(Xt). Consequently, we can
express the message update as a linear operation, but in a
tensor product feature space,

mts(xs) =

〈⊗
u\s

mut, UX⊗t |Xs
φ(xs)

〉
H
. (10)

The belief at a specific node s can be computed as B(Xs) =
P?(Xs)

∏
u∈Γs

mus(Xs) where the true marginal P?(Xr)
can be estimated using Parzen windows. If this is unde-
sirable (for instance, on domains where density estimation
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cannot be performed), the belief can instead be expressed
as a conditional embedding operator (Song et al., 2010).

4.3 Learning Kernel Graphical Models
Given a training sample of m pairs

{
(xit, x

i
s)
}m
i=1

drawn i.i.d. from P?(Xt, Xs), we can represents messages
and their updates based purely on these training examples.
We first define feature matrices Φ = (φ(x1

t ), . . . , φ(xmt )),
Υ = (φ(x1

s), . . . , φ(xms )) and Φ⊗ =
(
ξ(x1

t ), . . . , ξ(xmt )
)
,

and corresponding kernel matrices K = Φ>Φ and L =
Υ>Υ. The assumption that messages are RKHS functions
means that messages can be represented as linear combina-
tions of the training features Φ, i.e., m̂ut = Φβut, where
βut ∈ Rm. On this basis, Song et al. (2009) propose a
direct regularized estimate of the conditional embedding
operators from the data. This approach avoids explicit con-
ditional density estimation, and directly provides the tools
needed for computing the RKHS message updates in (10).
Following this approach, we first estimate the covariance
operators ĈXtXs

= 1
mΦΥ>, ĈX⊗t Xs

= 1
mΦ⊗Υ> and

ĈXsXs
= 1

mΥΥ>, and obtain an empirical estimate of the
conditional embedding operator,

ÛX⊗t |Xs
= Φ⊗(L> + λmI)−1Υ>, (11)

where λ is a regularization parameter. Note that we need
not compute the feature space covariance operators explic-
itly: as we will see, all steps in kernel BP are carried out
via operations on kernel matrices.

We now apply the empirical conditional embedding op-
erator to obtain a finite sample message update for (10).
Since the incoming messages m̂ut can be expressed as
m̂ut = Φβut, the outgoing message m̂ts at xs is〈⊗

u\s
Φβut, Φ⊗(L+ λmI)−1Υ>φ(xs)

〉
H

=

(⊙
u\s

Kβut

)>
(L+ λmI)−1Υ>φ(xs) (12)

where
⊙

is the elementwise vector product. If we define
βts = (L+λmI)−1(

⊙
u\sKβut), then the outgoing mes-

sage can be expressed as m̂ts = Υβts. In other words,
given incoming messages expressed as linear combinations
of feature mapped training samples from Xt, the outgo-
ing message will likewise be a weighted linear combination
of feature mapped training samples from Xs. Importantly,
only m mapped points will be used to express the outgoing
message, regardless of the number of incoming messages
or the number of points used to express each incoming mes-
sage. Thus the complexity of message representation does
not increase with BP iterations or degree of a node.

Although we have identified the model parameters with
specific edges (s, t), our approach extends straightfor-
wardly to a templatized model, where parameters are
shared across multiple edges (this setting is often natural
in image processing, for instance). Empirical estimates of
the parameters are computed on the pooled observations.

The computational complexity of the finite sample BP up-
date in (12) is polynomial in term of the number of training
samples. Assuming a preprocessing step of cost O(m3) to
compute the matrix inverses, the update for a single mes-
sage costsO(m2dmax) where dmax is the maximum degree
of a node in the MRF. While this is reasonable in compari-
son with competing nonparametric approaches (see Section
6 and the experiments), and works well for smaller graphs
and trees, a polynomial time update can be costly for very
large m, and for graphical models with loops (where many
iterations of the message updates are needed). In Section
5, we develop a message approximation strategy which re-
duces this cost substantially.

5 Constant Time Message Updates
In this section, we formulate a more computationally ef-
ficient alternative to the full rank update in (12). Our
goal is to limit the computational cost of each update to
O(`2dmax) where ` � m. We will require a one-off pre-
processing step which is linear inm. This efficient message
passing procedure makes kernel BP practical even for very
large graphical models and/or training set sizes.

5.1 Approximating Feature Matrices
The key idea of the preprocessing step is to approxi-
mate messages in the RKHS with a few informative ba-
sis functions, and to estimate these basis functions in a
data dependent way. This is achieved by approximating
the feature matrix Φ as a weighted combination of a sub-
set of its columns. That is, Φ ≈ ΦIWt, where I :=
{i1, . . . , i`} ⊆ {1, . . . ,m}, Wt has dimension ` ×m, and
ΦI = (φ(xi1t ), . . . , φ(xi`t )) is a submatrix formed by tak-
ing the columns of Φ corresponding to the indices in I.
Likewise, we approximate Υ ≈ ΥJWs, assuming |J | = `
for simplicity. We thus can approximate the kernel matrices
as low rank factorizations, i.e., K ≈ W>t KIIWt and L =
W>s LJJWs, where KII := Φ>I ΦI and LJJ = Υ>JΥJ .

A common way to obtain the approximation Φ ≈ ΦIWt

is via a Gram-Schmidt orthogonalization procedure in fea-
ture space, where an incomplete set of ` orthonormal ba-
sis vectors Q := (q1

t , . . . , q
`
t ) is constructed from a greed-

ily selected subset of the data, chosen to minimize the
reconstruction error (Shawe-Taylor & Cristianini, 2004,
p.126). The original feature matrix can be approximately
expressed using this basis subset as Φ ≈ QR where R ∈
R`×m are the coefficients under the new basis. There is
a simple relation between Q and the chosen data points
ΦI , i.e., Q = ΦIR

−1
I , where RI is the submatrix formed

by taking the columns of R corresponding to I. It fol-
lows that Wt = R−1

I R. All operations involved in Gram-
Schmidt orthogonalization are linear in feature space, and
the entries of R can be computed based solely on kernel
values k(xt, x

′
t). The cost of performing this orthogonal-

ization is O(m`2). The number ` of chosen basis vectors
is inversely related to the approximation error or residual
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ε = maxi ‖φ(xit) − ΦIW
i
t ‖F (W i

t denotes column i of
Wt). In many cases of interest (for instance, when a Gaus-
sian RBF kernel is used), a small ` � m will be sufficient
to obtain a small residual ε for the feature matrix, due to
the fast decay of the eigenspectrum in feature space (Bach
& Jordan, 2002, Appendix C).

5.2 Approximating Tensor Features
The approximations Φ ≈ ΦIWt and Υ ≈ ΥJWs, and as-
sociated low rank kernel approximations are insufficient for
a constant time approximate algorithm, however. In fact,
directly applying these results will only lead to a linear time
approximate algorithm: this can be seen by replacing the
kernel matrices in (12) by their low rank approximations.

To achieve a constant approximate update, our strategy is
to go a step further: in addition to approximating the kernel
matrices, we further approximate the tensor product feature
matrix in equation (11), Φ⊗ ≈ Φ⊗I′W

⊗
t (W⊗t ∈ R`′×m).

Crucially, the individual kernel matrix approximations ne-
glect to account for the subsequent tensor product of these
messages. By contrast, our proposed approach also approx-
imates the tensor product directly. The computational ad-
vantage of a direct tensor approximation approach is sub-
stantial in practice (a comparison between exact kernel BP
and its constant and linear time approximations can be
found in Section 3 of the Appendix) .

The decomposition procedure for tensor Φ⊗ ≈ Φ⊗I′W
⊗
t

follows exactly the same steps as in the original feature
space, but using the kernel kdt−1(xt, x

′
t), and yielding an

incomplete orthonormal basis in the tensor product space.
In general the index sets I ′ 6= I, meaning they select dif-
ferent training points to construct the basis functions. Fur-
thermore, the size `′ of I ′ is not equal to the size ` of I
for a given approximation error ε. Typically `′ > `, since
the tensor product space has a slower decaying spectrum,
however we will write ` in place of `′ to simplify notation.

5.3 Constant Time Approximate Updates
We now compute the message updates based on the various
low rank approximations. The incoming messages and the
conditional embedding operators become⊗

u\s
mut ≈

⊗
u\s

ΦIWtβut, (13)

ŨX⊗t |Xs
φ(xs) ≈ Φ⊗I′WtsΥ

>
J φ(xs), (14)

where Wts := W⊗t (W>s LJJWs + λmI)−1W>s . If we
reparametrize the messages mut as mut = ΦIαut where
αut := Wtβut, we can express the message updates for
mts(xs) as

mts(xs) ≈
(⊙

u\s
KI′Iαut

)>
WstΥ

>
J φ(xs), (15)

where KI′I denotes the submatrix of K with rows in-
dexed I ′ and columns indexed I. The outgoing mes-
sage mts can also be reparametrized as a vector αts =

W>st

(⊙
u\sKI′Iαut

)
. In short, the message from t to

s is a weighted linear combination of the ` vectors in ΥJ .

We note that Wts can be computed efficiently prior
to the message update step, since W⊗t (W>s LJJWs +
λmI)−1W>s = W⊗t W

>
s (WsW

>
s + λmL−1

JJ )−1L−1
JJ via

the Woodbury expansion of the matrix inverse. In the latter
form, matrix products WsW

>
s and W⊗t W

>
s cost O(`2m);

the remaining operations (size ` matrix products and inver-
sions) are significantly less costly at O(`3). This initializa-
tion cost of O(`3 + `2m) need only be borne once.

The cost of updating a single message mts in (15) be-
comes O(`2dmax) where dmax is the maximum degree of
a node. This also means that our approximate message up-
date scheme will be independent of the number of training
examples. With these approximate messages, the evalua-
tion of the belief B̂(xr) of a node r at xr can be carried out
in time O(`dmax).

Finally, approximating the tensor features introduces ad-
ditional error into each message update. This is caused
by the difference between the full rank conditional em-
bedding operator ÛX⊗t |Xs

in (11) and its low rank coun-

terpart ŨX⊗t |Xs
in (14). Under suitable conditions, this

difference is bounded by the feature approximation error
ε, i.e., ‖ÛX⊗t |Xs

− ŨX⊗t |Xs
‖HS ≤ 2ε(λ−1 + λ−3/2) (see

Section 8 of the Appendix for details).

6 Gaussian Mixture And Particle BP
We briefly review two state-of-the-art approaches to non-
parametric belief propagation: Gaussian Mixture BP (Sud-
derth et al., 2003) and Particle BP (Ihler & McAllester,
2009). By contrast with our approach, we must provide
these algorithms in advance with an estimate of the condi-
tional density P?(Xt|Xs), to compute the conditional ex-
pectation in (4). For Gaussian Mixture BP, this conditional
density must take the form of a mixture of Gaussians. We
describe how we learn the conditional density from data,
and then show how the two algorithms use it for inference.

A direct approach to estimating the conditional density
P?(Xt|Xs) would be to take the ratio of the joint empir-
ical density to the marginal empirical density. The ratio
of mixtures of Gaussians is not itself a mixture of Gaus-
sians, however, so this approach is not suitable for Gaus-
sian Mixture BP (indeed, message updates using this ratio
of mixtures would be non-trivial, and we are not aware of
any such inference approach). We propose instead to learn
P?(Xt|Xs) directly from training data following Sugiyama
et al. (2010), who provide an estimate in the form of a mix-
ture of Gaussians (see Section 1 of the Appendix for de-
tails). We emphasize that the updates bear no resemblance
to our kernel updates in (12), which do not attempt density
ratio estimation.

Given the estimated P̂(Xt|Xs) as input, each nonparamet-
ric inference method takes a different approach. Gaussian
mixture BP assumes incoming messages to be a mixture of
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(a) Sunset image (b) Noisy image

50 100 150 200 250

10

15

20

25

Number of Colors

R
M

S
E

Kernel BP

Discrete BP
Gaussian Mixture BP

Particle BP

50 100 150 200 250
1

10

100

1000

Number of Colors
R

un
tim

e 
(s

)

Kernel BP
Discrete BP

Gaussian Mixture BP

Particle BP

(c) Denoising error (d) Runtime
Figure 1: Average denoising error and runtime of kernel BP com-
pared to discrete, Gaussian mixture and particle BP over 10 test
images with varying numbers of rings. Runtimes are plotted on a
logarithmic scale.

b Gaussians. The product of dt incoming messages to node
t then contains bdt Gaussians. This exponential blow-up
is avoided by replacing the exact update with an approxi-
mation. An overview of approximation approaches can be
found in Bickson et al. (2011); we used an efficient KD-tree
method of Ihler et al. (2003) for performing the approxi-
mation step. Particle BP represents the incoming messages
using a common set of particles.These particles must be
re-drawn via Metropolis-Hastings at each node and BP it-
eration, which is costly (although in practice, it is sufficient
to resample periodically, rather than strictly at every iter-
ation). By contrast, our updates are simply matrix-vector
products. See Appendix for further discussion.

7 Experiments
We performed four sets of experiments. The first two were
image denoising and depth prediction problems, where we
show that kernel BP is superior to discrete, Gaussian mix-
ture and particle BP in both speed and accuracy, using a
GraphLab implementation of each (Low et al., 2010). The
remaining two experiments were protein structure and pa-
per category prediction problems, where domain-specific
kernels were crucial (for the latter see Appendix, Sec. 4).

Image denoising: In our first experiment, the data con-
sisted of grayscale images of size 100× 100, resembling a
sunset (Figure 1(a)). The number of colors (gray levels) in
the images ranged across 10, 25, 50, 75, 100, 125, 150, 175,
200, 225 and 250, with gray levels varying evenly from 0 to
255 from the innermost ring of the sunset to the outermost.
As we increased the number of colors, the grayscale transi-
tion became increasingly smooth. Our goal was to recover
the original images from noisy versions, to which we had
added zero mean Gaussian noise with σ = 30. We com-
pared the denoising performance and runtimes of discrete,
Gaussian mixture, particle, and kernel BP.

The topology of our graphical model was a grid of hid-
den noise-free pixels with noisy observations made at each.
The maximum degree of a node was 5 (four neighbours
and an observation), and we used a template model where

both the edge potentials and the likelihood functions were
shared across all variables. We generated a pair of noise-
free and noisy images as training data, at each color num-
ber. For kernel BP, we learned both the likelihood function
and the embedding operators nonparametrically from the
data. We used a Gaussian RBF kernel k(x, x′), with ker-
nel bandwidth set at the median distance between training
points, and residual ε = 10−3 as the stopping criterion for
the feature approximation (see definition of ε in Section
5.1). For discrete, Gaussian mixture, and particle BP, we
learned the edge potentials from data, but supplied the true
likelihood of the observation given the hidden pixel (i.e., a
Gaussian with standard deviation 30). This gave compet-
ing methods an important a priori advantage over kernel
BP: in spite of this, kernel BP still outperformed compet-
ing approaches in speed and accuracy.

In Figure 1(c) and (d), we report the average denoising
performance (RMSE: root mean square error) and runtime
over 30 BP iterations, using 10 independently generated
noisy test images. The RMSE of kernel BP is significantly
lower than Gaussian mixture and particle BP for all num-
bers of colors. Although the RMSE of discrete BP is about
the same as kernel BP when the number of colors is small,
its performance becomes worse than kernel BP as the num-
ber of colors increases beyond 100 (despite discrete BP
receiving the true observation likelihood in advance). In
terms of speed, kernel BP has a considerable advantage
over the alternatives: the runtime of KBP is barely affected
by the number of colors. For discrete BP, the scaling is ap-
proximately square in the number of colors. For Gaussian
mixture and particle BP, the runtimes are orders of magni-
tude longer than kernel BP, and are affected by the variabil-
ity of the resampling algorithm.

Predicting depth from 2D images: The prediction of 3D
depth information from 2D image features is a difficult in-
ference problem, as the depth may be ambiguous: sim-
ilar features can occur at different depths. This creates
a multimodal depth distribution given the image feature.
Furthermore, the marginal distribution of the depth can it-
self be multimodal, which makes the Gaussian approxima-
tion a poor choice (see Figure 2(b)). To make a spatially
consistent prediction of the depth map, we formulated the
problem as an undirected graphical model, where a depth
variable yi ∈ R was associated with each patch of an im-
age, and these variables were connected according to a 2D
grid topology. Each hidden depth variable was linked to
an image feature variable xi ∈ R273 for the correspond-
ing patch. This formulation resulted in a graphical model
with 9, 202 = 107 × 86 continuous depth variables, and
a maximum node degree of 5. Due to the way the images
were taken (upright), we used a templatized model where
horizontal edges in a row shared the same potential, ver-
tical edges at the same height shared the same potential,
and patches at the same row shared the same likelihood
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(a) Image and depth pair (b) Depth distribution
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(c) Depth prediction error (d) Runtime
Figure 2: Average depth prediction error and runtime of kernel
BP compared to discrete, Gaussian mixture and particle BP over
274 images. Runtimes are on a logarithmic scale.
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Figure 3: Average angle prediction accuracy of kernel versus
particle BP in the protein folding problem.

function. Both the edge potentials between adjacent depth
variables and the likelihood function between image fea-
ture and depth were unknown, and were learned from data.

We used a set of 274 images taken on the Stanford campus,
including both indoor and outdoor scenes (Saxena et al.,
2009). Images were divided into patches of size 107 by 86,
with the corresponding depth map for each patch obtained
using 3D laser scanners (e.g., Figure 2(a)). Each patch was
represented by a 273 dimensional feature vector, which
contained both local features (such as color and texture)
and relative features (features from adjacent patches). We
took the logarithm of the depth map and performed learning
and prediction in this space. The entire dataset contained
more than 2 million data points (107 × 86 × 274). We
applied a Gaussian RBF kernel on the depth information,
with the bandwidth parameter set to the median distance
between training depths, and an approximation residual of
ε = 10−3. We used a linear kernel for the image features.

Our results were obtained by leave-one-out cross valida-
tion. For each test image, we ran discrete, Gaussian mix-
ture, particle, and kernel BP for 10 BP iterations. The aver-
age prediction error (MAE: mean absolute error) and run-
time are shown in Figures 2(c) and (d). Kernel BP pro-
duces the lowest error (MAE=0.145) by a significant mar-
gin, while having a similar runtime to discrete BP. Gaussian
mixture and particle BP achieve better MAE than discrete
BP, but their runtimes are two order of magnitude slower.
We note that the error of kernel BP is slightly better than the

results of pointwise MRF reported in Saxena et al. (2009).

Protein structure prediction: Our final experiment inves-
tigates the protein folding problem. The folded configu-
ration of a protein of length n is roughly determined by a
sequence of angle pairs {(θi, ωi)}ni=1, each specific to an
amino acid position. The goal is to predict the sequence
of angle pairs given only the amino acid sequence. The
two angles (θi, ωi) have ranges [0, 180] and (−180, 180]
respectively, such that they correspond to points on the unit
sphere S2. Kernels yield an immediate solution to infer-
ence on these data: Wendland (2005, Theorem 17.10) pro-
vides a sufficient condition for a function on S2 to be posi-
tive definite, satisfied by k(x, x′) := exp(σ 〈x, x′〉), where
〈x, x′〉 is the standard inner product between Euclidean co-
ordinates. Given the data are continuous, multimodal, and
on a non-Euclidean domain (Figure 3(a)), it is not obvious
how Gaussian mixture or discrete BP might be applied. We
therefore focus on comparing kernel and particle BP.

We obtained a collection of 1, 400 proteins with length
larger than 100 from PDB. We first ran PSI-BLAST to gen-
erate the sequence profile (a 20 dimensional feature for
each amino acid position), and then used this profile as
features for predicting the folding structure (Jones, 1999).
The graphical model was a chain of connected angle pairs,
where each angle pair was associated with a 20 dimen-
sional feature. We used a linear kernel on the sequence fea-
tures. For the kernel between angles, the bandwidth param-
eter was set at the median inner product between training
points, and we used the approximation residual ε = 10−3.
For particle BP, we learned the nonparametric potentials
using exp(σ 〈x, x′〉) as the basis functions.

In Figure 3(b), we report the average prediction accuracy
(Mean Cosine Similarity between the true coordinate x
and the predicted x′, i.e., 〈x, x′〉) over a 10-fold cross-
validation process. In this case, kernel BP achieves a sig-
nificantly better result than particle BP while running much
faster (runtimes not shown due to space constraints).

8 Conclusions and Further Work
We have introduced kernel belief propagation, where the
messages are functions in an RKHS. Kernel BP performs
learning and inference on challenging graphical models
with structured and continuous random variables, and is
more accurate and much faster than earlier nonparametric
BP algorithms. A possible extension to this work would
be to kernelize tree-reweighted belief propagation (Wain-
wright et al., 2003). The convergence of kernel BP is a fur-
ther challenging topic for future work (Ihler et al., 2005).
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