
JMLR:Workshop and Conference Proceedings 16 (2011) 59–69Workshop on Active Learning and Experimental Design

Active Batch Learning with Stochastic Query-by-Forest
(SQBF)

Alexander Borisov alexander.boriosv@intel.com
Intel, Nizhniy Novgorod, Russia

Eugene Tuv eugene.tuv@intel.edu
Intel, Chandler, AZ, USA

George Runger runger@asu.edu

Arizona State University, Tempe, AZ, USA

Editor: I. Guyon, G. Cawley, G. Dror, V. Lemaire, and A. Statnikov

Abstract

In a conventional machine learning approach, one uses labeled data to train the model.
However, often we have a data set with few labeled instances, and a large number of
unlabeled ones. This is called a semi-supervised learning problem. It is well known that
often unlabeled data could be used to improve a model. In real world scenarios, labeled data
can usually be obtained dynamically. However, obtaining new labels in most cases requires
human effort and/or is costly. An active learning (AL) paradigm tries to direct the queries
in such way that a good model can be trained with a relatively small number of queries.
In this work we focus on so-called pool-based active learning, i.e., learning when there is a
fixed large pool of unlabeled data, and we can query the label for any instance from this
pool at some cost. Existing methods are often based on strong assumptions for the joint
input/output distribution (i.e., a mixture of Gaussians, linearly separable input space, etc.),
or use a distance-based approach (such as Euclidean or Mahalanobis distances). That makes
such methods very susceptible to noise in input space, and they often work poorly in high
dimensions. Also, such methods assume numeric inputs only. In addition, for most methods
relying on distance computations and/or linear models, computational complexity scales at
least quadratically with respect to the number of unlabeled samples, rendering them useless
on large datasets. In real world applications data is often large, noisy, contains irrelevant
inputs, missing values, and mixed variable types. Often queries should be arranged in
groups or batches (this is called batch AL). In batch querying one should consider both
the ’usefulness’ of individual queries within a batch, and the batch diversity. Batch AL,
although being very practical by nature, is rarely addressed by existing AL approaches.
Here we propose a new non-parametric approach to the AL problem called Stochastic Query
by Forest (SQRF), that effectively addresses the challenges described above. Our algorithm
is based on a QBC algorithm applied to an RF ensemble, and our main contribution is the
batch diversification strategy. We describe two different strategies for batch selection, the
first of which achieved the highest average score on the AISTATS 2010 active learning
challenge and ranked top on one of the challenge datasets. Our work focuses on binary
classification problems, but our method can be directly applied to regression or multi-class
problems with minor modifications.

Keywords: tree ensembles, query by committee, random forest

c© 2011 A. Borisov, E. Tuv & G. Runger.



Borisov Tuv Runger

1. Introduction

The basic idea behind active learning (AL) is that a regression or classification algorithm
can achieve better performance on limited data when it is allowed to choose the data for
learning. In pool-based active learning, we are given a large fixed pool of unlabeled data,
and are allowed to query the target value for each unlabeled instance at a given cost. Here
we assume equal unit cost for all queries. The model is first built on all labeled instances,
then we query an instance that is considered the most useful and update the model. The
goal is to achieve a better learning curve (error vs. total query cost) for a model, compared
to querying labels at random. The main challenge for an AL algorithm is computing the
“utility” on unlabeled instances. The usual intuition behind the utility function is to select
instances in dense regions of input distribution, or in regions of low sampled density, or
where the is the most “uncertainty” in the model. For a comprehensive review of AL
approaches see Settles (2009). Below we outline the most commonly used AL approaches.

Uncertainty sampling (see Lewis and Gale (1994) for example). Suppose we have a model
that can report class probabilities pi, i = 1 . . .K, where K is number of classes. Then all
unlabeled instances are ranked according to the current model uncertainty measure (for a
classification problem this is usually computed as 1−max(pi)). The next instance queried
is the instance with the largest uncertainty, thus avoiding the instances that are predicted
with high confidence.

Query-by-committee, or QBC (see Seung et al. (1992), Freund et al. (1997)). This
approach first constructs an ensemble (committee) of diverse base learners, then ranks
all unlabeled instances with respect to a committee disagreement measure. Disagreement
can be computed as the entropy of predicted class probabilities over committee members,
or in various other ways. Here one tries to select instances that represent regions of input
space that are not covered by existing learners in the committee. QBC discourages querying
instances from the same region of the input distribution where good prediction is impossible
by nature (an inherent weakness of uncertainty sampling).

However, methods like uncertainty sampling and QBC do not take global properties
of the input distribution into account, and can spend too much time querying outliers or
sparsely populated regions. Density based methods try to overcome this issue by incorpo-
rating the input data density into the utility function. The resulting utility function for a
data point x is computed as U(x) ·D(x)p, where U(x) is an expected utility, and D(x) is an
estimated input density. The parameter p controls the influence of the density factor. This
encourages querying from more densely populated regions of input space. See, for example,
Xu et al. (2007) for a density-based method in relevance feedback.

Another approach that uses global input distribution information directly minimizes the
expected model generalization error (expected risk). This is similar in nature to a Bayesian
experimental design Chaloner and Verdinelli (1996). However, the expected risk can be
computed in closed form only for a limited class of models, such as a mixture of Gaussians,
or SVMs. Such methods often have high computational complexity because the model has
to be rebuilt with each query, and the utility recalculated. For an example of an algorithm
that solves those problems with a fast model update and utility recalculation strategy using
Gaussian Random Fields (GRF) model see Zhu et al. (2003). GRF also naturally uses
unlabeled data for learning (performs semi-supervised learning).

60



Active Batch Learning with Tree Ensembles

Expected variance reduction tries to reduce the expected variance of the model predic-
tion. It is well known that model error can be decomposed into noise (term independent
from model), bias (a term specific to the selected model class that estimates the difference
between the best target function in the model class and the real underlying target), and
variance. Given a model class (for example, linear functions or trees), noise and bias cannot
be influenced by the model. Expected variable reduction selects instances that minimize the
expected variance for the model. However, an estimate of the expected variance is also only
available for a very limited class of models. Expected model change tries to select instances
that maximize the model change with respect to the addition of a selected instance to the
training set. This, however, does not guarantee model error improvement, just diversity of
queries. Estimation of model change is also only possible for a limited number of model
classes.

However an issue with most of the approaches described above is that they do not work
with large and/or noisy data, or use very limiting assumptions on the model class. For exam-
ple, methods relying on any distance metrics are susceptible to the curse of dimensionality
(usually do not work well for more than 10-20 inputs), are sensitive to feature scaling and
incur the additional complexity of calculating distances (although the later problem can be
partially solved by clustering). Linear models or EM with a mixture of Gaussians rarely
fit complex distributions in real world data. Any kernel-based method like SVM and GRF,
also requires an approximately correct estimation of the kernel width parameter, and that
is in itself a complex task for high-dimensional noisy data.

As stated earlier, querying more than one instance at time (batch learning) often can
greatly reduce the labeling effort and computation time. For example, one does not need
to rebuild the model for each queried instance, and parallel labeling is possible. In real
problems labeling and/or querying is often done by human experts and processing unlabeled
instances one-by-one is more costly than in groups (batches). However, batch learning
introduces an additional challenge compared to single instance queries. In addition to
optimizing individual queries, one must make sure that instances in the batch are diverse
enough. That is the reason why a greedy selection of instances with the highest utility
does not work. In addition, a batch learning algorithm should be fast enough, compared to
querying instances one-by-one, to be useful. Several approaches to batch learning (Brinker
(2003), Xu et al. (2007)) also use a greedy selection algorithm with a modified utility criteria.
In the first work, for example, the authors use a linear combination of utility and diversity
measures with a SVM model. Diversity for each sample measures how far it is from the
other samples in the batch. The second article Xu et al. (2007) introduces a “Relevance,
Diversity and Density” batch learning framework. Relevance considers individual instance
utility, density promotes sampling from more populated regions of the distribution, and
diversity ensures that samples within the batch are not close to each other.

But, in practice, one often deals with very large datasets (with potentially hundreds to
thousands of inputs and/or up to millions of instances), especially given the fact that AL
deals with large amounts of unlabeled data. Also the data are usually very noisy and contain
categorical variables, so that approaches based on linear models or Euclidean/Mahalanobis
distance metrics are not computationally feasible. This also prohibits usage of “global”
methods like empirical risk minimization because they usually rely on distance-based models
like SVM or GRF. Neural Networks also rarely perform well with large and noisy data with

61



Borisov Tuv Runger

an unknown distribution. Mixture models and clustering approaches fail when the data do
not contain easily separable clusters. Many prospective AL approaches, for example GRF,
are not well suited for batch learning, and each query involves quadratic complexity in the
current number of labeled samples for the model update, resulting in a total of (O(N3)
complexity for queries and model update with N instances in the initial unlabeled data
pool (given that the initial number of labeled instance is very small compared to N). So
most of the methods described above can only handle several thousand samples and tens of
variables, severely limiting their practical application.

In this work we propose a nonparametric batch AL method using tree ensembles that
works with huge data sets and overcomes most of the problems described above. We in-
troduce decision tree ensembles in Section 2. Section 3 contains a detailed description of
our algorithm. Then we describe successful application of our method to AISTATS 2010
active learning challenge problems that provide a very good representation of real life active
learning tasks.

2. Decision tree models and tree ensembles

As stated above, to effectively deal with active learning problem one needs to impose some
reasonable assumptions on the joint input/output data distribution. Those assumptions
are represented by a particular data model. Among models used with huge, noisy and het-
erogeneous data, a very popular choice is the decision tree–because trees are fast to learn,
resistant to outliers and noise and provide good predictive accuracy. Trees are usually
induced in a recursive, greedy fashion. For each node the best split (split with greatest
impurity reduction) is selected, then the process is repeated in the child nodes. For exam-
ple, the CART algorithm described in Hastie et al. (2001) can be used. Commonly used
node impurity measures are the variance of the target (for regression) or the Gini index (for
classification). However, trees often suffer from instability, or low predictive power if the
underlying data model is complex. Significant improvements over single tree models can be
achieved with tree ensembles, sequential (Gradient Boosting Trees (GBT), Multi-class Lo-
gistic Regression Trees (MCLRT), Adaboost, see Hastie et al. (2001)) and parallel (Random
Forest (RF), see Breiman (2001)). We briefly describe RF, because it is used extensively in
our active learning algorithm, although we use a GBT model as the final predictor (using
samples queried by our AL algorithm). We refer to Hastie et al. (2001) for details on a
GBT algorithm for the multi-class case and omit it here.

The idea behind RF is to combine many diverse trees into an ensemble. This allows
for more stable model, reduces over-fitting, and improves predictive accuracy over a single
tree. RF constructs a number of independent trees, each tree is built on a random portion
(60% for example) of the training (labeled) samples. Additional diversity within the tree
is added via split randomization. Instead of selecting the single best split among the best
splits on each variable like CART does, a random, small subset of variables is selected at
each tree node (a commonly used setting is

√
M , where M is the total number of variables).

Then the best split is selected only within this subset. Prediction from an RF model is
obtained with averaging for regression, and voting in classification (where the number of
trees that predict each target class are counted and the most frequent class is selected as
the predictor). RFs are usually applied to classification problems, because combining many

62



Active Batch Learning with Tree Ensembles

weak trees via averaging does not always result in a better model in regression settings.
RF is especially attractive for use with QBC, because it naturally introduces base learner
diversity, and each tree has an intrinsic prediction probability estimate computed from the
class proportions in the terminal node of the selected instance. RF can also be used to
estimate various other properties of the joint data distribution, such as density, outlier
scores, variable importance measures, or (supervised) distance metrics (Breiman (2001)).

3. Tree ensemble approach for active learning

Here we describe two our algorithms for batch AL. Denote N0, N1 as the counts of the
target classes in the labeled data, pc = Nc/N, c = 1, 2 as the target class proportions in
the currently labeled data, and the i-th tree in ensemble G as Ti = Ti(G), i = 1 . . . R, where
R is number of trees in the ensemble. Denote the terminal node of the i-th tree containing
instance x as Ti(x), and pic(x) as the predicted class probabilities in the i-th tree for x,
computed as the target class proportions in node Ti(x). Denote the same probabilities
weighted with class priors

p′ic(x) =
pic(x)/pc∑
c pic(x)/pc

, c = 1, 2

Algorithm 1. Stochastic query by forest.

1. Build an RF ensemble G (we used 700 shallow trees with depth = 2-6, depending on
the current labeled data size).

2. For each sample, compute the committee disagreement q(x) = sd(p′ic(x)) as the stan-
dard deviation of the weighted rare class probability among the ensemble of trees. Then
sort all remaining unlabeled instances with respect to q(x), so that q(x1) > q(x2) >
. . . > q(xnu), where nu is the number of remaining unlabeled instances.

3. Sample the next batch randomly from x1, . . . xαnu. Parameter α controls the discarded
fraction of unlabeled instances, and indirectly introduces a tradeoff between random-
ness and high utility. We set α = 2/3 in our experiments. Sampling probabilities
are computed from utility scores as following. Denote the threshold q0 = q(xαnu),
and L(x) = (q(x) − q0)/(q(x1) − q0). Then the sampling probability of instance x is
computed as psel(x) = L(x)/

∑
x L(x).

4. Sample the batch from the remaining unlabeled instances with the computed sampling
probabilities. Rebuild model G and return to step 2 (until no unlabeled instances are
left in the pool).

This method addresses both the uncertainty score and the input density (as random
sampling selects more instances from the dense regions of the input distribution). At the
same time we enforce diversity within the batch through randomization. Instead of scoring
uncertainty with a single class probability estimate, the tree ensemble allows an embedded
uncertainty score to be calculated directly from the differences between the individual learn-
ers (as the standard deviation). This approach is distinct from other QBC approaches, and
this provides one of our contributions. Also, the standard deviation is simple uncertainty

63



Borisov Tuv Runger

score and alternatives (such as more robust measures) could be useful. We would not expect
the results to change substantially with alternative measures.

Our perspective is that the tree ensemble is useful for this uncertainty score, but that
in addition the tradeoff between utility and randomness is a key component of our strat-
egy. The importance of a random element was illustrated by Cawley (2010) who concluded
that a simple, random baseline method was competitive with more complex strategies. He
conjectured that uncertainty sampling does not sufficiently explore the feature space and,
instead, tends to expend samples to exploit the current knowledge of the likely decision
boundary. Our tradeoff between uncertainty and randomness is easily managed by our
alpha parameter, and in the challenge data we used a sizeable proportion (alpha = 2/3)
of random sampling, but not entirely random. Also, our implementation of step 3 of the
algorithm 1 uses rejection sampling to avoid a quadratic complexity in the number of unla-
beled instances. When the number of rejected instances becomes too large, we just select
the remaining instances with highest utility (although it occurs very rarely in practice).

Our second approach directly addresses diversity and density in a way similar to Brinker
(2003). Suppose we present all labeled and unlabeled data through RF model G (resulting
in each instance being assigned to a terminal node for each tree). Denote the labeled data
count in a node T as l(T ), and the total count as s(T ). Then we can estimate the expected
proportion d(x) of the labeled instance density to the total density in the neighborhood
of instance x as d(x) =

∑R
i=1 l(Ti(x))/

∑R
i=1 s(Ti(x)). The inverse proportion of labeled

instances in the neighborhood can be used instead of local density as a multiplier for the
utility measure, because it promotes both queries in dense regions, and in regions with few
labeled points. Below is the detailed description of the algorithm that uses this modified
utility function.

Algorithm 2. Local density based query-by-committee.

1. Build an RF ensemble G.

2. Compute l(x) =
∑R

i=1 l(Ti(x)) and s(x) =
∑R

i=1 s(Ti(x)) for each unlabeled instance.

3. Compute a modified utility score q′(x) = q(x)/d(x) = q(x)s(x)/l(x) for all unlabeled
data. Then sort all remaining instances with respect to q′(x), so that q′(x1) > q′(x2) >
. . . > q′(xnu). Initialize query count Q = 0

4. Select an instance with the highest value of q(x)/l(x) from x1, . . . xn0, where n0 � nu
is a predefined number of lookup instances. We set n0 = min(1000, nu).

5. Mark it as labeled and propagate through all the trees in G (resulting in updated counts
l(Ti(x) in each tree). Increase Q.

6. If Q < Q0, where Q0 is predefined number of queries that can be completed without
new sorting (say 20− 50), return to step 4. Else return to step 3 (and sort again).

7. Rebuild model G and return to step 2.

Additional tricks in steps 4 and 5 are introduced to avoid sorting unlabeled instances
with respect to the utility score after each query. Reasonable values for Q0 and N0 can
prevent a large time complexity in the number of unlabeled instances, while selecting the

64



Active Batch Learning with Tree Ensembles

top-scored instances with respect to utility. Computation of q(x)/l(x) in step 4 has com-
plexity O(RD), where D is the maximum tree depth, as q(x) are never updated. However,
for a small tree depth (this is important for a more robust estimation of q(x) and d(x)) this
is not a major problem. Batch selection complexity is still negligible compared to RF and
GBT model building complexities. We can use shallow trees because RF is used for AL
only, and high predictive accuracy is not an issue. We use default settings for the RF count
of attributes scored at a node (equal to the square root of the total number of attributes).

As a classifier we used GBT with embedded feature selection (see Borisov et al. (2006)
for details), or RF when the number of labeled samples was small. Model selection and
GBT parameter optimization (a simple grid search for tree depth and regularization over a
predefined set of values) used two-fold CV error estimates. One could potentially use RF in
all cases, but a GBT can improve predictions in some cases and we allowed this alternative
in our strategy.

The robustness of tree-based ensembles allowed for a straight-forward approach. There
was no preprocessing of the features, no feature generation, no data cleaning, and no
preliminary data analysis. Missing values were handled with traditional tree-based ap-
proaches. Missing attribute values were ignored to score splits. To assign instances, surro-
gates (Breiman et al. (1984)) were used for GBT, while the majority child node was assigned
for RF.

4. Experiments

We applied both our algorithms to the twelve AISTATS 2010 AL challenge datasets (six
development datasets which were larger on average, and six test datasets). Below we briefly
describe the challenge datasets and ranking measure. Data came from diverse real world
domains, for example, marketing, ecology, and text processing. The largest datasets in
the development group were (16969 x 9733), (216 x 72626), where the first number is
the number of inputs, and the second is number of instances in the training data. The
largest test datasets were (92 x 17535), (12000 x 10000) and (12 x 67628). Also, four of
the development datasets had very unbalanced target distributions (1.8% - 6.15% as the
proportions of the rare class).

The task was to achieve the best learning curve while querying data in arbitrary batches
and updating the model after each query. The score was estimated as the area under the
learning curve (model error versus number of labels queried), after all unlabeled instances
are queried. The X-axis (number of labels) was log2 and this was scaled to favor good
performance on a small number of labeled instances. Model error was calculated as the
area under the ROC curve (AUC), to account for an unbalanced class distribution. The
target was binary in all problems. The model error was estimated on separate test data, that
had the same size as the training data, but with unknown labels. For detailed descriptions,
see the challenge site http://www.causality.inf.ethz.ch/activelearning.php.

In small preliminary experiments with the test datasets both proposed AL approaches
performed significantly better than random sampling, uncertainty sampling, or QBC . But
because of small rare class proportions, the model error variation is very high, especially on
a small number of labeled samples. There were small differences in performance between
our algorithms 1 and 2 in these preliminary studies. Although the computational time for

65



Borisov Tuv Runger

algorithm 2 with n0 = 1000, Q0 = 20 was not significantly higher than for algorithm 1, we
chose to apply the first algorithm because of its simplicity, and it proved to be more robust
for very unbalanced classes.

As mentioned previously, data preprocessing was not applied and the process to estimate
the parameters was not complex. The predictive model, tree depth (over the range 2-6),
and the GBT regularization parameter were selected via two-fold cross validation and alpha
was fixed at 2/3 based on our preliminary experiments. For RF, the number of trees in an
ensemble was fixed (at 700) and the number of the attributes scored at a node used the
default (equal to the square root of the total number of attributes). Performance was not
sensitive to either these serial or parallel ensemble parameters.

In our preliminary studies there were only minor differences between batches from 5-15
instances. Because it was necessary to submit and process each query manually, we limited
ourselves to 15 queries per data set. The initial batch size was chosen as 5-10 depending on
the number of inputs, then for each query the batch size was scaled exponentially with the
exponent chosen in a way so that 15 queries covered all unlabeled data.

Our first algorithm (SQBF), had the top average rank on all six test datasets and had
the first rank on one of the datasets. Figure 1 shows the ALC performance of SQBF
(IdealAnalytics) and selected competitors over all the datasets where results were provided.
Some competitors did not consider all the datasets. The selected competitors achieved a
top-two result on at least one dataset. Table 1 supplements the ALC scores with additional
results for the top-two competitors on each dataset. Further details of the challenge results
were provided by Guyon. et al. (2010). SQBF provided consistent performance across these
datasets. Figure 2 shows the ALC performance of SQBF (IdealAnalytics) and baseline
methods over all the datasets. Details of the baselines methods were provided by Cawley
(2010). SQBF (IdealAnalytics) was also a consistently strong performer compared to the
baseline methods.

Our AL strategy is also very fast. It has the same asymptotic computational complexity
as building an RF model, i.e O(TN log(N) log(M)), where T is number of trees, M is
number of features, N is number of samples. The total run time (for either of the two
algorithms) on all six development or test datasets on one machine was approximately 6-
8 hours (Zeon workstation 3 GHz with 4 GB RAM, 2 processors with hyper-threading,
Windows XP system) depending on the model optimization settings.

5. Acknowledgments

This research was partially supported by ONR grant N00014-09-1-0656. We thank the
reviewers for helpful comments that improved this work.

6. Conclusions

We introduced a novel approach for pool-based, batch active learning using tree ensembles.
We described two algorithms for batch selection that optimize both the query utility function
and within batch diversity. Both algorithm are very fast, and can work with very large
datasets. Both methods were successfully applied to real datasets from the AISTATS 2010
AL challenge. However, we are planning more experiments on artificial datasets where the

66



Active Batch Learning with Tree Ensembles

Figure 1: The ALC performance of SQBF (IdealAnalytics) and selected competitors over
all the datasets where results were provided. The competitors selected achieved
a top-two result on at least one dataset.

Figure 2: The ALC performance of SQBF (IdealAnalytics) and baseline methods (described
by Cawley (2010) over all the datasets.

underlying joint distribution is known, to investigate the relative strengths and weaknesses
of the proposed approaches, and to compare them to other AL methods. We are also
considering some form of semi-supervised learning (for example with auto-regressive trees or

67



Borisov Tuv Runger

Table 1: Summary of the results from AISTATS 2010 Active Learning Challenge. Results
are shown for the top-two competitors on each data set with our algorithm denoted
as SQBF.

Data Algorithm AUC Ebar ALC Rank

FLYINGSKY pipifuyj 0.8622 0.0049 0.6289 1
Set A

SQBF IdealAnalyticsIntel 0.9520 0.0045 0.5273 5

ROFU scan33scan33 0.7327 0.0034 0.3757 1
Set B

SQBF IdealAnalyticsIntel 0.7544 0.0044 0.3173 5

BRAIN chrisg 0.7994 0.0053 0.4273 1
Set C

SQBF IdealAnalyticsIntel 0.8333 0.0050 0.3806 2

DATAM1N datam1n 0.9641 0.0033 0.8610 1
Set D

SQBF IdealAnalyticsIntel 0.9730 0.0030 0.6397 7

DSL yukun 0.8939 0.0039 0.6266 1
Set E

SQBF IdealAnalyticsIntel 0.9253 0.0037 0.4731 5

SQBF IdealAnalyticsIntel 0.9990 0.0009 0.8018 1
Set F

NDSU NDSU 0.9634 0.0018 0.7912 2

SQBF IdealAnalyticsIntel 0.9062 0.0015 0.5233 4.1667
Overall

ROFU scan33scan33 0.8774 0.0014 0.5072 4.8333

Gaussian Random Field models in tree terminal nodes). We do not currently use unlabeled
data for learning in any way and results of some participants on AISTATS 2010 challenge
show that on some datasets one can substantially benefit from semi-supervised learning.

References

A. Borisov, V. Eruhimov, and E. Tuv. Tree-based ensembles with dynamic soft feature
selection. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature Extraction
Foundations and Applications: Studies in Fuzziness and Soft Computing. Springer, 2006.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth, Belmont, MA, 1984.

K. Brinker. Incorporating diversity in active learning with support vector machines. In
Proceedings of the Twentieth International Conference on Machine Learning, pages 59–
66. AAAI Press, 2003.

G.C. Cawley. Some baseline methods for the active learning challenge. In N. Lawrence,
editor, JMLR: Workshop and Conference Proceedings, volume 1, 2010.

68



Active Batch Learning with Tree Ensembles

K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical Science,
3:273–304, October 1996.

Y. Freund, H.S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by
committee algorithm. Machine Learning, 28(2):133–168, 1997.

I. Guyon., G. Cawley, G. Dror, and V. Lemaire. Results of the active learning challenge.
In N. Lawrence, editor, JMLR: Workshop and Conference Proceedings, volume 1, 2010.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2001.

D.D. Lewis and W.A. Gale. A sequential algorithm for training text classifiers. In Proceed-
ings of the 17th annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, page 12. Springer-Verlag New York, Inc., 1994.

B. Settles. Active learning literature survey. Technical report, Computer Sciences Technical
Report, 2009.

H.S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the
fifth annual workshop on Computational learning theory, pages 287–294. ACM, 1992.

Z. Xu, R. Akella, and Y. Zhang. Incorporating diversity and density in active learning for
relevance feedback. Advances in Information Retrieval, pages 246–257, 2007.

X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised
learning using gaussian fields and harmonic functions. In ICML 2003 workshop on The
Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, pages
58–65, 2003.

69


	Introduction
	Decision tree models and tree ensembles
	Tree ensemble approach for active learning
	Experiments
	Acknowledgments
	Conclusions

