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Abstract

This paper describes active learning algorithm used in AISTATS 2010 Active Learning
Challenge as well as several of its extensions evaluated in the post-competition experiments.
The algorithm consists of a pair of Regularized Parzen Window Classifiers, one trained on
full set of features and another on features filtered using Pearson correlation. Predictions of
the two classifiers are averaged to obtain the ensemble classifier. Parzen Window classifier
was chosen because is an easy to implement lazy algorithm and has a single parameter,
the kernel window size, that is determined by the cross-validation. The labeling schedule
started by selecting random 20 examples and then continued by doubling the number of
labeled examples in each round of active learning. A combination of random sampling
and uncertainty sampling was used for querying. For the random sampling, examples were
first clustered using either all features or the filtered features (whichever resulted in higher
cross-validated accuracy) and then the same number of random examples was selected
from each cluster. Our algorithm ranked as the 5th overall, and was consistently ranked
in the upper half of the competing algorithms. The challenge results show that Parzen
Window classifiers are less accurate than several competing learning algorithms used in
the competition, but also indicate the success of the simple querying strategy that was
employed. In the post-competition, we were able to improve the accuracy by using an
ensemble of 5 Parzen Window classifiers, each trained on features selected by different
filters. We also explored how more involved querying during the initial stages of active
learning and the pre-clustering querying strategy would influence the performance of the
proposed algorithm.

Keywords: Parzen Window, ensemble classifiers, clustering, feature filter, active learning

1. Introduction

Active learning addresses the problem in which large amounts of unlabeled data are available
at low cost but where acquiring labels is expensive. The objective of active learning is to
achieve high accuracy by using the least labeling effort. The AISTATS 2010 Active Learning
Challenge (Guyon et al., 2010) considered the pool-based active learning scenario, where
labels can be queried from a large pool of unlabeled data. In the challenge, the participants
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were given 6 binary classification tasks covering a wide variety of domains. All datasets
were high-dimensional and with significant class imbalance.

In each task the participants were given a single seed example from a minority class
and a large amount of unlabeled data to be queried. The virtual cash was used to acquire
the class labels for selected examples from the server. Before acquiring labels, participants
were asked to provide predictions for a separate test data set, which were used to measure
performance of each active learning algorithm. At the completion of the challenge, the
organizer released learning curves describing the evolution of the Area Under the ROC
Curve (AUC) accuracy as a function of the number of labels, and also the Area under the
Learning Curve (ALC) score summarizing the overall performance. The ALC score was
designed to reward high accuracy when labeled datasets are small.

We used the Regularized Parzen Window Classifier (RPWC) (Chapelle, 2005) as the
baseline classifier because of its ease of implementation and ability to solve highly nonlinear
classification problems. We developed an ensemble of RPWC to enhance the overall perfor-
mance. Due to the time constraints, we used only two component classifiers that differed
in the features being used. Feature selection is a critical choice for Parzen Window classi-
fiers because it influences the measure of distance between examples. For the challenge, we
considered several feature selection filters.

Active learning has been a very active research topic in machine learning for many years,
and we had a large choice of querying strategies. Uncertainty sampling (Lewis and Gale,
1994) is one of the most popular choices due to its simplicity and established effectiveness
on many domains. In uncertainty sampling, a learner queries unlabeled examples that are
the most uncertain, on which the existing models disagree the most (Seung et al., 1992)
or that are expected to produce the greatest increase in accuracy (Cohn et al., 1996). By
observing that pure uncertainty sampling can be too aggressive, a variety of approaches have
been developed that combine uncertainty sampling with information about data density
obtained from unlabeled data; see (Nguyen and Smeulders, 2004) and references within.
Since classifiers trained on small labeled datasets could be very unreliable, pure random
sampling during the initial stages of active learning can be very competitive to the more
sophisticated active learning strategies.

The querying strategy used in our algorithm consisted of selecting a mixture of the most
uncertain examples and randomly sampled examples. Instead of pure random sampling,
which might over-emphasize dense regions of the feature space, we used random sampling
of unlabeled data clusters. Due to the time limitations, we used an aggressive schedule that
at each round of active learning doubled the number of labeled examples.

2. Methodology

In this section we describe the problem setup and explain the details of the active learning
algorithm we used in the competition and for the post-competition experiments.

2.1. Problem Setup

Let us denote the labeled dataset as L = {(xi, yi), i = 1...Nl}, where xi is an M -dimensional
feature vector for the ith example and yi is its class label. Initially, L contains a single seed
example (Nl = 1). We are also given a pool of unlabeled data U = {(xi), i = 1...Nu}.
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The unlabeled dataset is assumed to be an i.i.d. sample from some unknown underlying
distribution p(x). Each example xi has a label yi coming from an unknown distribution
p(y|x).

At each stage of the active-learning process, it is possible to select a subset Q of examples
from U , label them, and add them to L. Then, using the available information in L and U
a classifier is trained and a decision to label another batch of unlabeled examples is made.
At each stage, accuracy of the classifier is tested. Accuracies from all stages are used to
evaluate the performance of the proposed active learning algorithm. The success in active
learning depends on a number of design decisions, including data preprocessing, choice of
classification algorithm, and querying strategy.

2.2. Proposed Active Learning Approach

The proposed active learning algorithm is outlined in Algorithm 1. At each round of the
algorithm, we first trained F different base classifiers from the available labeled examples.
Each classifier was built using the Regularized Parzen Window Classifier, described in §2.4.
The classifiers differed by the features that were used. Several different feature selection
filters explained in §2.6 were used. The final classifier was obtained by averaging predictions
of the individual classifiers. To query new unlabeled examples, we used a combination of
uncertainty sampling and random sampling, as explained in §2.8. At each round we doubled
the number of queried examples. This querying schedule was used to quickly cover a range
of the labeled set sizes, consistent with the way the organizers evaluated the performance
of competing active learning algorithms.

Algorithm 1: Outline of the Active Learning Algorithm

Input: labeled set L, unlabeled set U ; querying schedule qt = 20× 2t

Initialization: Q← randomly selected 20 unlabeled examples from U ;

for t = 1 to 10 do
U ← U −Q;
L← L+ labeled(Q);
for j = 1 to f do

Fj = feature filterj(L); /*feature selection filter*/
Cj = train classifer(L,Fj); /*train classifier Cj from L using features
Fj , determine model parameters by CV on L */
Aj = accuracy(Cj , L); /*estimate accuracy of classifier Cj by CV on L*/

end
Cavg ← average(Cj); /*build ensemble classifier Cavg by averaging*/
j∗ = arg maxAj ; /* find the index of the most accurate classifier*/
Apply k-means clustering on L+ U using features from Fj∗ ;
Q← 2qt/3 of the most uncertain examples in U by the ensemble Cavg;
Q← Q+ qt/3 of random examples chosen from randomly selected clusters of U ;

end
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2.3. Data Preprocessing

Data preprocessing is an important step for successful application of machine learning al-
gorithms to real word data. We used the load data function provided by the organizers to
load the data sets, which replaces the missing values with zeros and replaces Inf value with
a large number. All non-binary features were normalized to have mean zero and standard
deviation one.

2.4. Regularized Parzen Window Classifier

Choice of classification algorithm is very important in active learning, particularly during the
initial stages when only a few labeled examples are available. For the active learning com-
petition, our team selected the Regularized Parzen Window Classifier (RPWC) (Chapelle,
2005) as the base classifier. There are several justifications for our choice. RPWC is easy to
implement and very powerful supervised learning algorithm able to represent highly non-
linear concepts. It belongs to the class of lazy algorithms as it does not require training.
RPWC gives an estimate of the posterior class probability of each example, which can be
used to calculate the classification uncertainty for each unlabeled example.

RPWC can be represented as

p(y = 1|x) =

∑
yi=1K(x, xi) + ε∑
K(x, xi) + 2ε

where ε is a regularization parameter, which should be a very small positive number and is
relevant when calculating the classification uncertainty for examples which are underrepre-
sented by the labeled examples. We set ε = 10−5 in all our experiments. K is the Gaussian
Kernel of the form

K(x, x′) = exp(
−‖x− x′‖2

2σ2
)

where the σ represents the kernel size.

2.5. Kernel Size Selection

The kernel size σ is a free parameter which has a strong influence on the resulting estimate.
When σ is small RPWC resembles nearest neighbor classification, while it resembles trivial
classifier that always predicts the majority class when σ is large. Therefore, it has large
influence on the representational power of the RWPC and should be selected with care. In
this competition, we used leave-one-out cross-validation (CV) to select the optimal value
for σ. We explored the following set of values for 2σ2 : M/9,M/3,M, 3M , where M is the
number of features.

2.6. Feature Selection

Feature selection becomes a critical question when learning from high-dimensional data.
This is especially the case during the initial stages of active learning when the number of
labeled examples is very small. Feature selection filters are an appropriate choice for active
learning because they are easy to implement and do not require training of a classifier.
Typically, feature filters select features that have different statistics in positive and negative
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examples. In this competition, we considered statistical feature selection filters (Radivojac
et al., 2004) based on the Pearson correlation and the Kruskal-Wallis test. We used only
the Pearson correlation in the competition, while we also used the Kruskal-Wallis in our
post-competition experiments.

2.6.1. All Features

As the baseline feature selection method, we simply used all the available features. This
choice can be reasonable during the initial stages of active learning when the number of
labeled examples is too small even for the simple statistical filters to make an informed
decision.

2.6.2. Pearson Correlation

The Pearson correlation measures correlation between a feature and the class label and is
calculated as

rj =

∑N
i=1(x

j
i − x̄j)(yi − ȳ)√∑N

i=1(x
j
i − x̄j)2(yi − ȳ)2

where x̄j is the mean of the jth feature, ȳ is the mean of the class label (negative examples
were coded as 0 and positive as 1), andN the number of labeled examples. Value rj measures
linear relationship between jth feature and target variable and its range is between 1 or -1.
Values of r close to 0 indicate the lack of correlation.

We used the Student’s t-distribution to compute the p-value for the Pearson correlation
that measures how likely it is that the observed correlation is obtained by the independent
variables. We selected only features with p-values below 0.05. Since the number of selected
features using the 0.05 threshold would largely depend on the size of the labeled dataset,
as an alternative, we selected only the top M∗ (e.g. M∗ = 10) features with the lowest
p-values.

2.6.3. Kruskal-Wallis Test

The t-statistics test for Pearson correlation assumes that the variables are Gaussian, which
is clearly violated when the target is a binary variable. That is why the nonparametric
Kruskal-Wallis (KW) test was also considered in our algorithms. For jth feature, KW sorts
its values in ascending order and calculates average rank of all positive examples (denoted
as r+j ) and all negative examples (denoted as r−j ). Then, the KW statistics of jth feature
is calculated as

kwj =
12

N(N + 1)
(N+(r+j −

N + 1

2
)2 +N−(r−j −

N + 1

2
)2)

where N+, N− are the numbers of positive and negative labeled examples, respectively.
The KW statistics becomes large when the average ranks deviate from the expected rank
(N + 1)/2. The p-value of the KW statistic is calculated easily because kwj follows the
standard χ2 distribution.

Similarly to the feature filter based on the Pearson correlation, given the p-values, fea-
tures can be selected in two ways. In first, all features with p-values below 0.05 are selected.
In second, M∗ (e.g. M∗ = 10) features with the smallest p-values are selected.
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2.7. Ensemble of RPWC

Ensemble methods construct a set of classifiers and classify an example by combining their
individual predictions. It is often found that ensemble methods improve the performance of
the individual classifiers. (Dietterich, 2000) explains why ensemble of classifiers can often
perform better than any single classifier from statistical, computational, and representa-
tional viewpoints. The following describes how we constructed an ensemble of RPWCs.

2.7.1. Base Classifiers

For the active learning challenge, we considered five base classifiers: (1) RPWC using all
available (normalized) features; (2) RPWC on filter data1 (p-value of the Pearson cor-
relations < 0.05); (3) RPWC on filter data2 (10 features with the smallest p-value of the
Pearson correlations); (4) RPWC on filter data3 (p-value of the Kruskal-Wallis test < 0.05);
(5) RPWC on filter data4 (10 features with the smallest p-value of the Kruskal-Wallis test).

2.7.2. Averaging Ensemble

In general, an ensemble classifier can be constructed by weighted averaging of base classifiers.
For example, cross-validation can be used on labeled data to determine what choice of
weights results in the highest accuracy. Since in an active learning scenario, the size of
labeled data is typically small, we felt that weight optimization might lead to overfitting.
Therefore, we decided to construct the ensemble predictor by simple averaging of the base
RPWC as

p(y = 1|x) =
1

f

f∑
i=1

p(y = 1|x,Ci).

2.8. Active Learning Strategy - Exploration and Exploitation

Our active learning strategy outlined in Algorithm 1 combined exploration and exploita-
tion. We used a variant of random sampling for exploration and uncertainty sampling for
exploitation. The queried examples at each stage were mixture of randomly sampled and
uncertainty sampled examples from the unlabeled dataset.

Uncertainty Sampling Uncertainty sampling is probably the most popular active
learning strategy. It measures prediction uncertainty of the current classifier and selects the
most uncertain examples for labeling. There are two common ways to estimate uncertainty.
If an ensemble of classifiers is available, uncertainty is defined as the entropy of their classi-
fications. Using this definition, selected examples are either near the decision boundary or
within underexplored regions of feature space. If a classifier can give posterior class prob-
ability, p(y = 1|xi), the alternative approach is to select examples whose probability is the
closest to 0.5. We used this approach in our experiments since RPWC provides posterior
class probabilities. It is worth to note that, thanks to the use of regularization parameter ε,
examples with p(y = 1|xi) close to 0.5 in RPWC are both those near the decision boundary
and those that are within the underexplored regions of the feature space. Both types of
examples are interesting targets for active learning.

Clustering-Based Random Sampling Relying exclusively on uncertainty-based se-
lection may be too risky, especially when the labeled dataset is small and the resulting
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classifier is weak. In addition, the uncertainty sampling for RPWC decribed in previous
section is prone to selecting a disproportionate number of outliers. Therefore, in our ap-
proach we also relied on exploration to make sure examples from all regions of the feature
space are represented in labeled data.

A straightforward exploration strategy is random sampling. However, this strategy can
be wasteful if data exhibits clustering structure. In this case, dense regions would be over-
explored while the less dense regions would be under-explored. This is why we decided to
use k-means clustering to cluster the unlabeled examples as a preprocessing step at each
stage of the active learning procedure. Then, our exploration procedure selected the same
number of random unlabeled examples from each cluster. In k-means, we used randomly
selected k examples as cluster seeds.

The result of clustering greatly depends on the choice of distance metric. To aid in this,
we leveraged the existing base RPWCs. For clustering, we used the normalized features of
the most accurate base classifier.

Combination of Uncertainty and Clustering Sampling As the initial selection
in all 6 data sets, we randomly sampled 20 examples from the unlabeled data. Only after
20 examples were labeled we trained the first ensemble of RPWCs and continued with the
procedure described in Algorithm 1. The justification is that we did not expect RPWC
to be accurate with less than 20 labeled examples. For the same reason, we reasoned that
clustering-based random sampling would not be superior to pure random sampling this
early in the procedure.

In the following rounds of active learning, we sampled 2/3 of the examples using uncer-
tainty sampling and 1/3 using the clustering-based random sampling.

Alternative Sampling Strategy Our sampling strategy that combines uncertainty-
based and random sampling is similar to the pre-clustering idea from (Nguyen and Smeul-
ders, 2004). They proposed to measure interestingness of unlabeled examples by weighting
uncertainty with density. Examples with the highest scores are those that are both highly
uncertain and come from dense data clusters. In our post-competition experiments we
implemented the pre-clustering algorithm with two modifications. First, we used RPWC
instead of the logistic regression to compute the conditional density. Second, instead of
selecting unlabeled examples with the highest scores, we randomly selected from a pool of
the highest ranked examples to avoid labeling of duplicate examples.

3. Experiments and Results

In this section we will describe the results of the experiments performed during the compe-
tition and for the post-competition analysis.

3.1. Data Description

The organizers provided datasets from 6 application domains. The details of each dataset
are summarized in Table 1. All datasets are for binary classification and each is characterized
by large class imbalance, with ratio between positive and negative examples near 1:10. The
number of features in different datasets ranges from a dozen to several thousand.
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Table 1: Dataset Description

Data Feature # Feature Sparsity (%) MissValue (%) # Train Maj Class (%)

A mixed 92 79.02 0 17535 92.77

B mixed 250 46.89 25.76 25000 90.84

C mixed 851 8.6 0 25720 91.85

D binary 12000 99.67 0 10000 74.81

E cont. 154 0.04 0.0004 32252 90.97

F mixed 12 1.02 0 67628 92.32

3.2. Experimental Setup

We applied the approach outlined in Algorithm 1. For the competition, we used an ensemble
of only two RPWCs: one used all features and the other used features whose Pearson
correlation p-value was below 0.05. This choice was made to speed-up our submission
process. Before ordering labels for the first 20 random examples, we provided predictions
that were proportional to the distance from the seed example. For k-means clustering we
used k = 10 in all rounds of active learning experiments for all 6 datasets.

For all the experiments, we used the custom-made Matlab code. We used Matlab
because it allowed us to implement the proposed Algorithm 1 in only a few days and
complete all tasks form the competition within a week. During code development, we used
several functions from the Statistics Matlab toolbox, such as the k-means clustering, the
Kruskal-Wallis test, and the t-test.

3.3. Performance Evaluation

The classifier performance at each round of the active learning procedure was calculated
by the challenge organizers as the Area Under the ROC Curve (AUC) on test data whose
labels were withheld from the challenge participants. Performance of an active learning
algorithm was calculated using the Area under the Learning Curve (ALC) calculated using
the trapezoid method on the log2 scale. The log-scale enforced that larger emphasis is given
to accuracy during the initial stages of active learning. The final score for each dataset was
calculated as

global score = (ALC −Arand)/(Amax−Arand)

where Amax is ALC of the ideal learning curve, which is obtained when the perfect predic-
tions are made for the whole range of the labeled dataset sizes, (AUC =1). Arand represents
the ALC of the ’lazy’ learning curve, which is obtained by always making random predic-
tions (where the expected value of AUC is always 0.5). Therefore, global score close to 0
indicates that the resulting active learning algorithm is not better than the random predic-
tor, while value close to 1 indicates that very accurate classifier could be made using very
few labeled examples.
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3.4. Competition Results

We summarize the performance of our active learning algorithm in Tables 2 and 3 and Figure
1. Table 2 lists the global score on all 6 datasets. It compares the results from the best
performer, the highest and second highest overall ranked teams, INTEL and ROFU, and of
our team (TUCIS). The ranking of our algorithm was in the top half among all competing
algorithms on all 6 datasets. Thanks to this consistency, our algorithm was ranked as the
5-th best algorithm overall. Our algorithm was better than INTEL on dataset D and better
than ROFU on datasets C and F.

Table 3 summarizes the AUC accuracy of the final classifier trained using all purchased
labels. As can be seen, RPWC was less accurate than the best reported classifier, the
random forest used by INTEL, on all 6 datasets. The difference was the smallest on dataset
F, while it was around 10

Figure 1 shows the learning curves that represent AUC classification accuracy as a
function of the number of purchased labels. In all cases, a trend of increasing AUC with
sample size can be observed. However, there are some significant differences in behavior of
our algorithm on different datasets. On dataset A, the behavior is in accord to an intuitive
notion that AUC should increase sharply until reaching the convergence region. On datasets
B, D, and E, we can observe an almost linear increase in AUC with a logarithm of the
sample size. It is interesting to observe that the linear AUC growth on the log-scale was
assumed to be the lower bound by the competition organizers (Guyon et al., 2010). Our
results on datasets B, C, and E indicate that this assumption was overly optimistic. As a
consequence, building only a single predictor on a fully labeled dataset (the strategy cleverly
used by ROFU team) would yield the same global score as our active learning algorithm
on datasets B, D, and E. Performance on datasets C and F was characterized by a drop
in AUC accuracy after labeling the first 20 examples that was significantly improved in
the following labeling stages. The observed behavior could possibly be attributed to a
significant class imbalance that was 91.85% for dataset C and 92.32% for dataset F . This
result clearly illustrates that classifiers trained on small samples could be very unreliable
and should be used with care in uncertainty sampling.

Table 2: Summary of the Competition Results: the (global score)

Dataset Best INTEL (1st) ROFU (2nd) TUCIS (5th) TUCIS RANK
A 0.629 0.527 0.553 0.470 7
B 0.376 0.317 0.375 0.261 8
C 0.427 0.381 0.199 0.239 7
D 0.861 0.640 0.662 0.652 5
E 0.627 0.473 0.584 0.443 7
F 0.802 0.802 0.669 0.674 8

3.5. Post-Competition Results

Upon completion of the active learning challenge, we performed several additional experi-
ments to better characterize the proposed algorithm and explore some alternatives. In order
to finish this task we first queried labels of all training examples from the challenge server.
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(a) (b) (c)

(d) (e) (f )

Figure 1: AUC versus the sample size on 6 datasets: the official results

Table 3: Summary of the Competition Results: the Final AUC scores

Dataset Best INTEL (1st) ROFU (2nd) TUCIS (5th)
A 0.962 0.952 0.928 0.899
B 0.767 0.754 0.733 0.668
C 0.833 0.833 0.779 0.707
D 0.973 0.973 0.970 0.939
E 0.925 0.925 0.857 0.834
F 0.999 0.999 0.997 0.987
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Table 4: Comparison of two querying strategies

dataset first 20 labels one by one begin with 20 labels
A 0.537±0.036 0.466±0.015
B 0.267±0.022 0.273±0.021
C 0.242±0.034 0.261±0.039
D 0.576±0.035 0.601±0.027
E 0.445±0.028 0.433±0.017
F 0.750±0.046 0.757±0.062

Then, we randomly selected 80% of the labeled examples for training and 20% for testing.
To be consistent with the challenge rules, in all experiments we used the same seed as used
in the competition. All shown post-competition results are based on repeating the active
learning experiment 5 times. In order to quickly finish the experiments, each active learning
experiment was terminated after 320 examples were labeled (after 5 rounds of Algorithm
1).

Early Start Our competition algorithm started by labeling 20 randomly sampled and
building a classifier from them. Our first question was what would be the global score if
we trained classifiers after every single labeled example, Nl = 1, 2, ..., 20. Since log2 scale
was used in calculating ALC, any success on the first 20 examples would be visible in
the final score. Similarly, any failure to make a good learning progress would be reflected
negatively. In Table 4, we compared the results of the submitted algorithm (tested on
20% of training examples, as explained above) to the same algorithm that built a series
of classifiers until labeled data size reached 20 (after that, we followed exactly the same
procedure as in Algorithm 1). Consistent with Algorithm 1, for the first 20 queries we used
exclusively random sampling. As can be seen, the global score of the alternative approach
increased only on dataset A, decreased on dataset D, and remained similar on the remaining
4 datasets. This result confirmed our original strategy from Algorithm 1. Another result
from this set of experiments is worth mentioning. Table 4 also lists the standard deviation
of global score after repeating each experiment 5 times. It can be seen that the variability
is relatively low (around 0.046). The largest difference 0.05 was observed on dataset F .

To more clearly illustrate the evolution of AUC at different sample sizes, in Figure 2
we are showing the learning curves on the 6 datasets. It can be seen from Figure 2 that
the variability in AUC values slowly decreases with the number of labels in all datsets.
On dataset A it could be seen that the accuracy rapidly increases after only two additional
examples are labeled and that it approaches the maximum achievable accuracy. This clearly
explains the increase in ALC reported in the first row of Table 4. However, the similar
behavior is not replicated on the remaining 5 datasets. In fact, on 4 of the datasets (B, C,
D, F ) the accuracy grows slower than the postulated log-scale linear growth. On three of
them, we could even observe the initial drop in accuracy that explains significant drop in
ALC reported in Table 3.

These results clearly demonstrate the challenges in design of a successful active learning
strategy when the number of labeled examples is small. This is particularly the case when a
dataset is highly dimensional, with a potentially large number of irrelevant, noisy, or weak
features. In this case, there simply might be too little data to make informed decisions
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(a) (b) (c)

(d) (e) (f )

Figure 2: Competition and Post-Competition AUC curves

Table 5: Comparison of different ensemble methods

Data 1 classifier (full) 1 classifier(PR) 1 classifier(KW) 2 Classifiers 5 Classifiers
A 0.463±0.080 0.433±0.040 0.442±0.026 0.466±0.015 0.459±0.017
B 0.261±0.005 0.246±0.035 0.283±0.011 0.273±0.021 0.304±0.023
C 0.321±0.023 0.292±0.038 0.297±0.059 0.261±0.039 0.337±0.050
D 0.670±0.027 0.540±0.029 0.545±0.051 0.601±0.027 0.551±0.050
E 0.426±0.007 0.417±0.024 0.412±0.050 0.433±0.017 0.450±0.007
F 0.620±0.023 0.785±0.026 0.792±0.039 0.757±0.062 0.779±0.026

about feature selection, classifier training, and sampling strategy. This view is supported
by the competition results where each dataset seems to have favored different active learning
approach.

Larger Ensemble Due to the need to finalize all experiments before the challenge
deadline, our ensemble consisted only of two RPWCs. Here, we explored what would be
the impact of accuracy if we used 5 RPWC, each using a different feature selection filter,
as explained in §2.7.1. Table 5 summarizes the results. It can be seen that the 5-classifier
ensemble is more accurate than our competition algorithm on 4 challenge datasets and is
less accurate only on dataset D. This behavior is consistent with the large body of work
on ensemble methods Dietterich (2000). The obtained result indicates that using a larger
variety of feature selection methods would result in improved performance of our approach.
Table 5 also lists results of several individual classifiers. Their performance was overall
worse than the performance of both ensembles. It is interesting to observe that RPWC
that used all feature was the most successful individual classifier on 4 of the 6 datasets,
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Table 6: Comparison of two querying strategies

dataset 1/3 RAND + 2/3 UNCTN Precluster
A 0.466±0.015 0.447±0.012
B 0.273±0.021 0.170±0.057
C 0.261±0.039 0.293±0.049
D 0.601±0.027 0.507±0.036
E 0.433±0.017 0.378±0.058
F 0.757±0.062 0.709±0.062

and that its performance was particularly impressive on dataset D and particularly poor
on dataset F .

Active Learning by Preclustering Finally, we explored the performance of preclus-
tering algorithm by Nguyen and Smeulders (2004) outlined in §2.8. The results in Table 6
shows that preclustering was inferior than the 2/3 uncertain + 1/3 random approach used
in our challenge algorithm. We explain this result by a strong reliance of pre-clustering on
the classification model that might be unreliable when trained with small number of labeled
examples. Nevertheless, this is a slightly surprising result deserving further analysis.

4. Conclusion

The results of the AISTATS 2010 Active Learning Challenge show that our proposed algo-
rithm based on Parzen Window classification and mixture of uncertainty-based and random
sampling gives consistent results, that are somewhat lower than the winning algorithms. Our
analysis reveals that, although it was less accurate than the winning decision forests, Parzen
Window classification was a reasonable choice for solving highly dimensional classification
problems. In addition, since several of the challenge datasets could be accurately solved
using linear classifiers Guyon et al. (2010), the representative power of Parzen Window
classifiers becomes a disadvantage. Our results also show that accuracy of Parzen Win-
dow classifiers can be boosted by using their ensembles. On the other hand, the ease of
implementation, coupled with respectable accuracy achieved on the challenge tasks, indi-
cates that Parzen Window classifiers should be given consideration on any active learning
problem.

Using the mixture of uncertainty and random sampling proved to be a successful strat-
egy. It shows that good performance on active learning problems requires a right mix of
exploration and exploitation strategies. Our results confirm that at initial stages of active
learning, when there are few labeled examples, the exploration should be given precedence
over exploitation. This can be easily attributed to low quality of knowledge that can be
acquired from small labeled datasets. This paper also illustrated the benefits of analyz-
ing properties of unlabeled data (e.g. through clustering, or semi-supervised learning) and
importance of feature selection when addressing high-dimensional active learning problems.
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