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Abstract

In many potential applications of machine learning, unlabelled data are abundantly avail-
able at low cost, but there is a paucity of labelled data, and labeling unlabelled examples
is expensive and/or time-consuming. This motivates the development of active learning
methods, that seek to direct the collection of labelled examples such that the greatest per-
formance gains can be achieved using the smallest quantity of labelled data. In this paper,
we describe some simple pool-based active learning strategies, based on optimally regu-
larised linear [kernel] ridge regression, providing a set of baseline submissions for the Active
Learning Challenge. A simple random strategy, where unlabelled patterns are submitted
to the oracle purely at random, is found to be surprisingly effective, being competitive with
more complex approaches.
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1. Introduction

The rapid development of digital storage devices has led to ever increasing rates of data
capture in a variety of application domains, including text processing, remote-sensing, as-
tronomy, chemoinformatics and marketing. In many cases the rate of data capture far
exceeds the rate at which data can be manually labelled for the use of traditional super-
vised machine learning methods. As a result, large quantities of unlabelled data are often
available at little or no cost, but obtaining more than a comparatively small amount of
labelled data is prohibitively expensive or time consuming. Active learning aims to ad-
dress this problem by constructing algorithms that are able to guide the labeling of a small
amount of data, such that the generalisation ability of the classifier is maximized whilst min-
imising the use of the oracle. In pool-based active learning, a large number of unlabelled
examples are provided from the outset, and training proceeds iteratively. At each step the
active learning strategy chooses one or more unlabelled patterns to submit to the oracle,
and the classifier updated using the newly acquired label(s). Pool-based active learning
is appropriate in many applications, for instance drug design, where the aim is to predict
the activity of a molecule against a virus, such as HIV, based on chemometric descriptors.
A large number of small molecules have been subjected to chemometric analysis providing
a large library of unlabelled data, however in-vitro testing is expensive. Active learning
would therefore be useful in reducing the cost of drug design by targeting the effort in-vitro
testing only on those molecules likely to be effective. There is a significant overlap between
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active learning and unsupervised or semi-supervised learning as the need for labelled data
may be minimised by a learning algorithm that is able to take advantage of the information
contained in the unlabelled examples. For a more detailed overview of active learning, see
Settles (2009).

This paper describes a set of simple baseline solutions for an open challenge in active
learning, described in detail in Guyon et al. (2010). The remainder of the paper is structured
as follows: Section 2 provides a brief technical description of the base classifier and active
learning strategies employed. Section 3 presents the results obtained using the baseline
methods for the development and test benchmark datasets. Finally the work is summarised
and conclusions presented in Section 4.

2. Technical Description of Baseline Methods

This section describes the technical detail of the baseline submissions, based on optimally
regularised ridge regression, with the pre-processing steps employed, and three very simple
active learning strategies.

2.1. Optimally Regularised [Kernel] Ridge Regression

Linear ridge regression is used as the base classifier for those baseline methods for the active
learning challenge described in this paper. While more complex non-linear methods could
have been used, such as a decision tree (Quinlan, 1986), support vector machine (Boser
et al., 1992; Cortes and Vapnik, 1995) or näıve Bayes (e.g. Webb, 2002) classifier , very
little labelled data is available at the start of the active learning process, and so a more
complex classifier would run a greater risk of over-fitting. In addition, these methods were
intended to provide a reasonably competitive baseline representing a fairly basic approach to
the problem, and so a simple linear classifier seemed most appropriate. Let D = {(xi, yi)}`i=1

represent the training sample, where xi ∈ X ⊂ Rd is a vector of explanatory features for
the ith sample, and yi ∈ {+1, − 1} is the corresponding response indicating whether the
sample belongs to the positive or negative class respectively. Ridge regression provides a
simple and effective classifier that is equivalent to a form of regularised linear discriminant
analysis. The output of the ridge regression classifier, ŷi, and vector of model parameters,
β ∈ Rd, are given by

ŷi = xi · β and
[
XTX + λI

]
β = XTy, (1)

where X = [xi]
`
i=1 is the data matrix, y = (yi)

`
i=1 is the response vector and the ridge

parameter, λ, controls the bias-variance trade-off (Geman et al., 1992). Note that classi-
fiers used throughout this study included an unregularised bias parameter, which has been
neglected here for notational convenience. Careful tuning of the ridge parameter allows the
ridge regression classifier to be used even in situations with many more features than train-
ing patterns (i.e. d � `) without significant over-fitting (e.g. Cawley, 2006). Fortunately
the ridge parameter can be optimised efficiently by minimising a closed-form leave-one-out
cross-validation estimate of the sum of squared errors, i.e. Allen’s PRESS statistic (Allen,
1974),

P (λ) =
1

`

∑̀
i=1

[
ŷ
(−i)
i − yi

]2
where ŷ

(−i)
i − yi =

ŷi − yi
1− hii

, (2)
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ŷ
(−i)
i represents the output of the classifier for the ith training pattern in the ith fold of the

leave-one-out procedure and hii is an element of the principal diagonal of the hat matrix

H = X
[
XTX + λI

]−1
XT . The ridge parameter can be optimised more efficiently in

canonical form (Weisberg, 1985) via eigen-decomposition of the data covariance matrix
XTX = V TΛV , where Λ is a diagonal matrix containing the eigenvalues. The normal
equations and hat matrix can then be written as

[Λ + λI]α = V TXTy where α = V Tβ and H = V [Λ + λI]−1 V T (3)

As only a diagonal rather than a full matrix need now be inverted following a change in
λ, the computational expense of optimising the ridge parameter is greatly reduced. For
problems with more features than training patterns, d > `, the kernel ridge regression
classifier (Saunders et al., 1998) with a linear kernel is more efficient and exactly equivalent.
The ridge parameter for KRR can also be optimised efficiently via an eigen-decomposition
of the kernel matrix (Saadi et al., 2007).

2.2. Pre-processing

The following pre-processing steps were used for all datasets: First all constant features are
deleted, including features where all values are missing. Binary fields are coded using the
values 0 and 1. Categorical and ordinal variables are encoded using a 1-of-n representation,
where n is the number of discrete categories/values. Missing values are imputed using the
arithmetic mean, and dummy variables are added to indicate the pattern of missing data
for each feature. Lastly, continuous features are transformed to have a standard normal
distribution, by evaluating the inverse standard normal cumulative distribution function
for the normalised rank for each observation. It is hoped that this transformation prevents
variables with highly skewed distributions from having a disproportionate effect on the
classifier, whilst still allowing the extreme values to lie in identifiable ails of the distribution.

2.3. Pool Based Active Learning

A number of very basic strategies for pool based active learning, suitable for use as baseline
submissions, are easily identified:

• Passive Learning: All patterns submitted to the oracle for labeling in the first
step. This is not strictly speaking an active learning strategy, but it provides a useful
baseline for comparison.

• Random sampling: At each iteration, one or more unlabelled samples are selected
at random to be labelled by the oracle. This is perhaps the most basic algorithm for
pool-based active learning, but is probably sub-optimal as it concentrates solely on
exploration rather than exploitation.

• Uncertainty sampling: Unlabelled examples closest to the current decision bound-
ary are selected for labeling by the oracle. This strategy aims to rapidly acquire labels
for those examples that are classified with least confidence. Note that maximum mar-
gin classifiers and boosting algorithms also aim to concentrate on patterns close to
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the decision boundary, so it is perhaps not unreasonable to expect this strategy to
perform well.

This gives three basic baselines, one with no active learning, one with a näıve active learning
strategy, and one with a good active learning strategy.

3. Results

In this section, we present the results of experiments performed during the development
phase of the challenge before moving on to describe the baseline submissions made on the
final benchmark datasets.

3.1. Preliminary Experiments during the Development Phase

During the development phase of the challenge, a number of computationally intensive
Monte-Carlo simulations were used to investigate the effectiveness of the three baseline
active learning strategies. All of the labels made available for the training samples from
each of the development datasets were downloaded. This allowed re-sampling to be used
to estimate the variability in the performance of different active learning strategies due to
the sample of data and due to any stochastic component of the learning procedure. For all
experiments 100 replications were performed, each using a random partition of the available
data to form training and test sets in the proportion of 3:1, and a positive example chosen at
random from the training set as the “seed” pattern. The area under the receiver operating
characteristic (ROC) curve (AUC) was recorded at approximately equal intervals on a
logarithmic scale. The area under the resulting graph of AUC as a function of the number of
labelled examples (on a logarithmic axis) then provides the test statistic, known as the area
under the learning curve (ALC). Table 1 shows the ALC statistic for optimally regularised
[kernel] ridge regression with passive, random sampling and uncertainty sampling active
learning strategies. It can be seen that no active learning strategy is dominant, but more
interestingly, random sampling is competitive with uncertainty sampling, even though it is
a very näıve strategy.

The Friedman test, as recommended by Demšar (2006), reveals there is no significant
difference in the average ranks of the three active learning strategies over the six development
datasets. The lack of a significant difference is illustrated by the critical difference diagram,
shown in Figure 1, which shows the average ranks of the three strategies, with the bar
linking together cliques of statistically similar classifiers.

Figure 2 shows the average learning curves for the three baseline active learning strate-
gies over the development benchmark datasets. Clearly active rather than passive learning
is more useful on some datasets (NOVA, IBN SINA and SYLVA) than others, such as HIVA,
ORANGE and ZEBRA, where relatively little can be usefully learned from a small number
of training patterns, whether they are selected at random or according to uncertainty.

3.2. Why does Random Active Learning Work so Well?

Figure 3 shows quantiles of the distribution of learning curves for the nova and zebra

benchmarks, for random and uncertainty sampling active learning methods. It can be seen
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Table 1: Area under the learning curve for three simple active learning strategies for the
development datasets. The results are given as the arithmetic mean, and their
standard errors, calculated over 100 random replications of the experiment. The
best results for each dataset are shown underlined, without implication of statis-
tical significance.

Benchmark Passive Random Uncertainty

HIVA 0.2997 ± 0.0018 0.2505 ± 0.0056 0.1536 ± 0.0077
NOVA 0.4899 ± 0.0001 0.6975 ± 0.0033 0.6999 ± 0.0064
IBN SINA 0.4821 ± 0.0002 0.8017 ± 0.0045 0.7832 ± 0.0050
ORANGE 0.2920 ± 0.0017 0.1910 ± 0.0052 0.2227 ± 0.0057
SYLVA 0.4967 ± 0.0000 0.8612 ± 0.0037 0.8893 ± 0.0025
ZEBRA 0.2744 ± 0.0013 0.3564 ± 0.0095 0.2949 ± 0.0120

CD

3 2 1

1.8333
random sampling

1.8333
uncertainty sampling

2.3333
passive learning

Figure 1: Critical difference diagram, showing the mean ranks of three basic active learning
strategies over the final test benchmark datasets. The bar labelled “CD” shows
the difference in mean rankings required for a statistically significant difference
in performance to be detected.
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that the uncertainty sampling strategy out-performs random active learning for the nova

dataset with more than about 20 labelled examples (c.f. Figure 2b), while for smaller
labelled datasets, however, uncertainty sampling performs poorly. The lower quantiles (p.05
and p.25) shown in Figure 3 suggest this is because of a large variability in the early part of
the learning curves for the uncertainty sampling strategy. We conjecture that the downside
of a principled strategy to active learning is that the selection of examples for labeling by the
oracle depends on the current model, so if poor selections were made at an early stage, this
adversely affects the quality of subsequent selections and hence learning proceeds slowly.
This is less evident for random sampling, which gets locked into a poor hypothesis rather
less frequently.

An effective active learning strategy must reach a near optimal trade-off between ex-
ploration and exploitation. The uncertainty sampling approach concentrates on exploiting
the knowledge it has gained from the labels it has already acquired to further explore the
decision boundary. The random sampling approach concentrates on exploration, and so is
able to locate areas of the feature space where the classifier performs poorly. These re-
sults highlight the need for exploration as well as exploitation as the uncertainty sampling
approach can become locked in a mistaken hypothesis of the location of the true decision
boundary as it does not explore enough of the feature space that might suggest the current
hypothesis is flawed.

3.3. Final Baseline Models

For the final test phase of the challenge, the baseline models were constructed according
to the same protocol made available to the other participants (see Guyon et al., 2010,
for details), and so Monte-Carlo simulations were not possible. A total of four baseline
submissions were made using passive learning and random and uncertainty sampling based
active learning. Two different initialization strategies were used: In the first, an initial
classifier was constructed with the single positive seed pattern and the unlabelled patterns
treated as if they belonged to the negative class. A second strategy was also used in
conjunction with random sampling, where the prediction for unlabelled patterns was given
by the Euclidean distance to the single positive pattern provided as a “seed” for the active
learning procedure. This method would also have been used with the other active learning
strategies had sufficient time been available, where the difference in initializations would
have had a greater effect on the progress of the active learning procedure. The results
obtained are shown in Table 2. The rankings of the baseline solutions show that a simple
random sampling approach to active learning is effective and competitive with the results
of some of the top submissions. The submission based on random sampling with linear
initialization, for example, would have had an overall ranking of 4.667.

Again, the Friedman test was used to evaluate the statistical significance of any differ-
ence in the mean ranks of each approach, and again the differences were small, and not
statistically significant. Figure 4 shows a critical difference diagram, illustrating the very
similar rankings of the four baseline methods.

Figure 5 shows the learning curves obtained for the four baseline solutions for the six
benchmark datasets used in the final phase of the challenge; the learning curve for the best
submission for each benchmark is also shown. It can be seen that the results obtained for
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Figure 2: Average learning curves for active learning methods over 100 random realisations
of the development benchmark datasets: (a) hiva, (b) nova, (c) ibn sina, (d)
orange, (e) sylva and (f) zebra.
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Figure 3: Quantiles of the distribution of learning curves for random (a) and (c) and least
certain (b) and (d) active learning methods over 100 random realisations of the
nova (a) and (b) and zebra (c) and (d) development benchmark datasets.
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Figure 4: Critical difference diagram, showing the mean ranks of three basic active learning
strategies over the final test benchmark datasets.

54



Baseline Methods for Active Learning

Table 2: Area under the Learning Curve (ALC) for the four baseline models and for the
best entry for each of the final benchmark datasets. The best entries were as
follows: A - gcc4 (reference); B - b (scan33scan33); C - C (chrisg); D - Dexp
(datam1n); E - En (yukun); F - gccf2 (reference).

Method
Global Score - ALC (rank)

A B C D E F

Passive 0.5455 (4) 0.3708 (3) 0.2663 (10) 0.4875 (21) 0.4966 (5) 0.7929 (5)

Random (linear) 0.5451 (5) 0.3084 (8) 0.2853 (6) 0.6512 (6) 0.4496 (8) 0.8217 (1)

Uncertainty sampling 0.4116 (15) 0.2689 (11) 0.2448 (11) 0.5748 (16) 0.3690 (16) 0.8074 (2)

Random (Euclidean) 0.6353 (1) 0.3195 (6) 0.3018 (5) 0.5996 (13) 0.4027 (12) 0.8048 (3)

Best 0.6353 (1) 0.3757 (1) 0.4273 (1) 0.8610 (1) 0.6266 (1) 0.8217 (1)

small numbers of labelled patterns are highly variable for all active learning methods for all
benchmark datasets.

4. Summary

In this paper, we have described some simple baseline methods for the active learning
challenge, based on optimally regularised ridge regression. A very basic random sampling
approach was found to be competitive with both a more advanced uncertainty sampling
approach and with some of the better challenge submissions. The poor performance of
the uncertainty sampling approach seems likely to be due to a lack of exploration of the
feature space at the expense of exploitation of current knowledge of the likely decision
boundary. It is probable that better performance might be obtained using semi-supervised
or transductive learning methods to take greater advantage of the availability of unlabelled
data.
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Figure 5: Learning curves for selected baseline models over the final benchmark datasets
(A-F) of the active learning challenge.
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