
JMLR:Workshop and Conference Proceedings 16 (2011) 157–168Workshop on Active Learning and Experimental Design

Managing Uncertainty within the KTD Framework

Matthieu Geist matthieu.geist@supelec.fr
Olivier Pietquin olivier.pietquin@supelec.fr
IMS Research Group, Supélec, Metz, France

Editor: I. Guyon, G. Cawley, G. Dror, V. Lemaire, and A. Statnikov

Abstract
The dilemma between exploration and exploitation is an important topic in reinforcement
learning (RL). Most successful approaches in addressing this problem tend to use some
uncertainty information about values estimated during learning. On another hand, scal-
ability is known as being a lack of RL algorithms and value function approximation has
become a major topic of research. Both problems arise in real-world applications, however
few approaches allow approximating the value function while maintaining uncertainty in-
formation about estimates. Even fewer use this information in the purpose of addressing
the exploration/exploitation dilemma. In this paper, we show how such an uncertainty
information can be derived from a Kalman-based Temporal Differences (KTD) framework
and how it can be used.
Keywords: Value function approximation, active learning, exploration/exploitation dilemma

1. Introduction

Reinforcement learning (RL) (Sutton and Barto, 1996) is the machine learning answer to
the well-known problem of optimal control of dynamic systems. In this paradigm, an agent
learns to control its environment (i.e., the dynamic system) through examples of actual
interactions. To each of these interactions is associated an immediate reward which is a
local hint about the quality of the current control policy. More formally, at each (discrete)
time step i the dynamic system to be controlled is in a state si. The agent chooses an
action ai, and the dynamic system is then driven in a new state, say si+1, following its
own dynamics. The agent receives a reward ri associated to the transition (si, ai, si+1). The
agent’s objective is to maximize the expected cumulative rewards, which it internally models
as a so-called value or Q-function (see later). In the most challenging cases, learning has to
be done online and the agent has to control the system while trying to learn the optimal
policy. A major issue is then the choice of the behavior policy and the associated dilemma
between exploration and exploitation (which can be linked to active learning). Indeed at
each time step, the agent can choose an optimal action according to its (maybe) imperfect
knowledge of the environment (exploitation) or an action considered to be suboptimal so
as to improve its knowledge (exploration) and subsequently its policy. The ε-greedy action
selection is a popular choice which consists in selecting the greedy action with probability
1− ε, and an equally distributed random action with probability ε. Another popular scheme
is the softmax action selection (Sutton and Barto, 1996) drawing the behavior action from
a Gibbs distribution. Most successful approaches tend to use an uncertainty information

c© 2011 M. Geist & O. Pietquin.

Geist Pietquin

to choose between exploration and exploitation but also to drive exploration. Dearden
et al. (1998) maintain a distribution for each Q-value. They propose two schemes. The
first one consists in sampling the action according to the Q-value distribution. The second
one uses a myopic value of imperfect information which approximates the utility of an
information-gathering action in terms of the expected improvement of the decision quality.
Strehl and Littman (2006) maintain a confidence interval for each Q-value and the policy
is greedy respectively to the upper bound of this interval. This approach allows deriving
probably-approximately-correct (PAC) bounds. Sakaguchi and Takano (2004) use a Gibbs
policy. However a reliability index (actually a form of uncertainty) is used instead of the
more classic temperature parameter. Most of these approaches are designed for problems
where an exact (tabular) representation of the value function is possible. Nevertheless,
approximating the value in the case of large state spaces is another topic of importance
in RL. There are some model-based algorithms which address this problem (Kakade et al.,
2003; Jong and Stone, 2007; Li et al., 2009b). They imply approximating the model in
addition to the value function. However we focus here an pure model-free approaches (just
the value function is estimated). Unfortunately quite few value function approximator allow
deriving an uncertainty information about estimated values. Engel (2005) proposes such a
model-free algorithm, but the actual use of value uncertainty is left as a perspective. In this
paper, we show how some uncertainty information about estimated values can be derived
from the Kalman Temporal Differences (KTD) framework of Geist et al. (2009a,b). We
also introduce a form of active learning which uses this uncertainty information in order to
speed up learning, as well as some adaptations of existing schemes designed to handle the
exploration/exploitation dilemma. Each contribution is illustrated and experimented, the
last one on a real-world dialogue management problem.

2. Background

2.1. Reinforcement Learning

This paper is placed in the framework of Markov decision process (MDP). An MDP is a
tuple {S,A, P,R, γ}, where S is the state space, A the action space, P : s, a ∈ S × A →
p(.|s, a) ∈ P(S) a family of transition probabilities, R : S×A×S → R the bounded reward
function, and γ the discount factor. A policy π associates to each state a probability over
actions, π : s ∈ S → π(.|s) ∈ P(A). The value function of a given policy is defined as
V π(s) = E[

∑∞
i=0 γ

iri|s0 = s, π] where ri is the immediate reward observed at time step
i, and the expectation is done over all possible trajectories starting in s given the system
dynamics and the followed policy. The Q-function allows a supplementary degree of freedom
for the first action and is defined as Qπ(s, a) = E[

∑∞
i=0 γ

iri|s0 = s, a0 = a, π]. RL aims at
finding (through interactions) the policy π∗ which maximises the value function for every
state: π∗ = argmaxπ(V π). Two schemes among others can lead to the optimal policy. First,
policy iteration involves learning the value function of a given policy and then improving the
policy, the new one being greedy respectively to the learnt value function. It requires solving
the Bellman evaluation equation, which is given here for the value and Q-functions: V π(s) =
Es′,a|π,s[R(s, a, s′)+γV π(s′)] and Qπ(s, a) = Es′,a′|π,s,a[R(s, a, s′)+γQπ(s′, a′)]. The second
scheme, value iteration, aims directly at finding the optimal policy. It requires solving
the Bellman optimality equation: Q∗(s, a) = Es′|s,a[R(s, a, s′) + γmaxb∈AQ

∗(s′, b)]. For

158

Managing Uncertainty within KTD

large state and action spaces, exact solutions are tricky to obtain and value or Q−function
approximation is required.

2.2. Kalman Temporal Differences - KTD

Originally, the Kalman (1960) filter paradigm is a statistical method aiming at online track-
ing the hidden state of a non-stationary dynamic system through indirect observations of
this state. The idea behind KTD is to cast value function approximation into such a fil-
tering paradigm: considering a function approximator based on a familly of parameterized
functions, the parameters are then the hidden state to be tracked, the observation being the
reward linked to the parameters through one of the classical Bellman equations. Thereby
value function approximation can benefit from the advantages of Kalman filtering and par-
ticularly uncertainty management because of statistical modelling.

The following notations are adopted, given that the aim is the value function evaluation,
the Q-function evaluation or the Q-function direct optimization:

ti =


(si, si+1)

(si, ai, si+1, ai+1)

(si, ai, si+1)

gti(θi) =


V̂θi(si)− γV̂θi(si+1)

Q̂θi(si, ai)− γQ̂θi(si+1, ai+1)

Q̂θi(si, ai)− γmaxb Q̂θi(si+1, b)

(1)

where V̂θ (resp. Q̂θ) is a parametric representation of the value (resp. Q-) function, θ being
the parameter vector. A statistical point of view is adopted and the parameter vector is
considered as a random variable. The problem at sight is stated in a so-called state-space
formulation: {

θi = θi−1 + vi

ri = gti(θi) + ni
(2)

Using the vocabulary of Kalman filtering, the first equation is the evolution equation. It
specifies that the searched parameter vector follows a random walk which expectation cor-
responds to the optimal estimation of the value function at time step i. The evolution noise
vi is centered, white, independent and of variance matrix Pvi . The second equation is the
observation equation, it links the observed transitions and rewards to the value (or Q-) func-
tion through one of the Bellman equations. The observation noise ni is supposed centered,
white, independent and of variance Pni .

KTD is a second order algorithm: it updates the mean parameter vector, but also the
associated covariance matrix after each interaction. It breaks down into three steps. First,
predictions of the parameters first and second order moments are obtained according to
the evolution equation and using previous estimates. Then some statistics of interest are
computed. The third step applies a correction to predicted moments of the parameters vector
according to the so-called Kalman gain Ki (computed thanks to the statistics obtained in
second step), the predicted reward r̂i|i−1 and the observed reward ri (their difference being
a form of temporal difference error).

Statistics of interest are generaly not analytically computable, except in the linear case.
This does not hold for nonlinear parameterizations such as neural networks and for the
Bellman optimality equation (because of the max operator). Nevertheless, a derivative-free
approximation scheme, the unscented transform (UT) of Julier and Uhlmann (2004), allows

159

Geist Pietquin

estimating first and second order moments of a nonlinearly mapped random vector. Let X
be a random vector (typically the parameter vector) and Y = f(X) its nonlinear mapping
(typically the gti function). Let n be the dimension of the random vector X. A set of 2n+ 1
so-called sigma-points and associated weights are computed as follows:

x(0) = X̄ j = 0

x(j) = X̄ + (
√

(n+ κ)PX)j 1 ≤ j ≤ n
x(j) = X̄ − (

√
(n+ κ)PX)n−j n+ 1 ≤ j ≤ 2n

and

{
w0 = κ

n+κ j = 0

wj = 1
2(n+κ) 1 ≤ j ≤ 2n

(3)

where X̄ is the mean of X, PX is its variance matrix, κ is a scaling factor which controls
the accuracy, and (

√
PX)j is the jth column of the Cholesky decomposition of PX . Then

the image of each sigma-point through the mapping f is computed: y(j) = f(x(j)),0 ≤ j ≤
2n. The set of sigma-points and their images can then be used to compute the following
approximations:Ȳ ≈ ȳ =

∑2n
j=0wjy

(j), PY ≈
∑2n

j=0wj(y
(j) − ȳ)(y(j) − ȳ)T and PXY ≈∑2n

j=0wj(x
(j) − X̄)(y(j) − ȳ)T .

Thanks to the UT, practical algorithms can be derived. At time-step i, a set of sigma-
points is computed from predicted random parameters characterized by mean θ̂i|i−1 and
variance Pi|i−1. Predicted rewards are then computed as images of these sigma-points using
one of the observation functions (1). Then sigma-points and their images are used to compute
statistics of interest. This gives rise to a generic algorithm valid for any of the three Bellman
equations and any parametric representation of V or Q summarized in Alg. 1, p being
the number of parameters. More details as well as theoretical results (such as proofs of
convergence) about KTD are provided by Geist and Pietquin (2010).

Algorithm 1: KTD
Initialization: priors θ̂0|0 and P0|0

for i← 1, 2, . . . do
Observe transition ti and reward ri
Prediction Step θ̂i|i−1 = θ̂i−1|i−1 Pi|i−1 = Pi−1|i−1 + Pvi

Sigma-points computation Θi|i−1 = {θ̂(j)i|i−1, 0 ≤ j ≤ 2p} /* from θ̂i|i−1 and Pi|i−1 */

W = {wj , 0 ≤ j ≤ 2p} Ri|i−1 = {r̂(j)i|i−1 = gti(θ̂
(j)

i|i−1), 0 ≤ j ≤ 2p} /* see Eq. (1) */

Compute statistics of interest r̂i|i−1 =
∑2p
j=0 wj r̂

(j)

i|i−1 Pθri =
∑2p
j=0 wj(θ̂

(j)

i|i−1 − θ̂i|i−1)(r̂
(j)

i|i−1 − r̂i|i−1)

Pri =
∑2p
j=0 wj(r̂

(j)

i|i−1 − r̂i|i−1)2 + Pni

Correction step Ki = PθriP
−1
ri θ̂i|i = θ̂i|i−1 +Ki(ri − r̂i|i−1) Pi|i = Pi|i−1 −KiPriK

T
i

3. Computing Uncertainty over Values

The parameters being modeled as random variables, the parameterized value for any given
state is a random variable. This model allows computing the mean and associated uncer-
tainty. Let V̂θ be the approximated value function parameterized by the random vector θ of
mean θ̄ and variance matrix Pθ. Let V̄θ(s) and σ̂2Vθ(s) be the associated mean and variance
for a given state s. To propagate the uncertainty from the parameters to the approximated
value function a first step is to compute the sigma-points associated to the parameter vec-
tor, that is Θ = {θ(j), 0 ≤ j ≤ 2p}, as well as corresponding weights, from θ̄ and Pθ as

160

Managing Uncertainty within KTD

Figure 1: Uncertainty computation. 0

 10

 20

 30

 40

 50

 60

 70

 1000 2000 3000 5000 10000 20000 30000 50000

av
er

ag
e

d
is

co
u

n
te

d
 s

u
m

 o
f

re
w

ar
d
s

number of transitions

KTD-SARSA (bonus-greedy)
KTD-SARSA (ε-greedy)

LSPI

Figure 2: Dialog management results.

described before. Then the images of these sigma-points are computed using the parameter-
ized value function: Vθ(s) = {V̂ (j)

θ (s) = V̂θ(j)(s), 0 ≤ j ≤ 2p}. Knowing these images and
corresponding weights, the statistics of interest are computed: V̄θ(s) =

∑2p
j=0wj V̂

(j)
θ (s) and

σ̂2Vθ(s) =
∑2p

j=0wj(V̂
(j)
θ (s)− V̄θ(s))2. This is illustrated on Fig. 1. Extension to Q-function

is straightforward. So, as at each time-step uncertainty information can be computed in the
KTD framework.

4. A Form of Active Learning

4.1. Principle

It is shown here how this available uncertainty information can be used in a form of active
learning. The KTD algorithm derived from the Bellman optimality equation, that is Alg. 1
with third equation of Eq. (1), is named KTD-Q. It is an off-policy algorithm: it learns
the optimal policy π∗ while following a different behaviorial policy b. A natural question is:
what behaviorial policy to choose so as to speed up learning? Let i be the current temporal
index. The system is in a state si, and the agent has to choose an action ai. The predictions
θ̂i|i−1 and Pi|i−1 are available and can be used to approximate the uncertainty of the Q-
function parameterized by θi|i−1 in the state si and for any action a. Let σ̂2Qi|i−1

(si, a) be
the corresponding variance. The action ai is chosen according to the following heuristic:

b(.|si) =
σ̂Qi|i−1

(si, .)∑
a∈A σ̂Qi|i−1

(si, a)
(4)

This totally explorative policy favours uncertain actions. The corresponding algorithm which
is called active KTD-Q (Alg. 1 with 3rd Eq. of (1) and policy (4)).

4.2. Experiment

The second experiment is the inverted pendulum benchmark. This task requires maintaining
a pendulum of unknown length and mass at the upright position by applying forces to the
cart it is attached to. It is fully described by Lagoudakis and Parr (2003) and we use
the same parameterization (a mixture of Gaussian kernels). The goal is here to compare
two value-iteration-like algorithms, namely KTD-Q and Q-learning, which aim at learning
directly the optimal policy from suboptimal trajectories (off-policy learning). As far as we

161

Geist Pietquin

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

st
ep

s

number of episodes

KTD-Q
Q-learning

Figure 3: Optimal policy learning.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

st
ep

s

number of episodes

KTD-Q
Q-learning

active KTD-Q

Figure 4: Random and active learning.

know, KTD-Q is the first second-order algorithm for Q-function approximation in a value
iteration scheme, the difficulty being to handle the max operator (Yu and Bertsekas (2007)
propose also such an algorithm, however for a restrictive class of MDP). That is why we
compare it to a first-order algorithm. The active learning scheme is also experimented: it
uses the uncertainty computed by KTD to speed up convergence.

For Q-learning, the learning rate is set to αi = α0
n0+1
n0+i

with α0 = 0.5 and n0 = 200,
according to Lagoudakis and Parr (2003). For KTD-Q, the parameters are set to P0|0 = 10I,
Pni = 1 and Pvi = 0I. For all algorithms the initial parameter vector is set to zero.
Training samples are first collected online with a random behavior policy. The agent starts
in a randomly perturbed state close to the equilibrium. Performance is measured as the
average number of steps in an test episode (a maximum of 3000 steps is allowed). Results
are averaged over 100 trials. Fig. 3 compares KTD-Q and Q-learning (the same random
samples are used to train both algorithms). Fig. 4 adds active KTD-Q for which actions
are sampled according to (4). Average length of episodes with totally random policy is 10,
whereas it is 11 for policy (4). Consequently the increase in length can only slightly help to
improve speed of convergence (at most 10%, much less than the real improvement which is
about 100%, at least at the beginning).

According to Fig. 3, KTD-Q learns an optimal policy (that is balancing the pole for the
maximum number of steps) asymptotically and near-optimal policies are learned after only a
few tens of episodes (notice that these results are comparable to the LSPI algorithm). With
the same number of learning episodes, Q-learning with the same linear parameterization
fails to learn a policy which balances the pole for more than a few tens of time steps.
Similar results for Q-learning are obtained by Lagoudakis and Parr (2003). According to
Fig. 4, it is clear that sampling actions according to uncertainty speeds up convergence. It
is almost doubled in the first 100 episodes. Notice that this active learning scheme could not
have been used for Q-learning with value function approximation, as this algorithm cannot
provide uncertainty information.

5. Exploration/Exploitation Dilemma

In this section, we present several approaches designed to handle the dilemma between
exploration and exploitation (which can be linked to active learning). The first one is the
well known ε-greedy policy, and it serves as a baseline. Other approaches are inspired from
the literature and use the available uncertainty information (see Sec. 3 for its computation).

162

Managing Uncertainty within KTD

The corresponding algorithms are a combination of KTD-SARSA (Alg. 1 with 2nd Eq. of (1))
with policies (5-8).

5.1. ε-greedy Policy

With an ε-greedy policy (Sutton and Barto, 1996), the agent chooses a greedy action respec-
tively to the currently estimated Q-function with a probability 1− ε, and a random action
with a probability ε (δ is the Kronecker symbol):

π(ai+1|si+1) = (1− ε)δ(ai+1 = argmax
b∈A

Q̄i|i−1(si+1, b)) + εδ(ai+1 6= argmax
b∈A

Q̄i|i−1(si+1, b)) (5)

This policy is perhaps the most basic one, and it does not use any uncertainty information.
An arbitrary Q-function for a given state and 4 different actions is illustrated on Fig. 6. For
each action, it gives the estimated Q-value as well as the associated uncertainty (that is ±
estimated standard deviation). For example, action 3 has the highest value and the lowest
uncertainty, and action 1 the lowest value but the highest uncertainty. The probability dis-
tribution associated to the ε-greedy policy is illustrated on Fig. 5.a. The highest probability
is associated to action 3, and other actions have the same (low) probability, despite their
different estimated values and standard deviations.

5.2. Confident-greedy Policy

The second approach we propose consists in acting greedily according to the upper bound of
an estimated confidence interval. The approach is not novel (Kaelbling, 1993), however some
PAC (probably approximately correct) guarantees have been given recently by Strehl and
Littman (2006) for a tabular representation (for which the confidence interval is proportional
to the inverse of the square root of the number of visits to the considered state-action pair).
In our case, we postulate that the confidence interval width is proportional to the estimated
standard deviation (which is true if the parameters distribution is assumed to be Gaussian).
Let α be a free positive parameter, we define the confident-greedy policy as:

π(ai+1|si+1) = δ
(
ai+1 = argmax

b∈A

(
Q̄i|i−1(si+1, b) + ασ̂Qi|i−1

(si+1, b)
))

(6)

The same arbitrary Q-values are considered (see Fig. 6), and the confident-greedy policy is
illustrated on Fig. 5.b which represents the upper bound of the confidence interval. Action
1 is chosen because it has the highest score (despite the fact that it has the lowest estimated
value). Notice that action 3, which is greedy respectively to the estimated Q-function, has
only the third score.

5.3. Bonus-greedy Policy

The third approach we propose is inspired from the method of Kolter and Ng (2009). The
policy they use is greedy respectively to the estimated Q-function plus a bonus, this bonus
being proportional to the inverse of the number of visits to the state-action pair of interest
(which can be interpreted as a variance, instead of the square-root of this quantity for
interval estimation-based approaches which can be interpreted as a standard deviation).

163

Geist Pietquin

a. ε-greedy. b. Confident-greedy. c. Bonus-greedy. d. Thompson.

Figure 5: Policies.

The bonus-greedy policy we propose uses the variance rather than the standard deviation,
and is defined as (β0 and β being two free parameters):

π(ai+1|si+1) = δ
(
ai+1 = argmax

b∈A

(
Q̄i|i−1(si+1, b) + β

σ̂2Qi|i−1
(si+1, b)

β0 + σ̂2Qi|i−1
(si+1, b)

))
(7)

The bonus-greedy policy is illustrated on Fig. 5.c, still using the arbitrary Q-values and
associated standard deviations of Fig. 6. Action 2 has the highest score, it is thus chosen.
Notice that the three other actions have approximately the same score, despite the fact that
they have quite different Q-values.

5.4. Thompson Policy

Recall that the KTD algorithm maintains the parameters mean vector and variance matrix.
Assuming that the parameters distribution is Gaussian, we propose to sample a set of
parameters from this distribution, and then to act greedily according to the resulting sampled
Q-function. This type of scheme was first proposed by Thompson (1933) for a bandit
problem, and it has been recently introduced into the reinforcement learning community in
the tabular case (Dearden et al., 1998; Strens, 2000). Let the Thompson policy be:

π(ai+1|si+1) = argmax
b∈A

Q̂ξ(si+1, b) with ξ ∼ N (θ̂i|i−1, Pi|i−1) (8)

We illustrate the Thompson policy on Fig. 5.d by showing the distribution of the greedy
action (recall that parameters are random, and thus the greedy action too). The highest
probability is associated to action 3. However, notice that a highest probability is associated
to action 1 than to action 4: the first one has a lower estimated Q-value, but it is less certain.

5.5. Experiment

The bandit problem is an MDP with one state and N actions. Each action a implies a
reward of 1 with probability pa, and a reward of 0 with probability 1− pa. For an action a∗

(randomly chosen at the beginning of each experiment), the probability is set to pa∗ = 0.6.
For all other actions, the associated probability is uniformly and randomly sampled between
0 and 0.5: pa ∼ U[0,0.5], ∀a 6= a∗. Presented results are averaged over 1000 experiments.
The performance of a method is measured as the percentage of time the optimal action

164

Managing Uncertainty within KTD

Figure 6: Q-values and associated
uncertainty. Figure 7: Bandit results.

has been chosen, given the number of interactions between the agent and the bandit. A
tabular representation is adopted for KTD-SARSA, and the following parameters are used1:
N = 10, P0|0 = 0.1I, θ0|0 = I, Pni = 1, ε = 0.1, α = 0.3, β0 = 1 and β = 10. As the
considered bandit has N = 10 arms, a random policy has a performance of 0.1. Notice also
that a purely greedy policy would choose systematically the first action for which the agent
has observed a reward.

Results presented in Fig. 7 compare the four schemes. The ε-greedy policy serves as a
baseline, and all proposed schemes using the available uncertainty performs better. Thomp-
son policy and confident-greedy policy perform approximately equally well, and the best
results are obtained by the bonus-greedy policy. Of course, these quite preliminary results
do not allow to conclude about guarantees of convergence of the proposed schemes. How-
ever, they tend to show that the computed uncertainty information is meaningful and that
it can provide useful for the dilemma between exploration and exploitation.

6. Dialogue management application

In this section is proposed an application to a real world problem: spoken dialogue man-
agement. A spoken dialog system (SDS) generally aims at providing information to a user
through natural language-based interactions. An SDS has roughly three modules: a speech
understanding component (speech recognizer and semantic parser), a dialogue manager and
a speech generation component (natural language generator and speech synthesis). Dialogue
management is a sequential decision making problem where a dialogue manager has to select
which information should be asked or provided to the user when in a given situation. It
can thus be cast into the MDP framework (Levin et al., 2000; Singh et al., 1999; Pietquin
and Dutoit, 2006). The set of actions a dialog manager can select is defined by so called
dialog acts. There can be different dialog acts such as: greeting the user, asking for a piece
of information, providing a piece of information, asking for confirmation about a piece of
information, closing the dialog etc. The state of a dialog is usually represented efficiently by
the Information State paradigm (Larsson and Traum, 2000). In this paradigm, the dialogue
state contains a compact representation of the history of the dialogue in terms of dialog

1. For an empirical study of the sensitivity of performance of the proposed policies as a function of parameter
setting, see Geist (2009).

165

Geist Pietquin

acts and user responses. It summarizes the information exchanged between the user and the
system until the considered state is reached. A dialogue management strategy π is therefore
a mapping between dialogue states and dialogue acts. According to the MDP framework, a
reward function has to be defined. The immediate reward is often modeled as the contribu-
tion of each action to the user’s satisfaction (Singh et al., 1999). This is a subjective reward
which is usually approximated by a linear combination of objective measures.

The considered system is a form-filling spoken dialog system. It is oriented toward
tourism information, similarly to the one described by Lemon et al. (2006). Its goal is
to provide information about restaurants based on specific user preferences. There are
three slots in this dialog problem, namely the location of the restaurant, the cuisine type
of the restaurant and its price-range. Given past interactions with the user, the agent
asks a question so as to propose the best choice according to the user preferences. The
goal is to provide the correct information to the user with as few interactions as possible.
The corresponding MDP’s state has 3 continuous components ranging from 0 to 1, each
representing the averaging of filling and confirmation confidence scores (provided by the
automatic speech recognition system) of the respective slots. There are 13 possible actions:
ask for a slot (3 actions), explicit confirmation of a slot (3 actions), implicit confirmation of
a slot and ask for another slot (6 actions) and close the dialog by proposing a restaurant (1
action). The corresponding reward is always 0, except when the dialog is closed. In this case,
the agent is rewarded 25 per correct slot filling, -75 per incorrect slot filling and -300 per
empty slot. The discount factor is set to γ = 0.95. Even if the ultimate goal is to implement
RL on a real dialog management problem, in this experiment a user simulation technique
was used to generate data (Pietquin and Dutoit, 2006). The user simulator was plugged to
the dipper dialogue management system (Lemon et al., 2006) to generate dialogue samples.
The Q-function is represented using one RBF network per action. Each RBF network has
three equi-spaced Gaussian functions per dimension, each one with a standard deviation
of σ = 1

3 (state variables ranging from 0 to 1). Therefore, there are 351 (i.e., 33 × 13)
parameters.

KTD-SARSA with ε-greedy and bonus-greedy policies are compared on Fig.2 (results
are averaged over 8 independent trials, and each point is averaged over 100 past episodes:
a stable curve means a low standard deviation). LSPI, a batch and off-policy approximate
policy iteration algorithm (Lagoudakis and Parr, 2003), serves as a baseline. It was trained
in an off-policy and batch manner using random trajectories, and this algorithm provide
competitive results among the state of the art (Li et al., 2009a; Chandramohan et al., 2010).
Both algorithms provide good results (a positive cumulative reward, which means that the
user is generally satisfied after few interactions). However, one can observe that the bonus-
greedy scheme provides faster convergence as well as better and more stable policies than
the uninformed ε-greedy policy. Moreover, results for the informed KTD-SARSA are very
close to LSPI after few learning episodes. Therefore, KTD-SARSA is sample efficient (it
provides good policies while the insufficient number of transitions prevents from using LSPI
because of numerical stability problems), and the provided uncertainty information is useful
on this dialogue-management task.

166

Managing Uncertainty within KTD

7. Conclusion

In this paper, we have shown how an uncertainty information about estimated values can be
derived from KTD. We have also introduced an active learning scheme aiming at improving
speed of convergence by sampling actions according to their relative uncertainty, as well
as some adaptations of existing schemes for exploration/exploitation. Three experiments
have been proposed. The first one shown that KTD-Q, a second-order value-iteration-
like algorithm, is sample efficient. The improvement gained by using the proposed active
learning scheme was also demonstrated. The proposed schemes for exploration/exploitation
were also successfully experimented on a bandit problem and the bonus-greedy policy on
real-world problem. This is a first step toward combining the dilemma between exploration
and exploitation with value function approximation.

The next step is to adapt more existing approaches dealing with the exploration/exploitation
dilemma designed for tabular representation of the value function to the KTD framework,
and to provide some theoretical guarantees for the proposed approaches. This paper focused
on model-free reinforcement learning, and we plan to compare our approach to model-based
RL approaches.

Acknowledgments

The authors thank the European Community (FP7/2007-2013, grant agreement 216594,
CLASSiC project : www.classic-project.org) and the Région Lorraine for financial support.

References
S. Chandramohan, M. Geist, and O. Pietquin. Sparse Approximate Dynamic Programming for Dialog

Management. In Proceedings of the 11th SIGDial Conference on Discourse and Dialogue, pages 107–115,
Tokyo (Japan), September 2010. ACL.

R. Dearden, N. Friedman, and S. J. Russell. Bayesian Q-Learning. In AAAI/IAAI, pages 761–768, 1998.

Y. Engel. Algorithms and Representations for Reinforcement Learning. PhD thesis, Hebrew University, April
2005.

M. Geist. Optimisation des chaînes de production dans l’industrie sidérurgique : une approche statistique
de l’apprentissage par renforcement. Phd thesis in mathematics, Université Paul Verlaine de Metz (en
collaboration avec Supélec, ArcelorMittal et l’INRIA), Novembre 2009.

M. Geist and O. Pietquin. Kalman Temporal Differences. Journal of Artificial Intelligence Research (JAIR),
2010.

M. Geist, O. Pietquin, and G. Fricout. Kalman Temporal Differences: the deterministic case. In IEEE In-
ternational Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL 2009),
Nashville, TN, USA, April 2009a.

M. Geist, O. Pietquin, and G. Fricout. Tracking in reinforcement learning. In International Conference on
Neural Information Processing (ICONIP 2009), Bangkok (Thailand), December 2009b. Springer.

N. Jong and P. Stone. Model-Based Exploration in Continuous State Spaces. In Symposium on Abstraction,
Reformulation, and Approximation, July 2007.

S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92
(3):401–422, 2004.

167

Geist Pietquin

L. P. Kaelbling. Learning in embedded systems. MIT Press, 1993.

S. Kakade, M. J. Kearns, and J. Langford. Exploration in Metric State Spaces. In International Conference
on Machine Learning (ICML 03), pages 306–312, 2003.

R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Transactions of the ASME–
Journal of Basic Engineering, 82(Series D):35–45, 1960.

J. Z. Kolter and A. Y. Ng. Near-Bayesian Exploration in Polynomial Time. In international conference on
Machine learning (ICML 09), New York, NY, USA, 2009. ACM.

M. G. Lagoudakis and R. Parr. Least-Squares Policy Iteration. Journal of Machine Learning Research, 4:
1107–1149, 2003.

S. Larsson and D. R. Traum. Information state and dialogue management in the TRINDI dialogue move
engine toolkit. Natural Language Engineering, 2000.

O. Lemon, K. Georgila, J. Henderson, and M. Stuttle. An ISU dialogue system exhibiting reinforcement
learning of dialogue policies: generic slot-filling in the TALK in-car system. In Meeting of the European
chapter of the Associaton for Computational Linguistics (EACL’06), Morristown, NJ, USA, 2006.

E. Levin, R. Pieraccini, and W. Eckert. A stochastic model of human-machine interaction for learning dialog
strategies. IEEE Transactions on Speech and Audio Processing, 8(1):11–23, 2000.

L. Li, S. Balakrishnan, and J. Williams. Reinforcement Learning for Dialog Management using Least-
Squares Policy Iteration and Fast Feature Selection. In Proceedings of the International Conference on
Speech Communication and Technologies (InterSpeech’09), Brighton (UK), 2009a.

L. Li, M. Littman, and C. Mansley. Online exploration in least-squares policy iteration. In Conference for
research in autonomous agents and multi-agent systems (AAMAS-09), Budapest, Hungary, 2009b.

O. Pietquin and T. Dutoit. A probabilistic framework for dialog simulation and optimal strategy learning.
IEEE Transactions on Audio, Speech and Language Processing, 14(2):589–599, March 2006.

Y. Sakaguchi and M. Takano. Reliability of internal prediction/estimation and its application: I. adaptive
action selection reflecting reliability of value function. Neural Networks, 17(7):935–952, 2004.

S. Singh, M. Kearns, D. Litman, and M. Walker. Reinforcement learning for spoken dialogue systems. In
Conference on Neural Information Processing Society (NIPS’99), Denver, USA. Springer, 1999.

A. L. Strehl and M. L. Littman. An Analysis of Model-Based Interval Estimation for Markov Decision
Processes. Journal of Computer and System Sciences, 2006.

M. Strens. A Bayesian Framework for Reinforcement Learning. In International Conference on Machine
Learning, pages 943–950. Morgan Kaufmann, San Francisco, CA, 2000.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 1996.

W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of two samples.
Biometrika, (25):285–294, 1933.

H. Yu and D. P. Bertsekas. Q-Learning Algorithms for Optimal Stopping Based on Least Squares. In
European Control Conference, Kos, Greece, 2007.

168

	Introduction
	Background
	Reinforcement Learning
	Kalman Temporal Differences - KTD

	Computing Uncertainty over Values
	A Form of Active Learning
	Principle
	Experiment

	Exploration/Exploitation Dilemma
	-greedy Policy
	Confident-greedy Policy
	Bonus-greedy Policy
	Thompson Policy
	Experiment

	Dialogue management application
	Conclusion

