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Abstract

Constraint-based methods are one of the main approaches for causal structure learning
that are particularly valued as they are asymptotically guaranteed to find a structure
that is Markov equivalent to the causal graph of the system. On the other hand, they
may require an exponentially large number of conditional independence (CI) tests in the
number of variables of the system. In this paper, we propose a novel recursive constraint-
based method for causal structure learning that significantly reduces the required number
of CI tests compared to the existing literature. The proposed approach aims to use Markov
boundary information to identify a specific variable that can be removed from the set of
variables without affecting the statistical dependencies among the other variables. Having
identified such a variable, we discover its neighborhood, remove that variable from the set
of variables, and recursively learn the causal structure over the remaining variables. We
further provide a lower bound on the number of CI tests required by any constraint-based
method. Comparing this lower bound to our achievable bound demonstrates the efficiency
of the proposed approach. Our experimental results show that the proposed algorithm
outperforms state-of-the-art both on synthetic and real-world structures.

Keywords: Causal Discovery, Recursive Causal Structure Learning, Bayesian Networks

1. Introduction

Learning the causal structure among the variables of the system under study is one of the
main goals in many fields of science. This task has also gained significant attention in
the recent three decades in artificial intelligence because it has become evident that the
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knowledge of causal structure can significantly improve the prediction power and remove
systematic biases in inference (Pearl, 2009; Spirtes et al., 2000).

One of the main assumptions in causal structure learning is that the ground truth
structure is a directed acyclic graph (DAG). There are two main classes of methods in
the literature for learning the causal DAG, namely constraint-based methods and score-
based methods (Zhang et al., 2017). The idea in constraint-based methods is to find the
most consistent structure with the conditional independence relations in the data. The
most well-known constraint-based method is the PC algorithm (Spirtes et al., 2000). In
score-based causal structure learning, the idea is to search for a structure that maximizes a
score function, commonly chosen to be a regularized likelihood function. The search for the
optimum structure is usually based on a greedy search (Heckerman et al., 1995; Chickering,
2002; Teyssier and Koller, 2012; Solus et al., 2017), or continuous optimization Zheng et al.
(2018); Manzour et al. (2021). There are also hybrid methods that combine constraint-
based and score-based methods (Tsamardinos et al., 2006), as well as methods that require
specific assumptions on the data generating modules, such as requiring linearity and non-
Gaussianity of the noises (Shimizu et al., 2006) or additivity of the noise with specific types
of non-linearity (Hoyer et al., 2009).

Constraint-based methods are particularly valued as they do not require any assump-
tions on the functional form of the causal modules and recover a structure that is Markov
equivalent to the causal graph of the system. One of the caveats to these methods is that
in the worst case, the number of conditional independence (CI) tests required can be ex-
ponentially large in the number of variables. Several efforts in the literature have tried to
reduce the number of required CI tests and improve the performance of constraint-based
methods (Margaritis and Thrun, 1999; Kalisch and Bühlmann, 2007; Pellet and Elisseeff,
2008; Xie and Geng, 2008; Zhang et al., 2019).

(Spirtes et al., 2000) proposed the so-called PC algorithm with complexity O(p∆), where
p and ∆ denote the number of variables and the maximum degree of the underlying graph,
respectively. (Margaritis and Thrun, 1999) and (Pellet and Elisseeff, 2008) proposed using
Markov boundary information to reduce the number of required CI tests. The former
proposed the GS method with complexity O(p2 + pα22α), and the latter proposed the CS
method with complexity O(p22α), where α is the maximum size of the Markov boundary
among the variables. To the best of our knowledge, these are the state-of-the-art achievable
bounds in the literature.

In this paper, we propose a novel recursive constraint-based method for causal struc-
ture learning, which we call MARVEL. Our method is non-parametric and does not posit
any assumptions on the functional relationships among the variables, while it significantly
reduces the number of required CI tests. In each iteration of our recursive approach, we use
the Markov boundary information to find a removable variable (see Definition 3). We then
orient the edges incident to this variable and remove it from the set of variables. Finally,
we update the Markov boundary information for the next iteration.

Our main contributions are as follows.

• We introduce the notion of a removable variable, which is a variable that can be re-
moved from a DAG without changing the d-separation relations (Definition 3). More-
over, we provide a graphical characterization of removable variables (Theorem 5).
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Figure 1: A DAG with ∆in = 1 and ∆ = α = p− 1.

• Harnessing the notion of removability, we propose a novel recursive Markov boundary-
based causal structure learning method, called MARVEL (Section 3). Given the
Markov boundary information, MARVEL requires O(p∆2

in2∆in) CI tests in the worst
case to find the Markov equivalence class of the causal graph, where p and ∆in are
the number of variables and the maximum in-degree of the causal DAG, respectively
(Proposition 14). We show that this upper bound significantly improves over the state
of the art.

• We provide a lower bound on the required number of CI tests for any constraint-based
method. Specifically, we show that any constraint-based algorithm requires at least
Ω(p2+p∆in2∆in) CI tests in the worst case (Theorem 16). Comparing this lower bound
with our achievable bound demonstrates the efficiency of our proposed method.

In Section 2.1 we discuss well-known Markov boundary discovery algorithms which require
O(p2) CI tests. By utilizing one of these algorithms, our method discovers the causal graph
by performing O(p2 + p∆2

in2∆in) CI tests in the worst case. It is noteworthy that our upper
bound is based on ∆in as opposed to ∆ or α. We achieve this by the virtue of recursive
variable elimination. In general ∆in ≤ ∆ ≤ α. Additionally, in a DAG with a constant ∆in,
the values of ∆ and α can grow linearly with the number of variables. Figure 1 depicts one
such graph where ∆in = 1, but ∆ = α = p − 1. Therefore, in some cases PC, GS, and CS
requires an exponential number of CI tests while our approach has merely quadratic com-
plexity. Our experiments on both synthetic and real-world structures show that MARVEL
requires substantially fewer CI tests with smaller average size of conditioning sets while
obtaining superior accuracy, compared to state-of-the-art constraint-based methods.

We start the exposition by introducing the notations, reviewing the terminology and
describing the problem in Section 2. MARVEL method is described in Section 3, and its
computational complexity is discussed in Section 4. Section 5 is dedicated to evaluating
MARVEL on both synthetic and real-world structures.

2. Preliminaries and Problem Description

We consider a system with p variables denoted by the set V. Let G = (V,E) be the directed
acyclic graph (DAG) over V which represents the causal relationships among the variables,
where E is the set of directed edges. A directed edge from variable X to Y , denoted by
(X,Y ), represents that X is a direct cause of Y with respect to V1. This model is referred
to as causal DAG or causal Bayesian network in the literature (Pearl, 2009; Spirtes et al.,

1. Through out the paper, we use the terms variable and vertex interchangeably.
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2000; Neapolitan, 2004). The skeleton of G is defined as the undirected graph obtained by
removing the directions of the edges of G. If (X,Y ) ∈ E, X and Y are called neighbors of
each other, X is a parent of Y and Y is a child of X. The set of all neighbors, parents, and
children of X are denoted by NX , PaX , and ChX , respectively.

Definition 1 (v-structure) Three vertices form a v-structure if two of them are parents
of the third vertex while they are not neighbors themselves. Additionally, VPaX denotes the
set of v-structures in which X is a parent.

Definition 2 (co-parent) For X,Y ∈ V, Y is a co-parent of X if it shares at least one
child with X and Y 6∈ NX . The set of co-parents of X is denoted by ΛX .

A distribution PV on variables V satisfies Markov property with respect to G if d-separation2

in G implies conditional independence (CI) in PV . That is, X is d-separated from Y by
S ⊆ V, denoted by X ⊥G Y |S, implies X ⊥⊥PV

Y |S. Conversely, PV satisfies faithfulness
with respect to G, if CI in PV implies d-separation in G. That is, X ⊥⊥PV

Y |S implies
X ⊥G Y |S (Spirtes et al., 2000; Glymour and Cooper, 1999). We often drop the subscripts
G and PV when there is no ambiguity.

In this paper we study the problem of causal structure learning under the Markov
condition and faithfulness assumption. Additionally, we assume causal sufficiency, that
is, we assume that the variables do not have any latent common causes. Under these
assumptions, the underlying causal DAG can be learned up to Markov equivalence class, i.e.,
the set of DAGs representing the same conditional independence relationships (Spirtes et al.,
2000; Pearl, 2009). (Verma and Pearl, 1991) showed that two DAGs are Markov equivalent
if and only if they have the same skeleton and v-structures. The Markov equivalence class
of a DAG can be graphically represented by a partially directed graph called the essential
graph. Our goal is to obtain the essential graph corresponding to the causal DAG from
observational data.

Before proceeding to our proposed approach, we briefly review a few definitions and
results on Markov boundaries.

2.1 Markov Boundary

For X ∈ V, Markov boundary of X is a minimal set S ⊆ V \ {X} such that X ⊥⊥
V \ (S ∪ {X})|S. Under Markov and faithfulness assumptions, Markov boundary of each
vertex X, denoted by MbX , is unique and consists of its parents, children and co-parents
(Pearl, 1988, 2009):

MbX = PaX ∪ ChX ∪ ΛX = NX ∪ ΛX . (1)

Many algorithms have been proposed in the literature for discovering the Markov boundaries
(Fu and Desmarais, 2010; Margaritis and Thrun, 1999; Guyon et al., 2002; Tsamardinos
and Aliferis, 2003; Tsamardinos et al., 2003b; Yaramakala and Margaritis, 2005). One
straightforward method is total conditioning (TC) (Pellet and Elisseeff, 2008), which states
that under faithfulness, X and Y are in each other’s Markov boundary if and only if

X 6⊥⊥ Y |V \ {X,Y }. (2)

2. See (Pearl, 1988) for the definition of d-separation.
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Using total conditioning,
(|V|

2

)
CI tests suffice for identifying the Markov boundaries of all

of the vertices. However, the drawback is that each CI test requires conditioning on a large
set of variables.

This issue is addressed in several algorithms including Grow-Shrink (GS) (Margaritis
and Thrun, 1999), IAMB (Tsamardinos et al., 2003b) and its several variants which propose
a method that leads to performing more CI tests, but with smaller conditioning sets. Thus,
the choice of which algorithm to use for computing the Markov boundaries must be made
according to the data at hand. Note that these algorithms perform at most O(p2) CI tests to
discover the Markov boundaries. The Markov boundary information is required to initialize
our proposed approach, and any of these methods can be utilized for this purpose.

3. MARVEL Method

In this section, we present our recursive method for learning the causal structure. The idea
in this approach is as follows.

We first identify a variable with certain properties, which we call removable using Markov
boundary information. A removable variable is a variable that can be omitted from the
causal graph such that the remaining graph still satisfies Markov property and faithfulness
with respect to the marginal distribution of the remaining variables. We then identify the
neighbors of this variable and orient the edges incident to it. Finally, we remove this variable
from the set of variables and update the Markov boundaries for the next iteration. This
procedure is repeated until all of the variables are removed.

We show that this approach leads to finding a graph with the same skeleton and v-
structures as the true causal graph. Hence, the corresponding essential graph can be iden-
tified using this graph. We call our method, Markov boundary-based Recursive Variable
Elimination (MARVEL).

We introduce removable variables in Subsection 3.1, propose a method for testing re-
movability in Subsection 3.2, and present our recursive algorithm in Subsection 3.3. In
Subsection 3.4 we show how to avoid performing duplicate CI tests during our algorithm.

3.1 Removable Variables

A removable variable is defined formally as follows.

Definition 3 (Removable) X is a removable vertex in a DAG G if the d-separation rela-
tions in G and H := G \ {X} are equivalent over the vertices of H. That is for any vertices
Y,Z ∈ V \ {X} and S ⊆ V \ {X,Y, Z},

Y ⊥G Z|S ⇐⇒ Y ⊥H Z|S. (3)

Remark 4 Suppose PV is Markov and faithful with respect to a DAG G. For any vertex
X ∈ V, PV\{X} is Markov and faithful with respect to G\{X} if and only if X is a removable
vertex in G.

All the proofs are available in Appendix A. Next, we propose a graphical characterization
of removable variables.
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Theorem 5 (Removability) X is removable in G if and only if the following two condi-
tions are satisfied for every Z ∈ ChX .

Condition 1: NX ⊂ NZ ∪ {Z}.

Condition 2: PaY ⊂ PaZ for any Y ∈ ChX ∩ PaZ .

X

Z

W

(a) Condition 1

X

ZW

(b) Condition 1

X

Z

Y

T

(c) Condition 2

Figure 2: Conditions of Theorem 5.

Figure 2 depicts the two Conditions of Theorem 5. In Figures 2a and 2b, W ∈ NX . Hence,
Condition 1 implies the red edge between W and Z. Note that W must be a parent of Z
in Figure 2a since G is a DAG. In Figure 2c, T ∈ PaY . Hence, Condition 2 implies the red
edge between T and Z.

Remark 6 Variables with no children satisfy the two conditions of Theorem 5. Therefore,
there always exists a removable vertex in every DAG.

3.2 Testing for removability

In this section, we present an approach for testing the removability of a variable given the
Markov boundary information of all of the variables when Markov and faithful assumptions
hold, i.e., when d-separation is equivalent to CI. Our method is based on evaluating the
two conditions of Theorem 5. In Subsections 3.2.1 and 3.2.2 we discuss how to identify
the neighbors, co-parents, and Vpa

X efficiently. Subsequently, we use this information to test
Conditions 1 and 2 of Theorem 5 in Subsections 3.2.3 and 3.2.4.

3.2.1 Finding Neighbors and co-parents of a variable

Given the Markov boundary of a variable, we can use the following lemma to tell the
neighbors and co-parents apart (Margaritis and Thrun, 1999).

Lemma 7 Suppose X ∈ V and Y ∈ MbX . Y is a neighbor of X if and only if

X 6⊥⊥ Y |S, ∀S ⊂ MbX \ {Y }. (4)

Given MbX , for each Y ∈ MbX we perform the CI tests of Equation 4. If all of theses tests
yield dependence, then X and Y are neighbors. Otherwise, there exists SXY ⊂ MbX \ {Y }
that d-separates X and Y . Hence, we can identify NX and ΛX (along with a separating set
for each co-parent) with at most |MbX |2|MbX |−1 CI tests.
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3.2.2 Finding v-structures (VpaX )

Recall that Vpa
X denotes the set of v-structures in which X is a parent.

Lemma 8 Suppose T ∈ ΛX with a separating set SXT for X and T , and let Y ∈ NX . Y
is a common child of X and T (i.e., X → Y ← T is in VpaX ) if and only if Y /∈ SXT and

Y 6⊥⊥ T |S, ∀S ⊆ MbX ∪ {X} \ {Y, T}. (5)

Once NX and ΛX are identified along with a separating set for each of the variables in ΛX
using Lemma 7, we can find Vpa

X by applying Lemma 8 which requires performing at most
|ΛX ||NX |2|MbX |−1 CI tests.

3.2.3 Testing condition 1

To test condition 1 of Theorem 5 for a variable X, we apply the following lemma.

Lemma 9 Variable X satisfies Condition 1 of Theorem 5 if and only if

Z 6⊥⊥W |S ∪ {X}, ∀W,Z ∈ NX , S ⊆ MbX \ {Z,W}. (6)

Given NX , Condition 1 for X can be verified using Lemma 9 by performing at most(|NX |
2

)
2|MbX |−2 CI tests.

3.2.4 Testing condition 2

Lemma 10 Suppose the variable X satisfies Condition 1 of Theorem 5. Then X satisfies
Condition 2 of Theorem 5, and therefore, X is removable, if and only if

Z 6⊥⊥ T |S ∪ {X,Y }, ∀(X → Y ← T ) ∈ VpaX , Z ∈ NX \ {Y }, S ⊆ MbX \ {Z, Y, T}. (7)

Having identified NX and Vpa
X , Lemma 10 allows us to verify if Condition 2 holds for X

using at most |ΛX ||NX |2|MbX |−2 unique CI tests, since Z ∈ NX , T ∈ ΛX , and S ∪ {Y } ⊆
MbX \ {Z, T}. In Section 3.4 we show how to perform these CI tests without performing
duplicate tests. The following proposition summarizes the results of this section.

Proposition 11 Knowledge of MbX suffices to identify NX ,ΛX , VpaX , and determine whether
X is removable by performing at most O(|MbX |22|MbX |) unique CI tests.

3.3 Algorithm

In order to identify a removable vertex efficiently (i.e. in terms of the number of CI tests), we
sort the variables based on the cardinality of their Markov boundary in ascending order. Let
I = (X(1), X(2), ..., X(p)) be this ordering. Starting with X(1), we look for the first variable
X(i) that is removable. Testing the removability of each variable is performed through the
CI tests described in the previous section, and we stop when we identify the first removable
variable in this order. The following lemma guarantees that the Markov boundary of every
variable for which we perform the removability tests until we reach the first one to prove
removable is at most of size ∆in.
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Algorithm 1: MARVEL

1: Input: V, PV, (MbX : X ∈ V)
2: Create Ĝ = (V, E = ∅) with vertex set V and no edges.
3: V← V % V is the set of remaining variables.
4: for 1 to |V| do
5: I = (X(1), X(2), ..., X(|V|))← Sort V in ascending order based on their Markov

boundary size.
6: for i = 1 to |V| do
7: (NX(i)

, ΛX(i)
, SX(i)

)← Find neighbors and co-parents of X(i) along with a set of
separating sets SX(i)

= (SX(i)Y : Y ∈ ΛX(i)
) using Lemma 7.

8: Add undirected edges between X(i) and NX(i)
to Ĝ if an edge is not already there.

9: if Equation 6 holds for X = X(i) then
10: Find Vpa

X(i)
using Lemma 8.

11: Orient the edges of Vpa
X(i)

accordingly in Ĝ.

12: if Equation 7 holds for X = X(i) then

13: Orient the remaining undirected edges incident to X(i) in Ĝ as in-going
towards X(i).

14: V← V \ {X(i)}
15: Update MbY for all Y ∈ MbX(i)

. % See Subsection 3.3.1.
16: Break the for loop of line 6.
17: G̃ ← The partially directed graph with the skeleton and the v-structures of Ĝ.
18: Apply the Meek rules (Meek, 1995) to G̃.
19: return G̃

Lemma 12 If X ∈ V is a removable vertex in G, then |MbX | ≤ ∆in, where ∆in is the
maximum in-degree of G.

As shown in Section 3.2, the CI tests required for both learning the neighbors of a variable
and testing its removability are conditioned on a subset of its Markov boundary. Since ver-
tices are processed in the order I up to a removable variable, by Lemma 12 we only process
the variables with a Markov boundary of size at most ∆in. This ensures a maximum size
of conditioning sets, which in turn results in more powerful conditional independence tests,
and also results in performing substantially fewer CI tests to learn the structure. Note that
if we recursively eliminate the first removable variable in I at each iteration, the succeeding
variables in I, which are currently not removable, will eventually become removable at some
point. Therefore, during the process, we never need to learn the neighborhood of a variable
with Markov boundary size larger than ∆in. We discuss our complexity upper bound in
Section 4. The pseudo code of MARVEL is outlined in Algorithm 1.

Initially, the output of a Markov boundary discovery algorithm (e.g., one of the algo-
rithms mentioned in Section 2.1) is input to the MARVEL method. The procedure is then
initialized with an empty graph Ĝ (line 2). V indicates the set of remaining variables. Each
iteration of the recursive part consists of three main phases:

1. Identify the first removable vertex X(i) in I.
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2. Discover NX(i)
and orient the edges incident to X(i).

3. Remove X(i) and update the Markov boundary of the remaining variables.

In phase 1, we first obtain I in line 5. We then check the two condition of removability
using Lemmas 9 and 10 in lines 9 and 12. Phase 2 is performed in the following steps. First,
we learn NX(i)

and add the corresponding undirected edges to Ĝ if the edge is not already

added (lines 7, 8). We then orient the v-structure edges of Vpa
X (line 10). Finally, we orient

the remaining undirected edges incident to X(i) as in-going towards X(i) (line 13). We will

show in Theorem 13 that with this orientation, Ĝ will have the same v-structures as the
causal graph G. In phase 3, X(i) is removed from the graph, and we update the Markov
boundaries of the remaining variables in the absence of X(i) (lines 14, 15). In Subsection
3.3.1 we will present an efficient method for the latter task. Note that X(i) is particularly
chosen such that the marginal distribution of the remaining variables satisfies faithfulness
with respect to the induced subgraph of G over these variables.

At the end of the algorithm, we keep the direction of the edges involved in v-structures
in Ĝ and apply the Meek rules (Meek, 1995) to this partially directed graph. Note that
initially, we assumed Markov property and faithfulness. Although we remove a variable
at each iteration, Remark 4 implies that Markov and faithfulness assumptions hold in all
iterations since we remove removable variables. Hence, throughout the execution of the
algorithm, the CI tests are equivalent to the d-separation relations in the remaining graph.

The theorem below provides the correctness of MARVEL method.

Theorem 13 (Correctness of MARVEL) Suppose G satisfies Markov property and faith-
fulness with respect to PV. The learned graph Ĝ in Algorithm 1 has the same skeleton and
v-structures as G. Therefore, the output of Algorithm 1 is the essential graph corresponding
to G.

3.3.1 Updating Markov boundaries

Suppose X is removed in an iteration. At the end of this iteration, we need to update
the Markov boundaries of the remaining vertices. The removal of X affects the remaining
vertices in two ways:

1. X should be removed from Markov boundaries of every vertex it appeared in.

2. If two variables are not adjacent and have only X as a common child, then they should
be removed from each other’s Markov boundary.

Consequently, it is sufficient to remove X from the Markov boundary of the vertices in MbX ,
and then update the Markov boundary only for the vertices in NX , i.e., the only vertices
that can potentially be parents of X. Therefore, it suffices that for all pairs {Y, Z} in NX

we check whether Y and Z remain in each other’s Markov boundary after removing X.
This is equivalent to testing for the dependency Y 6⊥⊥ Z|MbZ \ {X,Y, Z}, or alternatively
Y 6⊥⊥ Z|MbY \ {X,Y, Z}. We perform the test using the smaller of these two conditioning
sets. Formally, define W := arg minU∈{Y,Z} |MbU |. The test will check whether

Y ⊥⊥ Z|MbW \ {X,Y, Z}. (8)

If Equation 8 holds, we remove Y from MbZ and Z from MbY .

9
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3.4 Avoiding duplicate CI tests

In an iteration of MARVEL, if a variable does not pass the removability tests, it will be
tested for removability in the subsequent iterations. We discuss an approach to use the
information from previous iterations to avoid performing duplicate CI tests while testing
the removability of such variables.

3.4.1 CI tests for finding neighbors, co-parents, and v-structures

We identify neighbors and co-parents of a variable in line 7 of Algorithm 1 as described in
3.2.1. It suffices to do this procedure once for each variable X. More precisely, if we learn
NX in an iteration, the neighbors of X in the next iterations would be NX excluding the
deleted variables. Hence, we do not need any further CI tests for finding neighbors and
co-parents of X in the following iterations.

The same applies to v-structures. If we find Vpa
X in an iteration, we can save it and

delete a v-structure from it when one of the three variables of the v-structure is removed.

3.4.2 CI tests for condition 1

For an arbitrary variable X, suppose Z,W ∈ NX . If in an iteration, there does not exist
any S ⊆ MbX \ {Z,W} such that Z ⊥⊥ W |S ∪ {X}, then either Z,W are neighbors or
they are both parents of X. Since removing a vertex does not alter such relationships, no
S ∪ {X} can separate W,Z in the following iterations either. We can use this information
to skip performing duplicate CI tests for pairs W,Z ∈ NX in the following iterations.

3.4.3 CI tests for condition 2

The same idea applies to condition 2. Suppose Z ∈ NX and X → Y ← T is in Vpa
X . If in

an iteration for all S ⊆ MbX \ {Z, Y, T}, Z 6⊥⊥ T |S ∪ {X,Y }, then Z, T do not have any
separating set including X,Y . Hence, we can save this information and avoid performing
CI tests for the pair Z, T when the separating set includes both X,Y .

4. Complexity Analysis

The bottleneck in the complexity of constraint-based causal structure learning methods is
the number of CI tests they perform. In this section, we provide an upper bound on the
worst-case complexity of the MARVEL algorithm in terms of the number of CI tests and
compare it with PC (Spirtes et al., 2000), GS (Margaritis and Thrun, 1999), CS (Pellet
and Elisseeff, 2008), and MMPC (Tsamardinos et al., 2003a) algorithms. We also provide
a worst-case lower bound for any constraint-based algorithm to demonstrate the efficiency
of our approach.

Proposition 14 Given the initial Markov boundaries, the number of CI tests required by
Algorithm 1 on a graph of order p and maximum in-degree ∆in is upper bounded by

p

(
∆in

2

)
+
p

2
∆in(1 + 0.45∆in)2∆in = O(p∆2

in2∆in). (9)
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Corollary 15 If ∆in ≤ c log p, MARVEL uses at most O(pc+1 log2 p) CI tests in the worst
case, which is polynomial in the number of variables.

If we use any of the algorithms mentioned in Section 2.1 that compute the Markov bound-
aries with O(p2) CI tests, the overall upper bound of MARVEL on the number of CI tests
will be

O(p2 + p∆2
in2∆in). (10)

Theorem 16 The number of conditional independence tests of the form X ⊥⊥ Y |S required
by any constraint-based algorithm on a graph of order p and maximum in-degree ∆in in the
worst case is lower bounded by

Ω(p2 + p∆in2∆in). (11)

For constant ∆in or more generally ∆in = o(log p), Equations 10 and 11 are quadratic in p.
For larger values of ∆in, the upper bound differs from the lower bound by a factor of ∆in.

Table 1: Number of required CI tests in the worst case by various algorithms for causal
structure learning.

Algorithm Number of CI tests in the worst case

PC3 O(p∆)

GS O(p2 + pα22α)

CS O(p22α)

MMPC O(p22α)

MARVEL O(p2 + p∆2
in2∆in)

Lower bound Ω(p2 + p∆in2∆in)

Table 1 compares the complexity of various algorithms, where ∆ and α denote the
maximum degree and the maximum Markov boundary size of the causal graph, respectively.
In general ∆in ≤ ∆ ≤ α. Additionally, in a DAG with a constant in-degree, ∆ and α can
grow linearly with the number of variables. Therefore, not only MARVEL has a significantly
smaller worst-case bound, but also the complexity bound for all other algorithms can be
exponential in some regimes where MARVEL remains polynomial.

5. Experiments

We evaluate MARVEL and compare it with other methods in two settings4. In Subsection
5.1, we assess the complexity of various causal structure learning algorithms in terms of the
number of CI tests and size of conditioning sets, given oracle CI tests, i.e., when algorithms
have access to true conditional independence relations among the variables. This is similar
to assuming that the size of the observed samples is large enough to recover the conditional
independence relations without any error. In this case, all of the algorithms recover the

3. If PC priory knows the exact value of ∆in as side information, its upper bound will be O(p∆in).
4. All of the experiments were run in MATLAB on a MacBook Pro laptop equipped with a 1.7 GHz

Quad-Core Intel Core i7 processor and a 16GB, 2133 MHz, LPDDR3 RAM.
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essential graph corresponding to the causal graph. In Subsection 5.2, we evaluate the
algorithms on finite sample data, where we compare both the complexity and the accuracy
of the algorithms over a wide range of sample sizes.

Our comparison cohort includes the modified version of PC algorithm that starts from
the moralized graph5 instead of the complete graph (to make a fair comparison with algo-
rithms that start with Markov boundary information) (Pellet and Elisseeff, 2008; Spirtes
et al., 2000), GS (Margaritis and Thrun, 1999), CS (Pellet and Elisseeff, 2008), and MMPC
(Tsamardinos et al., 2003a) algorithms. We use MATLAB implementations of PC and
MMPC provided in (Murphy et al., 2001; Murphy and Rosen, 2019) and (Tsirlis et al., 2018),
respectively. The implementation of MARVEL is available in https://github.com/Ehsan-
Mokhtarian/MARVEL.

5.1 Oracle Setting

We use d-separation relations in the causal DAG as the oracle answers for the CI tests in
this setting. This is equivalent to having access to the joint distribution of the variables
instead of a finite number of samples. We report the number of performed CI tests and the
size of conditioning sets which are the main factors determining the time complexity of the
algorithms. Note that CI tests with smaller conditioning sets are more reliable.

We use two random graph models for generating the causal DAGs. The first model is
the directed Erdős-Rènyi model G(p,m) (Erdős and Rényi, 1960), which provides uniform
distribution over DAGs with p vertices and m edges (The skeleton is first sampled from the
undirected Erdős-Rènyi model, and then the edges are oriented with respect to a random
ordering over the variables). As the second model, we use random DAGs with a fixed
maximum in-degree ∆in, which are generated as follows. We fix a random ordering of the
variables. For each vertex in the graph, we choose ∆in potential parents among the other
variables uniformly at random. We then choose the parents that do not violate the ordering.
This procedure yields a DAG.

Figure 3 shows the experimental results regarding the number of CI tests. Subfigures
3a and 3d depict the result for the fixed ∆in model. Subfigures 3b and 3c depict the result
for the Erdős-Rènyi model, where the density of a graph is defined as the number of edges
divided by the maximum possible number of edges,

(
p
2

)
. Each point in the plots is obtained

using 20 DAGs. The shaded bars denote the 80% confidence intervals (Campbell, 2020).
We continued running the algorithms until their run time exceeded a certain threshold, as
the parameters (size of the graph, density or ∆in) grew. As seen in the figures, MARVEL
requires substantially fewer CI tests with smaller conditioning sets, and outperforms all
other algorithms, especially on the graphs with fixed max in-degree. Also, as witnessed by
Subfigures 3a and 3d, even the worst-case upper bound of our proposed method is below
the number of CI tests required by the other algorithms.

5. The moralized graph of a DAG is the undirected graph in which every vertex is connected to all the
variables in its Markov boundary.
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(a) Fixed number of vertices (p = 25)
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(c) Fixed density (density is 0.25)
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(d) Fixed maximum in-degree (∆in = 5)

Figure 3: Structure learning using oracle CI tests after Markov boundary discovery.
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5.2 Finite Sample Setting

In this setting, we have access to a finite number of samples from PV. We evaluate the
algorithms on various real-world structures available at Bayes Network Repository (Elidan,
2001) along with random graphs described in the last part.

We compare the algorithms in three scenarios.

5.2.1 Scenario 1: The effect of sample size on real-world structures

In this setting, we have picked 4 real-world structures, namely Insurance, Mildew, Barley,
and Win95pts. After fixing the graph, the data is generated from a linear Gaussian struc-
tural causal model (Pearl, 2009), where each variable is generated as a linear combination of
its parents plus a Gaussian noise. The coefficients are chosen uniformly at random from the
interval [−1,−0.5] ∪ [0.5, 1] and the noise variables are distributed according to N (0, σ2

X)
where σX is chosen uniformly at random from the interval [1,

√
3]. The performance of the

algorithms is measured by 1. the number of performed CI tests, 2. runtime6, and 3. F1
score of the learned skeleton. We have used TC algorithm for Markov boundary discovery
for all of the algorithms. Moreover, we have used Fisher Z-transformation (Fisher, 1915)
to perform the CI tests with parameter α = 2

p2 , following the convention in (Pellet and

Elisseeff, 2008), which includes an analysis over the choice of this parameter.

Figure 4 illustrates the results of this scenario. The reported results for the number of
CI tests and runtime is after Markov boundary discovery. As seen in this figure, compared
to the other algorithms, MARVEL is faster, requires a smaller number of CI tests, and
obtains the highest accuracy in nearly all cases.

5.2.2 Scenario 2: random graphs

Data generating process in this section is the same as the previous scenario, and the algo-
rithms are evaluated on a set of larger graphs.

Table 2 compares various algorithms on medium to large sized random graphs with ∆in =
4, where n = 50p samples are available. The entry NA indicates that the corresponding
algorithm failed to learn a graph after performing 150, 000 CI tests on average. Each number
in the table is obtained using 20 DAGs. In this table, ASC stands for the Average Size
of Conditioning sets. Moreover, precision and recall of the learned skeletons along with
F1-scores are reported.

The accuracy of all the algorithms is close to each other since the algorithms have access
to a large dataset, whereas MARVEL is faster and requires significantly fewer CI tests with
smaller conditioning sets compared to the other algorithms.

5.2.3 Scenario 3: real-world structures

Further experimental results are provided with new sets of parameters on real-world struc-
tures. Two new structures, namely Alarm and Diabetes are added to the set of structures
on which the structure learning algorithms are evaluated.

Table 3 shows the experiment results of this scenario. Each entry of the table is re-
ported as an average of 20 runs, and n = 15p samples are available per variable. The data

6. Numbers are in seconds.
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MARVEL PC GS CS MMPC
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(a) Insurance (|V | = 27, |E| = 51)
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(b) Mildew (|V | = 35, |E| = 46)
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(c) Barley (|V | = 48, |E| = 84)
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(d) Win95pts (|V | = 76, |E| = 70)

Figure 4: Scenario 1: The effect of sample size on the performance of the structure learning
algorithms for real-world structures after Markov boundary discovery.

generation process is similar to the previous sections, except for the choice of coefficients
and the variance of the noise variables. The coefficients are chosen uniformly at random
from the interval [−2,−0.5] ∪ [0.5, 2] and the noise variables are distributed according to
N (0, σ2

X) where σX is chosen uniformly at random from the interval [1,
√

2].

The experimental results demonstrate that MARVEL significantly outperforms the other
algorithms in terms of runtime and the number of the required CI tests while maintaining
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Table 2: Scenario 2: Performance of the causal structure learning algorithms on random
graphs after Markov boundary discovery (n = 50p, ∆in = 4).

p 50 60 70 80 90 100 150 200

MARVEL

CI tests 1,567 1,586 1,494 1,890 1,731 2,543 3,120 4,087
Runtime 0.18 0.22 0.19 0.27 0.28 0.47 1.43 3.93

ASC 2.00 1.73 1.72 1.76 1.67 1.91 1.72 1.62
F1 score 0.93 0.94 0.95 0.95 0.96 0.97 0.98 0.98
Precision 0.90 0.92 0.93 0.93 0.94 0.95 0.96 0.96

Recall 0.96 0.97 0.97 0.98 0.98 0.98 0.99 0.99

PC

CI tests 2,577 3,113 4,586 5,247 6,094 7,655 12,868 17,643
Runtime 0.32 0.43 0.71 0.86 1.16 1.51 2.94 5.16

ASC 1.80 1.88 2.16 2.07 2.15 2.29 2.52 2.53
F1 score 0.92 0.93 0.95 0.95 0.96 0.96 0.98 0.98
Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 0.86 0.87 0.90 0.91 0.92 0.93 0.96 0.97

GS

CI tests 61,887 102,296 NA NA NA NA NA NA
Runtime 9.26 16.12 NA NA NA NA NA NA

ASC 5.79 6.19 NA NA NA NA NA NA
F1 score 0.94 0.95 NA NA NA NA NA NA
Precision 1.00 1.00 NA NA NA NA NA NA

Recall 0.89 0.90 NA NA NA NA NA NA

CS

CI tests 14,091 26,254 27,131 51,522 NA NA NA NA
Runtime 2.47 4.88 5.45 11.85 NA NA NA NA

ASC 4.61 5.03 4.94 5.53 NA NA NA NA
F1 score 0.94 0.94 0.96 0.96 NA NA NA NA
Precision 0.99 0.99 1.00 1.00 NA NA NA NA

Recall 0.89 0.90 0.92 0.93 NA NA NA NA

MMPC

CI tests 2,818 3,467 4,675 5,675 6,412 7,693 12,747 19,250
Runtime 0.28 0.36 0.51 0.73 0.94 1.17 2.50 4.96

ASC 2.08 2.13 2.32 2.33 2.37 2.46 2.64 2.78
F1 score 0.92 0.93 0.94 0.95 0.96 0.96 0.98 0.98
Precision 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 0.85 0.87 0.90 0.90 0.92 0.93 0.96 0.97

superior accuracy of the learned graph in most of the experiments. It is worthy to note
that one of the caveats of constraint-based methods is the high number of missing edges in
the learned structure, whereas MARVEL obtains the highest recall score (i.e., the fewest
number of missing edges) as seen in our experimental results. This is due to the fact that
MARVEL performs fewer CI tests to verify the existence of an edge. That is, the existence
of the edge is assumed if at most 2∆in−1 CI tests yield dependence, whereas this number
can grow up to 2∆ or 2α for the other algorithms, which makes them too conservative.

6. Conclusion

We proposed MARVEL, a recursive Markov boundary-based causal structure learning method
for efficiently learning the essential graph corresponding to the Markov equivalence class of
the causal DAG. We first introduced the notion of removable variables and then designed
an efficient algorithm to identify them using Markov boundary information. Then we made
use of these variables to learn the causal structure recursively. We showed that MARVEL
requires substantially fewer CI tests than the state-of-the-art methods, making it scalable
and suitable to be used on systems with a large number of variables. We provided the
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Table 3: Scenario 3: Performance of the causal structure learning algorithms on real-world
graphs after Markov boundary discovery (n = 15p).

Algorithm
Insurance Mildew Alarm Barley Win95pts Diabetes

p=27 p=35 p=37 p=48 p=76 p=104
e=51 e=46 e=46 e=84 e=70 e=148

MARVEL

CI tests 138 95 95 406 233 296
Runtime 0.01 0.01 0.01 0.03 0.03 0.07

ASC 0.91 0.51 0.78 1.14 1.19 0.57
F1 Score 0.78 0.86 0.89 0.81 0.97 0.90
Precision 0.81 0.89 0.91 0.81 0.96 0.90

Recall 0.75 0.84 0.86 0.80 0.97 0.90

PC

CI tests 451 403 316 870 1,590 1,584
Runtime 0.03 0.03 0.03 0.06 0.16 0.25

ASC 1.02 0.90 0.95 1.08 2.21 1.25
F1 Score 0.62 0.69 0.81 0.73 0.91 0.84
Precision 0.89 0.96 1.00 0.96 1.00 0.96

Recall 0.48 0.53 0.68 0.59 0.84 0.74

GS

CI tests 931 1,417 632 3,046 32,821 1,825
Runtime 0.04 0.05 0.03 0.15 3.29 0.13

ASC 2.15 2.69 2.03 3.02 6.38 1.62
F1 Score 0.70 0.76 0.86 0.79 0.94 0.88
Precision 0.91 0.96 0.99 0.98 1.00 0.98

Recall 0.57 0.63 0.76 0.66 0.88 0.80

CS

CI tests 219 665 140 734 1418 445
Runtime 0.03 0.06 0.03 0.10 0.30 0.27

ASC 1.56 2.26 1.45 2.15 3.39 1.11
F1 Score 0.71 0.75 0.86 0.79 0.93 0.87
Precision 0.90 0.93 0.97 0.95 0.98 0.95

Recall 0.60 0.63 0.77 0.67 0.89 0.80

MMPC

CI tests 574 563 416 1,114 1,481 2,517
Runtime 0.02 0.02 0.02 0.04 0.09 0.17

ASC 1.39 1.23 1.09 1.48 2.14 1.82
F1 Score 0.61 0.65 0.80 0.71 0.91 0.81
Precision 0.88 0.92 0.99 0.96 1.00 0.88

Recall 0.47 0.50 0.67 0.57 0.84 0.75

correctness and complexity analyses of the proposed method. We also compared MARVEL
with other constraint-based causal structure learning algorithms through various experi-
ments. The results demonstrated the superiority of MARVEL both in terms of complexity
and accuracy compared to the other algorithms.
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Appendix A. Proofs

We need the following definition in the proofs.

Definition 17 (Descendant) For vertices X,Y in DAG G, Y is called a descendant of
X if there is a directed path from X to Y . The set of all descendants of X in G is denoted
by De(X,G). Note that X ∈ De(X,G).

A.1 Proofs of Section 3

Remark 4 Suppose PV is Markov and faithful with respect to a DAG G. For any vertex
X ∈ V, PV\{X} is Markov and faithful with respect to G \ {X} if and only if X is a
removable vertex in G.
Proof Suppose Y,Z ∈ V \ {X} and S ⊆ V \ {X,Y, Z}. By definition, PV\{X} is Markov
and faithful with respect to G \ {X} if and only if

Y ⊥G\{X} Z|S ⇐⇒ Y ⊥⊥PV\{X} Z|S. (12)

By the definition of removability, X is removable in G if and only if

Y ⊥G\{X} Z|S ⇐⇒ Y ⊥G Z|S. (13)

Since PV is Markov and faithful with respect to G, the right hand sides of the above
equations are equivalent. Hence, the two equations are equivalent.

Theorem 5 (Removability)X is removable in G if and only if the following two conditions
are satisfied for every Z ∈ ChX .

Condition 1: NX ⊂ NZ ∪ {Z}.

Condition 2: PaY ⊂ PaZ for any Y ∈ ChX ∩ PaZ .

Proof

1. To prove the if side, we assume that X is a variable in G that satisfies Conditions 1
and 2. Let H = G \ {X}, the graph obtained by removing X from G. We first prove
the following two lemmas.

Lemma 18 For any vertex Y of H,

De(Y,G) = De(Y,H).

Proof Suppose Z ∈ De(Y,H), i.e., there exists a directed path from Y to Z in H.
The same path exists in G. Hence, Z ∈ De(Y,G). Therefore, De(Y,H) ⊆ De(Y,G).

Now suppose Z ∈ De(Y,G), and let P be a directed path from Y to Z in G. If P
does not include X, it also exists in H. Otherwise, let P = (Y = P1, P2, ..., Pi−1, Pi =
X,Pi+1, ..., Pk = Z). Condition 1 implies that Pi−1 → Pi+1. Hence, P′ = (Y =
P1, P2, ..., Pi−1, Pi+1, ..., Pk = Z) is a directed path from Y to Z in H, and Z ∈
De(Y,H). Therefore, De(Y,G) ⊆ De(Y,H), which concludes the proof.
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Lemma 19 Let P be a path in H, and S be a subset of vertices of H. S blocks P in
G if and only if S blocks P in H. Moreover, if a vertex blocks P in one of the graphs,
it also blocks P in the other one.

Proof The proof of necessary and sufficient conditions are the same. Let G1 be one
of G,H and G2 be the other one. Let Y, Z be the end points of P and W ∈ P be a
vertex that blocks P in G1. Either W ∈ S and W is a non-collider in P, or W is a
collider in P and De(W,G1)∩ (S∪ {Y, Z}) = ∅. Now consider this path in G2. In the
first case, W is a non-collider included in S and therefore it blocks P in G2 too. In
the second case, W is a collider and due to Lemma 18, De(W,G2) ∩ (S ∪ {Y,Z}) =
De(W,G1) ∩ (S ∪ {Y, Z}) = ∅. Therefore, W blocks P in G2.

To show the removability of X, we need to verify Equation 3, i.e., show that for any
vertices Y, Z ∈ V \ {X} and S ⊆ V \ {X,Y, Z},

Y ⊥G Z|S ⇐⇒ Y ⊥H Z|S.

Proving the only if side in Equation 3 is straightforward: Suppose Y and Z are d-
separated in G by S. All paths between Y and Z in H, which are also present in G,
are blocked in G by S. Lemma 19 implies that these paths are also blocked in H by
S. Hence, Y and Z are d-separated in H by S.

For the reverse direction, suppose Y and Z are d-separated in H by S. Take an
arbitrary path P between Y and Z in G. We will prove that P is blocked in G by S. If
X /∈ P, then P is a path in H too. In this case, since S is blocking P in H, Lemma 19
implies that S blocks P in G. Otherwise, X ∈ P. Note that Lemma 19 cannot be used
in this case as P is not a path in H. Suppose P = (P1 = Y, P2, ..., P`, X, Pr, ..., Pm =
Z). Two possibilities may occur:

(a) P`, Pr ∈ PaX (Figure 5a): If there exists a vertex other than X that blocks P in
H, it blocks it in G too. Otherwise, we need to prove that X is blocking P in G.
X is a collider in P since P`, Pr ∈ PaX . Note that X /∈ S as X is not present in
H. It is left to prove that De(X,G) ∩ (S ∪ {Y,Z}) = ∅. Let T be an arbitrary
descendant of X and W ∈ ChX be the first vertex on a directed path from X to T
(it might happen that T = W ). As X satisfies Condition 1, P`, Pr are connected
to W . Now consider P′ = (P1, ..., P`,W, Pr, ..., Pm) which is a path between Y
and Z in H. S blocks this path in H, but none of the vertices of P′ except for
W can block P′ in H. This is because otherwise according to Lemma 19, the
same vertex would block P in G too, which is against the assumption. Hence,
W blocks P′. W is a collider in P′ and therefore, De(W,G) ∩ (S ∪ {Y,Z}) = ∅.
This proves that T /∈ (S ∪ {Y,Z}). As a result, P is blocked in G by S.

(b) P` ∈ ChX or Pr ∈ ChX (Figure 5b): We assume without loss of generality that
Pr appears later than P` in the causal order. Therefore, Pr ∈ ChX . Due to
Condition 1, P` → Pr is an edge in H. Hence, P′ = (P1, ..., P`, Pr, ..., Pm) is a
path between Y and Z in H. This path is blocked in H (and also in G due to
Lemma 19) by a vertex W . If W 6= P`, or W = P` and P` is a non-collider in
P, W blocks P in G. The only remaining case to consider is when P` blocks P′
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Figure 5: Omitting a removable vertex.

but it is a collider in P. In this case, P` ∈ S since it is a non-collider in P′.
Moreover, P`−1 is a parent of P` and due to Condition 2, P`−1 → Pr is an edge
in H. Hence, P′′ = (P1, ..., P`−1, Pr, ..., Pm) is a path between Y and Z in H.
Now the same vertex that blocks P′′ in H, blocks P in G. Note that in this case
P`−1 is not a collider in either P′′ or P.

In both cases P is blocked in G by S. Hence, equation 3 holds and X is removable.

2. To prove the only if side of Theorem 5, it suffices to show that if X is removable, it
then satisfies conditions 1 and 2.

Condition 1 : Suppose Z ∈ ChX and W ∈ NX . Either W ← X → Z or W → X → Z
is a path in G. A set S can block such paths only if X ∈ S. Since X 6∈ H, no
separating set for W and Z exists in H. Equation 3 implies that no separating set
for W and Z exists in G. Therefore, W,Z must be connected with an edge and X
satisfies Condition 1.

Condition 2 : Suppose Z ∈ ChX , Y ∈ ChX ∩ PaZ , and U ∈ PaY . We show that no S
can d-separate U and Z in G: U → Y → Z and U → Y ← X → Z are both paths
in G. S can block the first path only if Y ∈ S. But then the latter path can only be
blocked if X ∈ S. Since X 6∈ H, no such S exists in H. Hence, Equation 3 implies
that no separating set for U and Z exists in G. Therefore, U,Z must be connected
with an edge. Since U → Y and Y → Z, U must be a parent of Z and X satisfies
Condition 2.

Lemma 7 Suppose X ∈ V and Y ∈ MbX . Y is a neighbor of X if and only if

X 6⊥⊥ Y |S, ∀S ⊂ MbX \ {Y }. (14)

Proof If Y ∈ NX , then X,Y do not have any separating set. Otherwise, suppose Y /∈ NX .
It suffices to find a S ⊂ MbX \ {Y } that d-separates X,Y . By local Markov property, if Y
is not a descendant of X, S = PaX would do. Now suppose Y is a descendant of X. Define
S as the set of vertices in MbX that appear earlier than Y in the causal order. We claim
X ⊥⊥ Y |S, i.e., S blocks all the paths between X and Y . Take an arbitrary path P between
X and Y and let Z ∈ P be the latest vertex of P in the causal order. Two cases may occur:
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1. Z = Y : In this case, all vertices on P appear earlier than Y in the causal order and
P∩MbX ⊆ S. Now let the two vertices following X on P be W1,W2 (P has a length
of at least 2 as Y is not a neighbor of X). If W1 is a parent of X, it is included in
S and it blocks P. Otherwise, W1 is a child of X. Now either W2 ∈ ChW1 and W1

blocks P or W2 ∈ PaW1 and W2 blocks P. Note that in the latter case W2 is a parent
of a child of X and is included in MbX . Therefore, W2 ∈ S.

2. Z 6= Y : In this case Z is a collider on P because both vertices before and after Z
appear earlier in the causal order and are therefore parents of Z. Due to the definition
of S, neither Z nor any of its descendants are in S ∪ {X,Y }. Hence, P is blocked by
S.

In all of the cases, the introduced S is not equal to MbX \ {Y } as it does not include the
common child of X and Y .

Lemma 8 Suppose T ∈ ΛX with a separating set SXT for X and T , and let Y ∈ NX . Y
is a common child of X and T (i.e., X → Y ← T is in Vpa

X ) if and only if Y /∈ SXT and

Y 6⊥⊥ T |S, ∀S ⊆ MbX ∪ {X} \ {Y, T}. (15)

Proof Suppose Y ∈ NX is a common child of X and T . SXT blocks the path X → Y ← T
between X,T . Hence, Y cannot be in SXT . Additionally, Y, T are neighbors and they do
not have any separating set.

Now suppose Y ∈ NX is not a common child of X and T , and Y /∈ SXT . It suffices to
find a S ⊆ MbX ∪{X} \ {Y, T} that d-separates Y and T . First, note that Y and T cannot
be neighbors because otherwise, (X,Y, T ) is a path between X,T that must be blocked by
SXT , but Y is not a collider in this path, and Y /∈ SXT which is not possible. In order to
introduce S, consider three possible cases for Y :

• Y ∈ PaX : We claim S = SXT d-separates Y and T . Let P be a path between Y and
T . If P includes X, it is already blocked by SXT as there exists a vertex that blocks
the part of the path between X and T , and the same vertex blocks P. If P does not
include X, let P′ = (X,Y, . . . , T ), i.e., the path from X to T through Y and P. P′ is
blocked by a vertex Z. As Y /∈ S and Y is not a collider in P′, Z 6= Y . Therefore, Z
blocks P too.

• Y ∈ ChX and T is a descendant of Y : Similarly, S = SXT d-separates Y and T .
To prove this claim, let P be a path between Y and T . If P includes X, with the
same statements discussed above, P is blocked by S. If P does not include X, define
P′ = (X,Y, . . . , T ), and let Z be the vertex that blocks P′. Z 6= Y because Y /∈ S
and Y cannot block P′ as a collider since T is a descendant of Y . Hence, Z blocks P
too.

• Y ∈ ChX and T is not a descendant of Y : In this case, the set of parents of Y d-
separate Y and T . Note that as Y is a child of X, PaY ∈ MbX ∪ {X} and S = PaY
is our desired set.

In all the cases we introduced a S ⊆ MbX ∪ {X} \ {Y, T} that d-separates Y and T .
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Lemma 9 Variable X satisfies Condition 1 of Theorem 5 if and only if

Z 6⊥⊥W |S ∪ {X}, ∀W,Z ∈ NX , S ⊆ MbX \ {Z,W}. (16)

Proof Suppose X satisfies condition 1, and let Z,W be two of its neighbors. If at least one
of Z,W is a child of X, then condition 1 implies that Z and W are neighbors and cannot
be d-separated with any set. If both of Z,W are parents of X, no set including X can
d-separates Z,W since X is a collider in Z → X ←W .

For the if side, suppose that Z 6⊥⊥W |S∪{X} for any pair of vertices W,Z ∈ NX and any
S ⊆ MbX \{Z,W}. We need to show that X satisfies condition 1. Let Z,W be two arbitrary
vertices in NX where at least one of them is a child of X. It suffices to show that W and Z
are neighbors. Without loss of generality we can assume that Z appears later than W in the
causal order. Therefore Z ∈ ChX . Assume by contradiction that they are not neighbors.
Since W is not a descendant of Z, local Markov property implies that the set of parents
of Z d-separates W and Z. Note that Z is a child of X and therefore paZ ⊆ MbX ∪ {X}.
Hence, S = PaZ \ {X} ⊆ MbX \ {Z,W} would be a set that Z ⊥⊥ W |S ∪ {X} which is
against our assumption. Therefore, W and Z are neighbors and X satisfies condition 1.

Lemma 10 Suppose the variable X satisfies Condition 1 of Theorem 5. Then X satisfies
Condition 2 of Theorem 5, and therefore, X is removable, if and only if

Z 6⊥⊥ T |S ∪ {X,Y }, ∀(X → Y ← T ) ∈ Vpa
X , Z ∈ NX \ {Y }, S ⊆ MbX \ {Z, Y, T}. (17)

Proof Suppose X is removable. Let X → Y ← T be a v-structure and Z ∈ NX . If Z
appears later than Y in the causal order, then condition 1 implies that Y ∈ PaZ . Therefore,
condition 2 implies that T ∈ PaZ . Hence, Z and T are neighbors and cannot be d-separated.
If Z appears earlier than Y in the causal order, condition 1 implies that Z ∈ PaY . In this
case Z → Y ← T is a path between Z, T and no set containing Y can d-separate Z, T .

For the if side, suppose X satisfies condition 1 and the assumption of the lemma holds.
We need to show that X satisfies condition 2. Suppose Z ∈ ChX , Y ∈ ChX ∩ PaZ , and
T ∈ PaY . It suffices to show that T,Z are neighbors. Assume by contradiction that Z, T
are not neighbors. Note that X,Y ∈ PaZ . Define S = PaZ \ {X,Y }. Parents of Z are
in MbX , and Z, T are not neighbors. Therefore, S ⊆ MbX \ {Z, Y, T}. Since T is not a
descendant of Z (in fact, Z is a descendant of T ), parents of Z d-separates Z, T . Hence,
S∪{X,Y } d-separates Z, T which is against the assumption of the lemma. Hence, Z, T are
neighbors and X is removable.

Lemma 12 If X ∈ V is a removable vertex in G, then |MbX | ≤ ∆in, where ∆in is the
maximum in-degree of G.
Proof Let Z be the latest child of X and therefore, the latest vertex of MbX in the causal
order. From Theorem 5, every vertex in MbX \ {Z} is connected to Z. By definition of Z,
vertices in MbX\{Z} along with X itself must be the parents of Z, that is {X}∪MbX\{Z} =
PaZ . The cardinality of the left hand side is equal to |MbX |, while the cardinality of the
right hand side is bounded by ∆in. Hence,

|MbX | = |PaZ | ≤ ∆in.
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Theorem 13 (Correctness of MARVEL) Suppose G satisfies Markov property and
faithfulness with respect to PV. The learned graph Ĝ in Algorithm 1 has the same skele-
ton and v-structures as G. Therefore, the output of Algorithm 1 is the essential graph
corresponding to G.
Proof First, note that as it is discussed in Section 3.3, Markov and faithfulness assumptions
hold in all iterations of Algorithm 1. Hence, throughout the execution of the algorithm,
the result of CI tests are equivalent to the d-separation relations in the remaining graph.
Further note that Remark 6 implies that there always exists at least one removable variable
at each iteration. Therefore, Algorithm 1 never gets stuck. We now show that Ĝ has the
same skeleton and the same set of v-structures as G.

• Skeleton: We show Ĝ contains all the edges of G and it has no extra edges.

No false positives: The algorithm starts with an empty graph. At each iteration, new
edges are only added between X(i) and its neighbors (line 8). Hence, no extra edges

appear in Ĝ.

No false negatives: Suppose there exists an edge between X and Y in G. Without
loss of generality, suppose X gets removed before Y . During the iteration at which
the algorithm removes X, it identifies all the remaining neighbors of X, including Y ,
and adds an edge between X and its neighbors. Therefore, the skeleton of Ĝ contains
the edge between X and Y .

• V-structures: It suffices to show that for every X,Y and Z,

X → Y ← Z is a v-structure in G if and only if X → Y ← Z is a v-structure in Ĝ.

If side: Suppose X → Y ← Z is a v-structure in Ĝ. Consider the two corresponding
edges from X to Y and Z to Y . Each edge is either oriented in line 11 of the algorithm,
where it is a part of a v-structure. In this case, it is oriented correctly due to Lemma
8. Otherwise, it is oriented in line 13 when vertex Y gets removed. Since Y is getting
removed, it is removable while both X and Z are present in the remaining graph.
Therefore, Y satisfies condition 1 of Theorem 5. We know from the first part of the
proof that Ĝ has the same skeleton as G. Hence, X and Z are not neighbors in G.
Neither X nor Z can be a child of Y in G, since otherwise, condition 1 implies that
X and Z are neighbors. Therefore, they must both be parents of Y in G. That is,
X → Y ← Z is a v-structure in G.

Only if side: Suppose X → Y ← Z is a v-structure in G. We show that the edge
between X and Y is oriented from X to Y in Ĝ. We orient every edge either in line
11 where this edge appears in an identified v-structure or in line 13 when the edge
is undirected and we want to remove one of its endpoints. Note that all the edges
are oriented during the algorithm. In the first case, the orientation of the edge is
correct due to Lemma 8. In the latter case, i.e., if the edge between X and Y is
oriented in line 13, one of the endpoints is discovered to be removable. It suffices to
show that the removable endpoint is Y , and hence, the edge is oriented from X to
Y . Suppose the opposite, that is X is discovered to be removable and the algorithm
reaches line 13. In this case, the v-structure X → Y ← Z must be identified in line
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10 as a member of Vpa
X , and the edge between X and Y is oriented in line 11, which

contradicts the assumption that this edge is not oriented until line 13. Therefore, the
removable endpoint is Y , and while Y is removed, the undirected edge is oriented
correctly from X to Y .

In both cases, the edge is from X to Y . The same arguments hold for the edge between
Z and Y . Therefore, X → Y ← Z is a v-structure in Ĝ.

A.2 Proofs of Section 4

Proposition 14 Given the initial Markov boundaries, the number of CI tests required by
Algorithm 1 on a graph of order p and maximum in-degree ∆in is upper bounded by

p

(
∆in

2

)
+
p

2
∆in(1 + 0.45∆in)2∆in = O(p∆2

in2∆in). (18)

Proof MARVEL performs CI tests for the following purposes:

1. Updating Markov boundaries at the end of each iteration: As discussed in Section 3.3.1,
when X is removed, it is enough to perform a CI test for each pair (Y,Z) ∈ NX×NX .
There are

(|NX |
2

)
such pairs and from Lemma 12 we know |NX | ≤ |MbX | ≤ ∆in.

Hence, at most p
(

∆in
2

)
CI tests are performed for updating the Markov boundaries

throughout the algorithm.

2. Testing for removability : As discussed in Section 3.2, given Markov boundary infor-
mation, for each variable X we can test its removability by first finding NX ,ΛX , then
finding Vpa

X , and then checking Conditions 1 and 2 of Theorem 5. We showed that we
can do this by performing at most

K = |MbX |2|MbX |−1 + |ΛX ||NX |2|MbX |−1 +

(
|NX |

2

)
2|MbX |−2 + |ΛX ||NX |2|MbX |−2

= 2|MbX |−2(2|MbX |+ 3|ΛX ||NX |+
(
|NX |

2

)
)

CI tests. From Lemma 12 we know |MbX | ≤ ∆in. Suppose N = |NX |. Since |MbX | =
|NX |+ |ΛX | we have:

K < 22∆in−2(2∆in+3(∆in−N)N+
N2

2
) ≤ 2∆in−2(2∆in+0.9∆2

in) =
1

2
∆in(1+0.45∆in)2∆in

As we discussed in Section 3.4, we only need to perform CI tests for testing the
removability of a variable for the first time. Because we can save some information
and avoid performing new CI tests in the next iterations. Hence, at most p

2∆in(1 +
0.45∆in)2∆in CI tests are performed for this task.
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Summing up over the above bounds, we get the desired upper bound.

Theorem 16 The number of conditional independence tests of the form X ⊥⊥ Y |S required
by any constraint-based algorithm on a graph of order p and maximum in-degree ∆in in
the worst case is lower bounded by

Ω(p2 + p∆in2∆in). (19)

Proof We first present an example that requires at least

b p

∆in + 1
c
(

∆in + 1

2

)
2∆in−1 = Ω(p∆in2∆in) (20)

CI tests to uniquely find its skeleton.
Example 1. Let d = ∆in. Suppose the variables are denoted by X1, X2, ..., Xp and

the first (d + 1)b p
d+1c variables are partitioned into b p

d+1c clusters C1, ..., Cb p
d+1
c each of

size (d + 1). Let G, the causal graph, have the following structure: Xi is the i-th vertex
in the causal order, the induced sub-graph over the vertices of each cluster is a complete
graph, and there is no edge between vertices of different clusters. Note that the maximum
in-degree of G is d. Given any algorithm A that performs fewer CI tests than the claimed
lower bound in Equation 20, we provide a graph H such that A fails to tell G and H apart.

Considering the structure of G, for an arbitrary S, any CI test of Xi and Xj conditioned
on S that A queries, yields dependence if Xi and Xj are in the same cluster and yields

independence otherwise. There are M = b p
d+1c

(
d+1

2

)
pairs {Xi, Xj} such that Xi and Xj

are in the same cluster. As algorithm A performs less than M2d−1 CI tests, there exists
a pair {Xi∗ , Xj∗} in a particular cluster for which algorithm A queries the conditional
independence of {Xi∗ and Xj∗} conditioned on fewer than 2d−1 sets. Without loss of
generality, suppose i∗ < j∗ ≤ d + 1 and the corresponding cluster is C1 = {X1, ..., Xd+1}.
As C1 \ {Xi∗ , Xj∗} has 2d−1 subsets, there exists at least one subset S∗ ⊆ C1 \ {Xi∗ , Xj∗}
such that for no S′ ⊆ V \ C1, algorithm A queries the result of the CI test Xi∗ ⊥⊥ Xj∗ |S
where S = S∗ ∪ S′.

Now we provide the graph H as follows. It has the same structure and causal order as
G, except over the vertices of C1. As depicted in Figure 6, the vertices in S∗ in an arbitrary
order, form the first vertices of C1 in the causal order. These vertices are followed by X∗i
and X∗j and then the rest of the vertices of C1, again in an arbitrary order. As for the
skeleton, all pairs in C1 are connected to each other except for (X∗i , X

∗
j ).

It suffices to show that H is consistent with all the CI tests that A performs. For an
arbitrary CI test between Xi and Xj conditioned on S, if {Xi, Xj} 6= {Xi∗ , Xj∗} the test
yields the same result for G and H. If {Xi, Xj} = {Xi∗ , Xj∗}, the result always yields
dependence as there is an edge between X∗i and X∗j in G. To prove the consistency, we
have to show that none of the sets S among the conditioning sets of the CI tests that A
performs, d-separates X∗i and X∗j . The structure of H implies that S∗ is the unique subset
of C1 which d-separates X∗i and X∗j . Since there is no edge between vertices of different
clusters, if S d-separates X∗i and X∗j in H then S ∩C1 must be equal to S∗. As mentioned
above, there is no such CI test performed in A. Therefore, H is consistent with the results
of the CI tests, and A cannot uniquely determine the skeleton of G.

25



Mokhtarian, Akbari, Ghassami, and Kiyavash

S∗

Xi∗

Xj∗

. . .

. . .

. . .

. . .

. . .

. . .
. .

.. .

.. .

.

. . .. . .. . .. . .
. .

.
. .

.
. .

.
. .

.
. . .. . .. . .. . .

Figure 6: Cluster C1 in the graph H

We now provide another example that requires Ω(p2) CI tests to uniquely find its skele-
ton.

Example 2. Suppose the causal graph G is an empty graph with p vertices. Given any
algorithm A that performs fewer CI tests than

(
p
2

)
, we provide a graph H such that A fails

to tell G and H apart.
As algorithm A performs less than

(
p
2

)
CI tests, there exists a pair {Xi∗ , Xj∗} for which

algorithm A does not query the conditional independence of Xi∗ and Xj∗ conditioned any
set. Let H be the graph with p vertices and only one edge (Xi∗ , Xj∗). Note that, all of the
performed CI tests yield independence since G is an empty graph. Therefore, H is consistent
with the results of the CI tests, and A cannot uniquely determine the skeleton of G.

Combining the lower bounds of the above examples, we get the desired lower bound of
Equation 19.
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