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Abstract

We introduce a new statistical causal inference method to estimate individual-level optimal
causal intervention, that is, to which value we should set the value of a certain variable of an
individual to obtain a desired value of another variable. This is defined as an optimization
problem to minimize the error between a desired value and the value that would have
been attained under the setting for the individual. To solve the optimization problem,
we first train a machine learning model to predict the value of an objective variable and
then estimate the causal structure of variables. We then combine the machine learning
model and causal structure into a single causal model to estimate counterfactual value of
the predicted objective variable. This is effective in achieving a more accurate estimation
of individual-level optimal causal intervention. We further propose a gradient descent
algorithm to compute the optimal causal intervention. Our method is generally applicable
to continuous variables that are linearly and non-linearly related. In experiments, we
evaluate the effectiveness of our method using artificial data generated by non-linear causal
structures and real data.
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1. Introduction

Analyzing causal effects for making an action is an important problem in many domains.
For example, a doctor decides the most effective treatments for patients from the patients
background, and an operator controls various equipments in a chemical plant to improve the
quality of manufactured products on the basis of the causal relationships of measured sensor
data. Randomized experiments are conducted to investigate causal effects but they can be
costly and unethical. We can estimate population-level causal effects from a variable to
another variable on the basis of a statistical calculation with intervention on known causal
structures and observed data (Pearl, 2009), but situations in which the causal structures are
identified are rare. In such situations, statistical causal discovery methods (Shimizu et al.,
2006; Peters et al., 2014; Mooij et al., 2016) for estimating causal structures from observed
data are effective.

Individual-level causal effects (Pearl, 2009) are important to examine the cause of a
phenomenon or make decisions for not a population but individuals. For example, a plant
operator will find that temperature should have been raised to achieve a better quality
value of a certain product sample. Pearl (Pearl, 2009) defines individual causal effects and
proposes a method for estimating counterfactuals based on noise values, i.e. exogenous
variable values of individuals in structural causal models.

In many proceeding researches, a control variable for an individual causal effect is a
binary variable such as whether a doctor should administer treatment, but what if the
variable is continuous such as the example of the plant operator? To achieve a desired
quality value of a certain target product by controlling temperature, the operator needs to
know what a concrete value of the controlled variable is. We call this value individual-level
optimal causal intervention and introduce a new problem setting of estimating individual-
level optimal causal intervention to obtain a given desired value of an objective variable from
observational or non-experimental data. In this problem setting, correct causal structures
may have non-linear or linear relationship between variables, and the intervened variable is
continuous.

There are two difficulties to estimate individual-level optimal causal intervention. First,
to estimate counterfactuals, we have to estimate structural equation models from observed
data and identify noise values of individuals (Pearl, 2009). When the true causal relationship
is non-linear, we can estimate structural equation model (SEM) by assuming some models
which are identifiable such as additive noise model (Hoyer et al., 2008a) or Post Non-linear
Model (Zhang and Hyvarinen, 2012). However, estimating these SEM is costly because in
existing methods we have to train some non-linear models for each pair-wise variable to
identify the causal structures. (Peters et al., 2014; Mooij et al., 2016). Moreover, we may
not obtain enough estimation accuracy of SEM because of validity of model assumptions
and accuracy of prediction models. Second, there are some proposed methods to estimate
optimal causal intervention for total effects based on interventional data and observational
data (Aglietti et al., 2020b,a). However, methods which focus on individual-level causal
effects based on observational data are still not proposed.

In this paper, to estimate individual-level causal effects, we propose a method of com-
bining a prediction model and an estimated causal structure into a single causal model
based on the framework of Blöbaum et al. (Blöbaum and Shimizu, 2017). We also propose
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Figure 1: The Overview of our proposed method

an optimization problem to minimize an error between an estimated individual-level causal
effect and the desired value and develop a gradient descent algorithm to optimize the mini-
mization problem for a non-linear prediction model. As experiments, we validate accuracy
of counterfactuals and optimal causal interventions with our proposed method and some
baselines.

The contributions of this paper is below:

• We propose a new problem setting of estimating individual-level optimal causal inter-
vention and formulate it as a minimization problem.

• We propose estimate individual-level causal effects by combining a machine learning
model and an estimated causal structure into a single causal model.

• Based on the combination of the prediction model and the causal structure, we propose
a method to calculate individual-level optimal causal intervention by optimizing the
proposed minimization problem with a gradient descent algorithm.

2. Related Works

Pearl (Pearl, 2009) defines the concepts of counterfactual and its calculation from the struc-
tural equation model (Pearl, 2009; Bollen and Hoyle, 2012). An individual is identified
by the values of its exogenous variables and its counterfactual is calculated by the struc-
tural equation models with the exogenous variables. Linear Non-Gaussian Acyclic Model
(LiNGAM) (Shimizu et al., 2006) is a structural equation model based on the identifiability
of linear DAG (directed acyclic graph) under non-Gaussian noises. Additive Noise Model
(Hoyer et al., 2008a) is the model represented by arbitrary non-linear functions and added
noise to identify non-linear causal relation. Post-Nonlinear Causal Model (Zhang and Hy-
varinen, 2012) generalize Additive Noise Model and apply a non-linear function to the sum
of variables and noise.

In many practical cases, we are not given any structural equation models at first. In
such cases, we have to estimate the causal structures in the observed data through causal
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discovery methods under these assumptions. ICA-LiNGAM (Shimizu et al., 2006) is a
causal discovery method with FastICA Algorithm(Hyvarinen, 1999) under LiNGAM as-
sumption. DirectLiNGAM (Shimizu et al., 2011) extend ICA-LiNGAM algorithm to im-
prove its convergence. For the assumption of Additive Noise Model, there are some methods
to identify causal direction of pair-wise variables on the basis of measuring independency
between predicted residuals from regression of variables and the explanatory variable (Mooij
et al., 2016). As the measurements of independence, Hilbert-Schmidt Independence Crite-
rion(Hoyer et al., 2008b) and differential Shannon entropy(Kpotufe et al., 2014) are used.
RESIT (Peters et al., 2014) is a method to estimate causal structures of multiple variables
under Additive Noise Model. It repeat procedures which regress one variable on the other
variables and compare a dependence score of the predicted residual and input variables of
the regression model to identify causal order.

In this paper, we use these causal discovery methods to estimate structural equation
models from observed data to calculate individual-level causal effects in Pearl’s sense.

To calculate individual-level causal effects when we intervene on binary variable, there
are some machine learning methods without (estimating) structural equation models. Shalit
et el. (Shalit et al., 2017) utilize neural network models that directly predict controlled and
intervened values of objective variable, respectively. This model train to make pre- and
post-intervention distributions of intermediate representations of explanatory variables close
to obtain balanced representations of explanatory variables on randomized experiments.
Similarly, Guo et al. use Graph Neural Networks for causal inference of social networks
(Guo et al., 2020) and Alaa et al (Alaa and van der Schaar, 2017) propose a method based on
multi-task Gaussian processes to estimate individualized treatment effects. These methods
use Rubin-Neyman potential outcomes framework (Rubin, 2005) with binary treatment
values. On contrast, our method focus on continuous variables as targets of intervention
and not only estimate individual-level causal effects but also estimating optimal causal
intervention. Moreover, we use estimated causal structures to calculate individual causal
effects based on Pearl’s definition.

Some proposed methods calculate optimal causal intervention for total effects. Aglietti
et al. proposes Causal Bayesian Optimization framework, combining Bayesian optimization
and causal inference to explore optimal intervention for total effects (Aglietti et al., 2020b).
They also construct a function with a method for representing a function with the value of
the intervention as the input and the total effect of the intervention as the output through
multi-task Gaussian process model (Aglietti et al., 2020a), through which they calculated
optimal causal intervention as well. On contrast, our method calculate an optimal inter-
vention for individual-level causal effect and to explore the optimal intervention, we use a
gradient descent algorithm.

3. Background

We assume that data-generating processes can be graphically represented as a direct acyclic
graph (DAG), where the causal influence of random variable Xi on another variable Xj is
indicated with an arrow between two variables.
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3.1 Additive Noise Model

Structural equation models (Pearl, 2009; Bollen and Hoyle, 2012) are used in a typical
representation of linear causal structures in causal discovery when the observed data are
continuous-valued. To generalize these models for non-linear causal relationships, Hoyer et
al. proposed an additive noise model (Hoyer et al., 2008a) defined by the observed value xi
associated with Xi and independent additive noise ui as follows:

xi = fi(xpa(i)) + ui (1)

where fi is an arbitrary function of each variable and xpa(i) means the set of observed values
associated with the parent variables of Xi in the DAG. Noise ui has arbitrary probability
densities. We define the observed value as x = (x1, x2, . . . , xn) and each element asso-
ciate with X1, X2, . . . , Xn. Each variable is affected by independent exogenous variables
U1, U2, . . . , Un. Their observed values are also defined as u = (u1, u2, . . . , un). As a special
case, this model includes a linear non-Gaussian acyclic model (LiNGAM) (Shimizu et al.,
2006) if all the fi are linear and the distributions of all ui are non-Gaussian. When there is
a linear causal influence, its causal strength between Xi and Xj is described by bij and its
causal relationship of all variables is described by matrix B.

3.2 Interventions and Counterfactuals

DAGs can show when an Xi has a fixed constant value c and how other variables in the DAG
change. To analyze this behavior, we introduce intervention as a do operator do(Xi = c)
(Pearl, 2009). This means fixing Xi to a constant c. Pearl defines the probability of the
variable Y after intervention of Xi as P (Y |do(Xi = c) and its expected intervention effects,
called total effects, as

E[Y |do(Xi = c)]. (2)

The total effects show the effects on the population level not on the individual level.
Pearl introduced the concepts of counterfactuals (Pearl, 2009, 2018) to analyze such indi-
vidual causal effects. To calculate a counterfactual, the structural equation model M need
to be known and the value of observed variable x and exogenous variables U are necessary
to be obtained. The value of the exogenous variables U = u corresponds to a certain indi-
vidual or individual “situation”. Therefore, counterfactual “Y would be y had X been c in
situation U = u”, that is y = YX=c(u) on M , is calculated with the following procedure:

1. Obtain u by applying observed value x to model M .

2. Replace the equations corresponding to variables in set X with the equations X = c
in M , and obtain modified model Mx.

3. Use Mx to compute counterfactual Y = y from u.

4. Problem Setting

In this paper, our challenge is to meet the following situation:
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• Observations of X1, X2, . . . , Xn and Y are given but true causal structures are un-
known.

• Each of Xi and Y is a continuous variable and is given by an user.

• The optimal intervention c that results in YXi=c(u) = d should be identified.

This situation is common in many system control cases. For example, in a manufacturing
system, a certain Y , which is the product quality (e.g. product hardness), is observed as
y, and other variables X1, X2, . . . , Xn are also observed (e.g. temperature and pressure)
as x1, x2, . . . , xn. They may have causal influences on Y and themselves, but the causal
structure and causal strength are unknown in general. We suppose that Y = d is the most
desirable value. In this situation, the question is how to controlXi given by an user to change
Y into d for individual products. Controlling xi to the optimal value means calculating
such c that achieves YXi=c(u) = d because Xi has a causal relationship with other variables
including Y . Moreover, because optimal interventions differ among individual products, we
need to estimate not the total intervention effects based on all products (E[Y |do(Xi = c)])
but individual-level causal effects based on individual products (YXi=c(u)).

Individual-level causal effects from observed data on the basis of intervening individuals
have been studied (Shalit et al., 2017). However, intervened variables that they focused on
have only binary values such as “whether the treatment should have been administered?”,
rather than continuous variables on our problem setting. Moreover, many machine learning
based methods without causal structures estimate E[Y1−Y0|u]1 instead of YXi=c(u). In our
problem setting, we have to estimate causal structure and values of exogenous variables to
calculate counterfactual YXi=c(u).

Existing studies attempted to answer the question, “If we control a certain Xi, how many
effects on the value of Y of an individual u are there?”. In contrast, we attempted to answer
the question, “When we need to change a certain Y of an individual u to d, how should we
control a certain Xi?” We call this problem estimating optimal causal intervention. To the
best of our knowledge, this problem has not been discussed in the causal inference field.

The optimal intervention framework of Blöbaum et al. (Blöbaum and Shimizu, 2017)
estimates linear intervention effects on prediction models on the basis of the combination
of prediction models and structural equation models. In their framework, c is calculated
to explain how the output changes when we intervene on a certain Xi when the prediction
model predicts d. This framework is defined as the following minimization problem c =
argmin

c
(E[Ŷ |do(Xi = c)] − d)2, where Ŷ denotes the output value of the prediction model.

To calculate c, they introduced a procedure to estimate the total effects of all variables
through the linear causal structure by connecting the causal structure and prediction model.
They also introduce an algorithm to numerically solve c on the basis of the optimization
problem.

However, their problem setting differs from ours. They estimate c for the output Ŷ
of the prediction model, but we need to estimate the optimal intervention for Y of the
causal structure on the basis of the generation process. In addition, they focus on total
effects E[Ŷ |do(Xi = c)], but we target individual-level causal effect YXi=c(u). While they

1. Y0 and Y1 mean potential outcomes corresponding to intervention t = {0, 1} defined by Rubin (2005).
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proposed an algorithm for linear structural equation models and linear prediction models,
our problem setting includes a non-linear causal structure.

This problem setting may need to be extended to time-series data for real-world appli-
cations. In this study, we deal with non-time-series data for simplicity.

5. Proposed Method

Fig 1 shows the overview of our method. In our problem “how much intervention on a
certain variable Xi of an individual x needs to be determined to obtain the desired value d
of another variable Y ?”, we define the following formula:

c = argmin
c

(YXi=c(u)− d)2. (3)

Algorithm 1 and 2 shows the overall of our proposed method to solve this problem when
estimated causal structures are represented by linear functions.

5.1 Estimate Individual-level Causal Effects

To solve the optimization problem of Formula (3), calculating YXi=c(u) is necessary. When
the structural equation model is known, it is calculated with the procedure of counterfactual
calculations by Pearl given in Section 3.2. If the causal structure is represented using an
additive noise model (Formula (1)), counterfactual YXi=c(u) is calculated sequentially by

YXi=c(u) =


c, if j = i,

xj , if Xj is a root variable,

fj(pa(Xj)Xi=c(u)) + uj , otherwise.

(4)

where Xj is a random variable in a set of ancestors of Y and pa(Xj) denotes the parent
variables of Xj , fj is an arbitrary function to generate Xj , and uj is individual noise and
calculated by xj − fj(pa(xj)). LiNGAM is a special linear additive noise model, and we
obtain the counterfactual by replacing fj(pa(Xj)Xi=c(u)) with

∑
Xk∈pa(Xj)

bkjXkXi=c(u).

Intuitively, Formula (4) means that individual causal effects by intervention on Xi propagate
all descendants of Xi along with the causal relationship.

If we can obtain a correct additive noise model, counterfactual YXi=c(u) can be calcu-
lated accurately but it is generally difficult because the data-generation process can follow
another model such as the post non-linear model (Zhang and Hyvarinen, 2012). A func-
tion fj is generally not known, so we have to approximate it by using non-linear regression
models such as a machine learning regression model and a highly accurate regression model
is necessary to calculate an accurate counterfactual.

To calculate YXi=c(u), we combine the estimated causal structures and machine learning
regression model into a single causal model. This idea of using prediction models is based
on supporting the accuracy of estimation of causal discovery methods by the predictive
performance of machine learning models.

When the objective variable Y has descendants and the explanatory variables include
the descendants, the prediction model has high regression accuracy. This is because the
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Algorithm 1 Calculate Individual-level Optimal Intervention for Linear Causal Structure

Input: x,B, f,u, i, d
x: a vector of target sample, f : a prediction model,
d: desired value, B: causal coefficient matrix,
i: the index of the intervened variable,
u: noise vector of target sample.

1: S ← {1, 2, 3, . . . , n}\{i}
2: S ← RemoveIndicesOfRootVariables(B)
3: α← VectorOfZerosForEachVariable(B)
4: αi ← 1
5: xi, ui ← 0
6: while S is not empty do
7: k ← GetNextIndex(S)
8: if Xk has no parents in S then
9: xtmp, αtmp ← 0

10: for all parents of Xk do
11: q ← GetIndexOfNextParent(Xk)
12: αtmp ← αtmp + bkqαq

13: if q is not i then
14: x← x+ bkqxq
15: end if
16: end for
17: xk ← x+ uk
18: αk ← αtmp

19: S ← RemoveIndex(S, k)
20: end if
21: k ← GetNextIndex(S)
22: end while
23: c← BackwardFunction(x,α, f, d) :Algorithm 2

Output: c

descendant of Y has an effect on Y including noise uy. When calculating the counterfactual
of Y on a certain sample x, this information of uy is essential to identifying individuals in
accordance with Pearl ’s calculation process of a conterfactual (Section 3.2). If estimated
causal structures and their coefficients of causal effects are not accurate, this uy is also not
accurate. On the other hand, prediction models can use accurate uy directly through the
descendants of Y to regress y. Moreover, while considering generalization performance of
causal discovery method is difficult, prediction models trained by machine learning tech-
niques such as cross validation are expected to improve generalization performance. This
is effective on real-world application like our problem setting. In Appendix A, we discuss
the predictive performance of prediction models with and without descendants of objective
variables.

We first train a regression model g, such as a linear regression or neural network, by
explanatory variables X1, X2, . . . , Xn and objective variable Y . Next, we estimate the causal
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Algorithm 2 Calculate Optimal Intervention for Neural Network Model

Input: x,α, f, d
x: target sample, f : prediction model,
d: objective value, ε: hyper-parameter

1: c← init(), L←∞
2: while L > ε do
3: x′ ← x+ cα
4: x′ ← RemoveObjectiveIndex(x′)
5: ŷ ← f(x′)
6: L← (d− ŷ)2

7: c← c− η∇L
8: end while
9: return c

Output: c

structure F̂ of all variables by using a causal discovery models such as an additive noise
model or LiNGAM. We then define a causal structure M ′(g, F̂ ) by combining the causal
structure of the prediction mechanism of g and estimated F̂ . As shown in Fig 1, in M ′(g, F̂ ),
Ŷ is introduced and all explanatory variables are parents of Ŷ .

As the approximation of YXi=c(u), we use ŶXi=c(u)M ′ , that is, the value of Ŷ had
Xi been c for individual x on the causal structure M ′(g, F̂ ). The sequential calculation
of counterfactuals on F̂ of M ′(g, F̂ ) follows Formula (4) when F̂ represents additive noise
models or linear causal models. The calculation procedure on the causal relationship Xj →
Ŷ depends on the g. If on g, the relationship of the explanatory variables Xs and variable Ŷ
is given by linear or non-linear regression functions following the function rule of an additive
noise model (e.g. linear regression and Gaussian Process (Williams and Rasmussen, 2006)),
we can calculate the counterfactual along with Formula (4). Feedfoward neural networks
can follow Formula (4) because they can be reduced to causal structures in which input
nodes and output nodes are directly connected (Chattopadhyay et al., 2019).

In the experiment section, we validate accuracy of individual-level causal effects esti-
mated by our proposed method and some baselines.

5.2 Estimate Optimal Causal Intervention

To calculate individual-level optimal causal intervention, solving the optimization problem
of Formula (3) is necessary. We consider the following three cases.

In the first case that g is a linear regression model and F̂ is a causal structure esti-
mated using a linear causal model (such as LiNGAM), we propose an extended algorithm
of Blobaum et al. for individuals. This algorithm is described in Algorithm 1. The concept
of the algorithm is to separate the effects of intervention and propagation of noise on the
basis of Formula (4). The vector α represents the individual causal effect on each variable
by intervening on a certain variable Xi = 1, and α is calculated by the propagation through
F̂ . The vector u is noise calculated by x−Bx and is propagated in F̂ along with Formula
(4). On the basis of x and α, we formulate the value of each variable affected by individ-
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ual causal effects as x + cα. When g is a linear regression model, we can easily calculate
individual-level optimal intervention ĉ by the following formula:

ĉ =
d−wTx− w0

wTα
(5)

where w is the coefficient vector of g when wy is 0.

On the other hand, in the second case that g is a feedforward neural network and F̂ is
a causal structure estimated using a linear causal model, calculating optimal intervention
analytically is difficult. Therefore, in Algorithm 2, we propose a gradient descent algorithm
to obtain an approximate solution c from g on the basis of the squared error (SE) between
d and predicted value ŷ = g(x′), where x′ is removed index of the objective variable from
x+ cα.

Note that the accuracy of c involves the smoothness of the regression surface of the
model, and when the surface is non-smooth, the solution reaches local minima. With a
neural network, the activation functions of the model influence it. In particular, the rectified
linear unit (ReLU) function has local linearity, and its regression surface is roughly piece-
wise linear with many transitions (Ghorbani et al., 2019). The Softplus function (Dugas
et al., 2000) reduces the maximal curvature of the regression surface (Dombrowski et al.,
2019). We compared the optimization loss and accuracy of c for activation functions.

In the case that g is a feedforward neural network and F̂ is a non-linear causal structure
estimated using a non-linear causal model (such as the additive noise model), if all functions
fj of an additive noise model are differentiable such as neural networks, Formula (3) can be
optimized with our gradient descent algorithm by considering the combination model M ′

as a single formula. In this study, we applied our method to cases (i) and (ii).

6. Experiments

We evaluate our method from two perspectives: estimated accuracy of counterfactual and
individual-level optimal causal intervention. We applied our proposed method and several
baselines to artificial data generated by various processes. We used the common prepara-
tions of the following steps. (1) Define structural equation model F (X1, . . . , Xn, Y ) and
generate sample data D. Randomly separate x into training data Dtr and test data
Dts. The data Dtr and Dts are normalized. (2) Estimate a causal structure by using
DirectLiNGAM with the likelihood ratio (Shimizu et al., 2011; Hyvärinen and Smith, 2013)
with Dtr and obtain estimated causal model F̂ (X1, . . . , Xn, Y ). (3) Train a prediction model
Ŷ = g(X1, . . . , Xn) with explanatory variables X1, . . . , Xn and an objective variable Y by
using Dtr.

6.1 Evaluate Individual-level Causal Effects Estimation

To evaluate accuracy of estimating individual-level causal effects, we introduce four causal
models as the generative models F . In each model, noise ui (i = 1, 2, 3, 4) is generated by
Laplace(0, 0.05), and we generate data with sample size 10, 000 (training data: 8, 000 and
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Figure 2: Evaluating accuracy of estimating individual-level causal effects. Boxplot of av-
eraged squared error (SE) for each sample on structural equation models (lower
score is better). (a) and (c) are estimated structural causal model and proposed
method, respectively. Proposed method obtained lower scores in the case of gen-
erative models F1, F2 and F3. The result of (b) baseline of only prediction model
is omitted because (b) obtain higher SE score than (a) and (c) in all generative
models (see Appendix B)

test data: 2, 000). We define four additive noise models (F1, F2, F3, F4) with various patterns
of non-linearity and causal order of the objective variable Y as the following formulas.

F1 =


X0 = u0

X1 = 0.6X0 + u1

Y = fy(0.8X0 + 1.5X1) + u2

X3 = 0.5X1 − 2.0Y + u3

(6)

F2 =


X0 = u0

X1 = 0.6X0 + u1

X2 = 0.8X0 + 1.5X1 + u2

Y = fy(0.5X1 − 2.0X2) + u3

(7)

F3 =


X0 = u0

X1 = f1(0.6X0) + u1

Y = f2(0.8X0 + 1.5X1) + u2

X3 = f3(0.5X1 − 2.0Y ) + u3

(8)
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Figure 3: Evaluating accuracy of optimal causal intervention. Boxplot of averaged squared
error (SE) for each sample on simple structural equation models and additive noise
models (lower score is better). (a)-(e) are associated with experimental setting
and we show only top five methods. Green delta points are MSE. Proposed NN
obtained lower scores.

F4 =


X0 = u0

X1 = f1(0.6X0) + u1

X2 = f2(0.8X0 + 1.5X1) + u2

Y = f3(0.5X1 − 2.0X2) + u3

(9)

where fy in F1 and F2 is a sigmoid function described as fy(x) = 1
1+e−τx , and τ is the hyper-

parameter to adjust non-linearity when x is near 0; we set τ = 10 in the experiments. In
F3 and F4, each non-linear function is f1 = 1

1+e−τx , f2 = x+ sin(πx), and f3 = (x− 0.25)3.
In F1 and F3, the explanatory variables include the descendant of Y , and in F2 and F4, Y
is the last of the causal order. These two type structural models aim to evaluate effects of
descendants of the objective variable and non-linearity of causal relationship on estimation
accuracy of individual-level causal effects.

In the experiment, we compare values of counterfactuals calculated by generative models
(F1 . . . F4), baselines, and our proposed method. First, as ground truth, we do intervention
on Xi with c ∈ C (C = {−1.0,−0.5, 0, 0.5, 1.0}) and calculate counterfactual YXi=c(u)
in Dts for each generative model on the basis of the calculation procedure of individual-
level causal effects in section 3.2. Second, we also calculate ŶXi=c(u) by baselines and our
proposed methods. The baselines are (a) calculating ŶXi=c(u) from an estimated causal
structure F̂ directly; (b) estimating counterfactual using a prediction model g of MLP
without F̂ on the basis of Algorithm 2. The proposed method is (c) MLPs g combined with
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estimated causal structure F̂ . The detailed experimental settings and results are given in
Appendix B.

The boxplot 2 of error score of individual-level causal effects of each sample is shown
in Fig 2 . As evaluation scores, we calculate the average of squared error between ground
truth and each method defined by 1

|C|
∑

c∈C(YXi=c(u)− ŶXi=c(u))2. The result shows that
out proposed method obtain lower average and median of error in the models F1, F2 and F3.
The baseline method demonstrates lower error score in F4. We consider this phenomenon
in discussion section.

6.2 Accuracy of Optimal Causal Intervention

To evaluate accuracy of estimating the optimal causal intervention of the proposed method,
instead of giving c, we calculate individual-level optimal causl intervention ĉi of a desired
value d for sample xi ∈ Dts on the basis of baselines and proposed method. Second, we apply
ĉi to original generation process F1, . . . , F4 on the basis of the counterfactual procedure and
obtain predictive value d̂i for each sample. We vary d ∈ D (D = {−1.0,−0.5, 0, 0.5, 1.0})
and compare d̂i and d. The detailed experimental settings and results are given in Appendix
B.

The baselines are (a) estimating ĉ from F̂ directly on the basis of the counterfactual
procedure; (b) Blöbaum et al.s’ method; (c) calculating ĉ by using a prediction model g
without F̂ on the basis of Formula (5) or Algorithm 2; (d) linear regression; and (e) MLPs
(ReLU, tanh, Softplus) combined with estimated causal structures.

Fig 3 illustrates the average of squared error between d and d̂ by boxplots of top five
methods. The figure shows that our method with neural network models obtain the lowest
MSE score for individuals.

6.3 Real Data

We also carried out qualitative experiments with a real-world dataset. Protein Signaling
Data (Anti-CD3/CD28) (Sachs et al., 2005) is a cellular network dataset with its causal
relationships between the features already identified by perturbation experiments. The
original dataset has 853 samples with 11 features each. In this experiments, we selected 8
features of them following the setting of Balu and Borle(Balu and Borle, 2019) (see Appendix
C). The given causal relationships includes only causal structure and not their strengths,
which makes it difficult to evaluate the result of our proposed method.

As the generative model F , we therefore trained MLP regressors to predict the value
of each variable from its parent variables along the given causal directions. We set JNK
and PKC as the objective and intervened variables, respectively. We investigated errors of
individual d̂i predicted by each method when d = 0 and select samples which the value of
JNK is from −1.5 to 1.5 to remove effects of outliers. The detailed experimental settings
and results are in Appendix C.

2. Boxplot in our experiments shows that green delta points are sample average of SE and the bottom,
middle, and top line of boxes shows quantiles 0.25, 0.50, 0.75 respectively. The whiskers extend from the
box to show min and max of data. We remove outliers that have values greater than Q1− 1.5(Q3−Q1)
(Q1 means the the value of quantile 0.25).
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Figure 4: The result in experiments of real-world data comparing with linear baselines
and our proposed methods (regarding kinds of methods, see Section 6). The
blue points means each sample. The vertical axis is the squared error of d and
predicted individual d̂i (the lower is better). The horizontal axis is the original
value of JNK and limited from −1.5 to 1.5 because of removing outliers. RMSE
is calculated by d and d̂i in the range of horizontal axis.

Fig 4 shows sample plots of squared error score in some linear baseline methods and our
proposed methods. While the baseline methods held higher errors when the target value
of the objective variable is around −1, our method with softplus activation achieved lower
errors in that range. Fig 5 shows another comparison between neural network baselines and
our proposed methods. All the baseline methods failed extremely on some data points to
get large SE scores, while our methods do not.

7. Discussion

In artificial experiments, we evaluate our methods and baseline by data generated by two
simple models (F1: Formula (6) and F2: Formula (7)) and two complex models (F3: Formula
(8) and F4: Formula (9)) and our proposed methods achieve the lowest error scores in most
experiments. In real-world data, our proposed methods improve the results of other baseline
methods. We discuss the result from three perspectives.

Effects of descendants of objective variables: In the two artificial experiments, our
methods show better scores than other baselines except for F4 model. These results indicate
that including descendants variables of the objective variable in a prediction model, as
explanatory variables, can improve prediction accuracy. This is consistent with the concept
of Markov blanket where one’s children nodes and their parent nodes are not conditional
independent of the node focused on in a graphical model. F2 also does not include the
descendants of the objective variable as explanatory variable but our method achieves lower
error score. This should be related to non-linearity and we state next paragraph.

Effects of Non-linearity: In two experiments, our proposed method obtain higher per-
formance in the model F2 and F3 and this results coincide with regression accuracy on
non-linear and linear regression in Fig 6. Intuitively, error scores of baseline methods in

14



Estimating individual-level optimal causal interventions

Figure 5: The result in experiments of real-world data comparing with neural network base-
line (the upper) and our proposed methods (the lower). The ranges of the vertical
axes are differ from each activation function. The baseline methods have some
outliers with extreme large squared errors.

non-linear generative models can be lower because we use linear causal discovery method
(DirectLiNGAM). Therefore, the factor to achieve lower error score in our proposed method
is considered to combine non-linear prediction models with linear causal models. We can
estimate non-linear causal structures by existing method based on additive noise models
and achieve enough accuracy. However, it is costly because when the number of variables is
p, ANM estimation method such as RESIT (Peters et al., 2014) have to train p! regression
models. On the other hands, our method have the advantage of calculation cost because it
trains only one regression model.

Convergence of loss and Activation Function: Fig 3 shows that the neural network
models with softplus and tanh achieve lower error score. Fig 6 shows that such activation
functions can more reduce optimization loss in Algorithm 2 than ReLU in most cases. We
can say that our framework is related to regression surfaces of neural networks and therefore
smoother activation is suitable. In addition, in most cases, our method can decrease loss
more than the baselines with the prediction model alone. This is because that our proposed
method can vary descendant values of Xi indirectly through coefficient α in the process of
updating c. On the other hand, baselines only update a direct relation Xi → Ŷ .
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Figure 6: Artificial data experiments: prediction RMSE score (the upper) and the loss L
in Algorithm 2 (the lower) for models F1, F2, F3, F4.

8. Conclusion

In this paper, we introduce a new problem setting to estimate individual-level optimal
causal intervention for a continuous variable and formulate it as a optimization problem to
minimize mean squared error between the counterfactual of objective variable and a user
given desired value. We propose a method that combines an estimated causal structure and
regression model into a single causal structure. That can improve individual-level causal
effects estimations. We also propose the method to estimate individual-level optimal causal
intervention using a gradient descent algorithm. In the experiments of evaluating estima-
tion of individual-level causal effects and the optimal causal intervention, we compare our
proposed methods with some baseline methods by artificial and real-world data and confirm
that our method can estimate optimal causal intervention better than other baselines.

As a future work, more theoretical analysis is necessary for non-linearity. In the exper-
iments, we use the combinations of linear causal structures and the non-linear prediction
models for data generated by the non-linear causal structures and our method show higher
performance than the baselines. To analyze this phenomenon, we can investigate how linear
causal structures represent non-linear causal relationships. Moreover, the relationship be-
tween Ŷ and Y , and, between the optimal intervention values derived from Ŷ and from Y ,
should be theoretically analyzed. In the experiments, we achieve high accuracy but it is not
clarified that its theoretical validity and what situation is suitable for. In this study, we use
a simple causal model with some assumptions such as causal sufficiency for simplicity, as
a first attempt for this problem. Development of methods including more general or more
complex causal models remains as a future challenge.
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Appendix A. Toy Experiment

We compare the accuracy on the two cases, (a) when the explanatory variables are only
the parents of the objective variable and (b) when the explanatory variables including the
children of the objective variable. Formula F1 and F2 generate 1500 and 500 training
and test samples, respectively. We train MLP models (the number of nodes is 100, two
intermediate layers, and activation is ReLU) on two cases (a) and (b). (e.g. in the case (a)
of F1 data, the explanatory variables are X0, X1, X3 and in the case (b), the explanatory
variables are X0, X1). Regression accuracy is shown in Table 1. This result shows that case
(b) of the model F1 achieves better regression accuracy because the prediction model of case
(a) is not given noise of the objective variable X2 by the explanatory variables. Intuitively,
In the calculation of counterfactual, it is necessary to predict the objective value added
noise so we can say that case (b) is suitable for predicting counterfactual by noise included
by descendants of the objective variable.

Table 1: The Average of RMSE
Model F1 Model F2

case (a) 0.144 0.160
case (b) 0.0729 0.161

Appendix B. Detailed Settings and Results for Artificial Data

In the artificial experiments, MLPs has 256 nodes of two intermediate layers. The learning
rate and optimizer are 0.01 and SGD, respectively. The number of epoch and batch size
are 1000 and 64, then the hyper-parameters ε and η is 10−10 and 0.1, respectively. Fig ??
show that the estimated causal matrix.
Evaluation for estimating individual-level causal effects: Fig 6 show that experi-
mental results regarding the RMSE of the prediction model gs in the experiment step 3 (see
Section 6). In this experiment, activation functions of MLP is ReLU. Fig 7 show boxplots
of that the averaged squared error between a predicted value ŶXi=c(u) and a desired value
d for all methods.
Evaluation for estimating optimal causal intervention: Fig 6 show that experimental
results regarding the RMSE of the prediction model gs in the experiment step 3 (see Section
6) and the optimization loss L in Algorithm 2 for each prediction models, respectively. Fig
9 and 10 show boxplots of that the averaged squared error between a predicted value d̂i and
a desired value d for all methods.

Appendix C. Detailed Settings and Results for Real Data

For generation model F , we trained MLP regressors to predict the value of each variable
from its parent variables along the causal directions given by (Balu and Borle, 2019) (Fig
11). The MLPs has 64 nodes of two intermediate layers and softplus activation. The
learning rate and optimizer are 0.01 and SGD, respectively. The number of epoch and
batch size are 1000 and 64.
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Figure 7: Evaluation for estimating individual-level causal effects: averaged SE score on
structural equation models (lower score is better)

For prediction model g, We train MLP having 256 nodes of two intermediate layers.
The learning rate and optimizer are 0.01 and SGD, respectively. The number of epoch and
batch size are 1000 and 64, then the hyper-parameters ε and η is 10−10 and 0.1, respectively.
Fig 11 shows that the estimated causal matrix.

Fig 12 show that experimental results regarding the RMSE of the prediction model gs
in the experiment and the optimization loss L in Algorithm 2 for each prediction models,
respectively.
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Figure 8: Artificial data experiments: estimated and ground truth causal matrix for F1, F2

(upper) and F3, F4 (lower). The vertical and horizontal axes are parents and
descendants, respectively. For example, in the ground truth of F1 and F2, there
are a causal relation X2 → X3 that its strength is −2.0. The values in ground
truth shows coefficients before applying non-linear function. We estimate causal
matrix by normalized data.
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Figure 9: Evaluation for estimating optimal causal intervention: averaged SE score on sim-
ple structural equation models (lower score is better) The upper and the lower
are F1 and F2, respectively.

Figure 10: Evaluation for estimating optimal causal intervention: averaged SE score on
simple structural equation models (lower score is better) The upper and the
lower are F3 and F4, respectively..
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Figure 11: Causal graph of protein signaling data (Anti-CD3/CD28) (left) and ground truth
and estimated causal matrix (right). The nodes of causal graph are selected by
Balu’s experiment setting. In the ground truth causal matrix, the connection
is shown by 1.0 because dataset show only ground truth of causal connections
without a structural equation model.

Figure 12: Real data experiments: prediction RMSE score (the left) and the loss L in
Algorithm 2 (the right)
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