
JMLR: Workshop and Conference Proceedings 18:153–167, 2012 Proceedings of KDD-Cup 2011 competition

Collaborative Filtering Ensemble for Ranking

Michael Jahrer michael.jahrer@commendo.at
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Abstract

This paper provides the solution of the team “commendo” on the Track2 dataset of the
KDD Cup 2011 Dror et al.. Yahoo Labs provides a snapshot of their music-rating database
as dataset for the competition, consisting of approximately 62 million ratings from 250k
users on 300k items. The dataset includes hierachical information about the items. The
goal of the competition is to distinguish beteen “High rated” and “Not rated” items of
a user. The rating scale is discrete and ranges from 0 to 100, while a “High” rating is a
rating≥80. The error measure is the percent of false rated tracks over all users, known as the
fractions of misclassifications. The task is to minimize this error rate, hence the ranking
should be optimized. Our final submission is a blend of different collaborative filtering
algorithms enhanced, with basic statistics. The algorithms are trained consecutively and
they are blended together with a neural network. Each of the algorithms optimizes a rank
error measure.

Keywords: Collaborative Filtering, Ensemble Learning, KDD Cup, Rating Prediction,
Ranking, Music Ratings

1. Introduction

In the KDD Cup 2011 challenge we work with the Yahoo! Music dataset Dror et al.. The
datasets of both tracks are disjoint, so we have different users on the Track2. The Track2
dataset is significantly smaller to the one in Track1.

1.1. Notation

We consider the dataset as sparse matrix R = [rui], where we use the letter u for users
and i for items during this writeup. Bold letters are used for matrices and vectors, non
bold for scalars. The set of items is denoted by I and |I| stands for the total number of
items, |I|=296,111. The set of users is written as U, while |U| is the total number of users,
|U|=249,012. Predictions for user/item pairs are denoted as r̂ui. We have no information
about the rating date. The set of items, which is rated by user u is I(u). The set of users,
which rate item i is U(i).

Additional to the rating data there is taxonomy information available. Taxonomy means
the relationship between the items within the music domain. For example track x belongs to
album y, and album y belongs to artist z. For a more simple and holistic view we calculate
item-to-parent and item-to child tables. We use the notation of P(i) for the parents of item
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i and C(i) for the children of item i. Parents and children are itself items. The total number
of children is 1,203,596 (same number of parents).

For the Track2 the goal is to minimize the error rate E(θ) on the test set. The letter θ
indents the trainable weights/parameter of the prediction model.

E(θ) =
100%

|Rtest|
∑

u,i∈Rtest


0, rui ≥ 80 AND r̂ui(θ) = Hi

0, unrated AND r̂ui(θ) = Lo

1, else

(1)

The error assessment is done as follows. For each user we should predict ratings for
6 items. This can be any numeric score, scaling does not matter. Then, the evaluation
machine sorts the scores and assigns the 3-highest scores to class “High” and the others
to “Low”. Equation 1 shows how this is calculated. If we predict all item scores for the
particular user correctly, it would result in a 0% error rate. 0% error implies that we
separate the “High” rated items perfectly from all others.

Here we can find a sketch of the notation for model parameters. pu is a user-dependent
feature and qi is an item-dependent feature. All features are stored in matrices, e.g. all the
user features pu are stored in the matrix p ∈ RFx|U | and the columns are the F -dimensional
features. The feature values are typically initialized with small random numbers and they
are trained with stochastic gradient descent from the data rui. As learning rate we use the
constant η and λ for L2-regularization. In a basic matrix factorization model a prediction
r̂ui is calculated by the dot product of the user and the item feature r̂ui = pT

uqi.

1.2. The Dataset

The provided dataset for Track2 Dror et al. consists of 62,551,438 ratings from 249,012
users on 296,111 items. The range of the rating value is between 0 and 100. An item can
be a track, an album, an artist or a genre. Most of the ratings are given to tracks (44%)
followed by artists (31%), albums (19%) and genres (6%). The distribution of types within
all items are given by 224,041 tracks, 52,829 albums, 18,674 artists and 567 genres. By
considering the data as sparse user x item matrix R = [rui] the fill-rate of 0.08% is very
low value. For example in the Netflix Prize dataset Bennett et al. (2007) the fill-rate of the
rating matrix is about 1%.

1.3. The Training of the Models

Our solution is a blended set of predictors. We train each predictor in two steps. In the first
step we remove a validation set from the dataset and train the model. Then we store the
predictions of the validation set. In the second step we train on all available data with the
same meta parameters as in the first step, such as learning rate η, regularization λ, number
of epochs etc. and store the predictions of the test set. The validation predictions from the
first step are used to train the blender. The target of all models is the minimization of the
error rate on the validation set.
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predictor error rate

global mean 50.0%
item count 42.38%
user count 50.0%

Table 1: Baseline predictions. The error rate of global mean and user count is random
(50%), because there is no difference in the predicted score for a user. Item count
is the number of ratings per item in the dataset and it performs a little better
than random.

1.4. Ranking and Sampling

In the KDD Cup 2011 Track2, the key idea for collaborative filtering is to introduce sam-
pling. As mentioned in the introduction, the error measure is the fraction of misclassifica-
tions. The ratings are in the range from 0 to 100. In the competition, the “High” rating
is defined as rating≥80. For a particular user we should distinguish between “High” rated
items and unrated ones. In the test set, the task is to predict scores for 6 items per user.
We know that 3 of these items are rated “High”, the others are “Not rated” by the user,
but sampled with the Item-High probability. Item-High probability means that the drawn
item occurs proportional with its number of High-ratings. It is given in equation 2.

probHi(i) =
1

|R ≥ 80|
·
∑

u∈U(i)

{
1, rui ≥ 80

0, else
(2)

In contrast to the high-probability, we can sample an item according to their popularity.
Equation 3 denotes this probability.

prob(i) =
|U(i)|
|R|

(3)

1.5. Drawing the Validation Set

The validation set of KDD Cup 2011 Track1 is given by a separate text file. For Track2
there is no pre-defined validation set available. Therefore, we generate one by ourselves.
The generation procedure is based on the public knowledge of the test set generation. We
iterate over all users and pick those users, who have ¿3 High ratings on the training set. For
those users, 3 random High ratings and 3 un-rated items with the probability of probHi(i)
are chosen. We end up with 109,360 users and 656,160 ratings being in the validation set.
For the final blending stage it is important to use the same validation set for every trained
predictor.

For all models in chapter 2 we report error rate values on the validation set. In table 1
we list three baseline error rates.

A low error rate of a single predictor is not necessarily needed in order to blend well
within the ensemble. An average user has 250 ratings, an average item 210 ratings.
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2. Algorithms

In the following we will describe the collaborative filtering models which are used by our
approach. All models are trained on the rating data directly.

All different models get listed here with their corresponding explanation. The formula
for predicting one user/item pair is also added to each of the algorithms. For completeness
we add the error rate value on the validation set of each of the models with the used meta-
parameters. The listed numbers are taken from a predictor which is actually in our final
blend.

2.1. Basic Taxonomy

The dataset contains taxonomy information. Items consist of tracks, albums, artists and
genres. The information which track belongs to which album, the connection from the
albums to the artists and from artists to genres was given. The idea of the basic taxonomy
models is to produce predictors which blend well by using taxonomy information which is
not captured by the following matrix factorization models.

In total we use 14 different basic taxonomy predictors:

1. r̃ui = the number of users which gave a high rating to item i (42.42%)

2. r̃ui = the number of users which rated item i (42.36%)

3. r̃ui = the number of high ratings the user u has given to tracks included in the album
of the given track i (41.05%)

4. r̃ui = the number of high ratings the user u has given to tracks belonging to the
artist(s) of the given track i (36.93%)

5. r̃ui = the number of high ratings the user u has given to tracks belonging to the
genre(s) of the given track i (25.33%)

6. r̃ui = the number of ratings the user u has given to tracks included in the album of
the given track i (38.50%)

7. r̃ui = the number of ratings the user u has given to tracks belonging to the artist(s)
of the given track i (33.45%)

8. r̃ui = the number of ratings the user u has given to tracks belonging to the genre(s)
of the given track i (25.23%)

9. r̃ui = the number of high ratings the user u has given to a parent (album, artist,
genre) of the given track i (20.24%)

10. r̃ui = the number of ratings the user u has given to a parent (album, artist, genre) of
the given track i (18.43%)

11. r̃ui = the number of high ratings the user u has given to parents (album, artist, genre)
and all children of those parents (distance 2) of track i (24.27%)

12. r̃ui = the number of ratings the user u has given to parents (album, artist, genre) and
all children of those parents (distance 2) of track i (25.55%)

13. r̃ui = the number of high ratings to item i and parents of item i (47.29%)

14. r̃ui = the number of ratings to item and parents of item i (47.29%)
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The final predictions are given by adding 1 in order to avoid a zero and using the
logarithm, which leads to:

r̂ui = log(r̃ui + 1) (4)

2.2. Matrix Factorization Models

This section is about different matrix factorization techniques. The idea of matrix factor-
ization is to project users and items to a low-dimensional space. So each user and each
item is represented by a latent feature vector in RF . The dot product of them pT

uqi is the
prediction.

2.2.1. SVD (regression)

The SVD model is a simple matrix factorization of the rating matrix. The training is based
on regression with a quadratic error function and therefore, it does not directly optimize
the ranking score. Predictions of a user/item pair are given by the following formula:

r̂ui = pT
uqi (5)

This is one of the most popular models in collaborative filtering since the Netflix Prize
Bennett et al. (2007) in 2006. When using stochastic gradient descent as learning algorithm,
training time grows linearly with the number of ratings |R|, prediction time of one user/item
pair is O(F ), hence very fast.

With F=500, η=0.0006, λ=1.5 and 120 epochs we get error rate=15.01% on the vali-
dation set.

2.2.2. SVD

The SVD explained here is similar to the SVD (regression) beforehand. The prediction is
a dot product, given by

r̂ui = pT
uqi (6)

The difference is how to do stochastic gradient descent by simultaneously optimizing the
ranking error. Our first approach was to use “zero-sampling”, the idea is to train a SVD
(regression) on the rating data and on some artificial zero-ratings for randomly sampled
items. This was less effective, but better than the regression one.

However, after a few additional experiments we found an effective way to directly learn
the ranking from the data. The idea is to learn the rating difference of two items for a given
user u. The first item i is selected from the set of items I(u) rated by user u. The other
item i0 is drawn from all items I, not rated by u. Hence we have two target values rui and
rui0 . The value of rui0 can be any constant, we set it for example to 0.

The complete algorithm for training the SVD, which optimized the ranking, is shown
in Algorithm 1. The algorithm we use is very similar to the one in Weimer et al. (2008),
which is ranking optimization using the ordinal regression loss. Again, we iterate over all
elements of the sparse rating matrix R (line 3). The main difference to standard stochastic
gradient descent is that the training is done on pairs, here are item pairs (i, i0). The second
item i0 (not rated by user u) is sampled according to the Item-High probability from all
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items, line 4 in Algorithm 1. The next steps are to predict the ratings r̂ui, r̂ui0 (line 5, line
6). The target of the sampled item is set to 0 (line 7). The most important step is to learn
the difference between the targets and the actual predictions. The error is shown in line 8.
Updates of the features are done feature-wise (line 10 to line 13).

Algorithm 1: Pseudo code for training a SVD for ranking on rating data.

Input: Sparse rating matrix R ∈ R|U|x|I| = [rui]
Tunable: Learning rate η, feature size F

1 Initialize user features p ∈ RFx|U| and item features q ∈ RFx|I| with small random values
2 while error on validation set decreases do
3 forall the u, i ∈ R do
4 draw an item i0, not rated by u, from all items I according to the probability

probHi(i)
5 r̂ui ← pT

uqi

6 r̂ui0 ← pT
uqi0

7 rui0 ← 0
8 e← (r̂ui − r̂ui0)− (rui − rui0)
9 for k = 1...F do

10 c← puk
11 puk ← puk − η · (e · (qik − qi0k))
12 qik ← qik − η · (e · c)
13 qi0k ← qi0k − η · (e · (−c))
14 end

15 end

16 end

With F=1000, η=0.0002 and 25 epochs we get error rate=5.841% on the validation set
with the SVD model.

2.2.3. AFM

This model is called asymmetric factor model because it uses only item-dependent param-
eters. It was first mentioned by Paterek in Paterek (2007). It learns a different kind of
data variability compared to the simple SVD model, hence it blends well within the en-
semble. The following equation is the prediction of a user/item pair. In a simplified view,
the prediction is again a dot product of the item feature qi and the user feature (the right
side). But the user feature is given by the set of items I(u) that user u has rated. Therefore
the user is expressed purely by his rated items. The features which are learned from the
data are built together in a different way compared to the pure SVD model, hence a linear
combination of an SVD and AFM results mostly in a more accurate model.

r̂ui = µu + µi + qT
i

 1√
|I(u)|

∑
j∈I(u)

q
(0)
j

 (7)

The two matrices q and q(0) have both the size |I| x F . The term 1√
|I(u)|

is used for

normalization purpose. User and item biases are µu and µi.
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Training of the AFM with stochastic gradient descent is more effective by iterating over
all users u ∈ U and make a batch update on the asymmetric part q0. Algorithm 2 sketches
the training process. In line 4 we initialize the update vector x ∈ RF with zero. Line 16
sums the updates and in line 25 the update is applied to the asymmetric features q(0). The
target value α of the sampled item i0 can be any number.

Algorithm 2: Pseudo code for gradient descent training an AFM for ranking on rating
data.

Input: Sparse rating matrix R ∈ R|U|x|I| = [rui]
Tunable: Learning rate η, sampled target constant α, feature size F

1 Initialize item features q ∈ RFx|I| and asymmetric item features q(0) ∈ RFx|I| with small
random values

2 while error on validation set decreases do
3 forall the u ∈ U do
4 x← 0

5 y← 1√
|I(u)|

·
∑

j∈I(u) q
(0)
j “virtual user feat.”

6 forall the i ∈ I(u) do
7 draw an item i0, not rated by u, from all items I according to probHi

8 r̂ui ← µu + µi + yTqi

9 r̂ui0 ← µu + µi0 + yTqi0

10 rui0 ← α
11 e← (r̂ui − r̂ui0)− (rui − rui0)
12 µu ← µu − η · e
13 µi ← µi − η · e
14 µi0 ← µi0 − η · e
15 for k = 1...F do
16 xk ← xk + e · (qik − qi0k)
17 end
18 for k = 1...F do
19 qik ← qik − η · (e · yk)
20 qi0k ← qi0k − η · (e · (−yk))

21 end

22 end
23 forall the i ∈ I(u) do
24 for k = 1...F do

25 q
(0)
ik ← q

(0)
ik − η · xk ·

1√
|I(u)|

26 end

27 end

28 end

29 end

With F=1000, η=0.00002, α=-50 and 30 epochs we get error rate=6.641% on the vali-
dation set.
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2.2.4. AFM flipped

Again, we make use of the asymmetric idea, but compared to AFM the roles of users and
items are interchanged. Hence, we have a fixed user feature, but the item is expressed by the
set of users U(i) which rated this item. Thus, the item feature is build from a normalized
sum of rated user features. User and item biases are µu and µi.

r̂ui = µu + µi + pT
u

 1√
|U(i)|

∑
j∈U(i)

p
(0)
j

 (8)

The two matrices p and p(0) have both the size |U| x F . According to Algorithm 2
we use the same schema, but flipped to the other side (train item-wise, etc.). With F=50,
η=0.00005, α=-50 and 50 epochs we get an error rate=7.050% on the validation set.

2.2.5. ASVD

The ASVD model combines the basic SVD approach with the idea from the AFM. The user
is described by the user-dependent feature pu and the normalized sum of rated items. This
model is exactly the same as SVD++ from Y.Koren Koren (2008).

r̂ui = µu + µi + qT
i

pu +
1√
|I(u)|

∑
j∈I(u)

q
(0)
j

 (9)

The two matrices q and q(0) have both the size |I| x F , matrix p has the size |U| x F .
Stochastic gradient descent is applied in order to learn the features from the data. Training
is similar to Algorithm 2, but the sampling of the second item i0 is done by picking a
random item. With F=1000, η=0.00002, α=0 and 35 epochs we get an error rate=5.949%
on the validation set.

2.2.6. ASVD flipped

As in the section above, we apply the asymmetric idea from the ASVD model to the item
side. Now, the user is described by pu and we have at the item side (right brackets) the
item-dependent feature qi and the normalized sum of rated user features.

r̂ui = µu + µi + pT
u

qi +
1√
|U(i)|

∑
j∈U(i)

p
(0)
j

 (10)

The two matrices p and p(0) have both the size |U| x F , matrix q has the size |I| x F .
As in Algorithm 2 we use the same schema, but flipped to the other side (train item-wise,
etc.). With F=2000, η=0.00005, α=-50 and 30 epochs we get an error rate=5.163% on the
validation set.
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2.2.7. ASVD flipped taxonomy

The ASVD flipped model can be further improved by using the taxonomy information.
Items are categorized in 4 different types: tracks, albums, artists and genres. Hierarchical
relationships of them are given by the taxonomy info, which comes with the dataset. From
the taxonomy we build child and parent tables. C(i) is the set of related children of item
i. P(i) is the set of parents of the item i. In the model we extend the item part with two
new features, the child features q(1) and the parent features q(2). We describe the item
by its “bag of children” and by the “bag of parents” in the same way as we did it in the
asymmetric part q(0). Here is shown the prediction formula for a user/item pair:

r̂ui = µu + µi + pT
u (qi +

1√
|U(i)|

∑
j∈U(i)

q
(0)
j +

1√
|P(i)|

∑
j∈P(i)

q
(1)
j +

1√
|C(i)|

∑
j∈C(i)

q
(2)
j )

(11)

The matrices q, q(0), q(1), q(2) have the size of |I| x F , matrix p has the size |U| x
F . The parameters are learned according to Algorithm 2, but flipped to the other side
(train item-wise, etc.). With F=3000, η=0.000025, α=-50 and 40 epochs we get an error
rate=4.178% on the validation set. This is our most accurate single model.

2.2.8. ASVD flipped rated taxonomy

Taxonomy information was very helpful in the “ASVD flipped taxonomy” model, further-
more we introduce a new parameter q(3) which learns structure from rated parents. The
set P(i) is the set of parents, now we use the set Pu(i) as parents rated by user u.

r̂ui = µu + µi + pT
u (qi +

1√
|U(i)|

∑
j∈U(i)

p
(0)
j +

1√
|P(i)|

∑
j∈P(i)

q
(1)
j +

1√
|C(i)|

∑
j∈C(i)

q
(2)
j +

1√
|Pu(i)|

∑
j∈Pu(i)

q
(3)
j )

(12)

With F=1000, η=0.000025, α=-63 and 45 epochs we get an error rate=4.277% on the
validation set.

2.3. Neighborhood models

2.3.1. Item-Item KNN

In order to predict the rating r̂ui, a k-nearest neighbor algorithm selects K ratings with the
highest correlations to the item i. Therefore, we introduce the set of items I(u, i,K) which
consists of rated items from user u with the K-highest correlations to item i. I(u, i,K) ⊂
I(u). Here we have the final prediction formula for the model Item-Item KNN model.
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r̂ui =

∑
j∈I(u,i,K) ruj ĉij∑
j∈I(u,i,K) |ĉij |

(13)

Our item-item neighborhood model uses a sigmoid function to map the correlations cij
to ĉij by introducing two new parameters σ (scale) and γ (offset).

ĉij = 0.5 · tanh(σ · cij + γ) + 0.5 (14)

In general we use the Pearson correlation between two items, by doing this, the model is
called “Item-Item KNN Pearson”. Another, more effective way of computing the correlation
between two items is to use the feature distance. The equation below denotes the correlation
cij between two items i and j. We dub the model “Item-Item KNN SVD feat”.

cij =

 ∑F
k=1(qik − qjk)2√∑F
k=1 qik

√∑F
k=1 qjk

−2 (15)

Two models of the Item-Item KNN with SVD features are in the final blend. For those,
we calculate the KNN on the residuals of the SVD. We get good results, by using an SVD
with F=100 and σ=0.62 γ=-2.16 K=27 the error rate on the validation set is 5.166%.

2.3.2. User-User KNN

The User-User KNN is the flipped version of the Item-Item KNN. The only difference is
that users and items are changed. Since we have approximately the same number of items
and users, the User-User KNN has similar computational complexity to the item one. The
only model, which is in the blend is based on Pearson correlations between users. Hence
the model is called “User-User KNN Pearson”. With metaparameters σ=23.3 γ=-4.1 and
K=507 the error rate on the validation set is 18.35%.

2.4. Restricted Boltzmann Machines

The use of Conditional Restricted Boltzmann Machines for collaborative filtering is de-
scribed in Salakhutdinov et al. (2007). We use a very similar setup, but adopted the
methodology for optimizing the given ranking error measure.

The set of items rated by user u is denoted as I(u). This leads to the set of unrated items
I− I(u) for user u. For every user we choose a subset of the unrated items Ĩ(u) ⊂ I− I(u)
with the same size as the set of rated items |̃I(u)| = |I(u)|. One important thing is to draw
the items from the set of unrated items Ĩ(u) according to the probability of an item being
rated high.

Every item i is represented via two binary visible units v
(1)
i and v

(2)
i . The unit v

(2)
i is 1,

if the user rated the item i ∈ I(u), otherwise it is 0. The unit v
(1)
i represents the unrated

items and is 1, if i ∈ Ĩ(u) otherwise it is 0. For the conditioning of the hidden states we
use the items rated with an high rating, this set of items is denoted as Î(u) and is a subset
Î(u) ⊂ I(u) of all ratings rated by user u.

The used RBM topology can be seen in Figure 1. The probabilities of the visible and
hidden units for being high are given by:
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Figure 1: A Conditional Restricted Boltzmann Machine. The hidden units are conditioned
on the items rated high by the given user.

p(v
(l)
i = 1|h) =

exp(a
(l)
i +

∑
j hjw

(l)
ij )∑2

l=1 exp(a
(l)
i +

∑
j hjw

(l)
ij )

(16)

p(hj = 1|v) = σ

bj +
∑

i∈I(u)∪Ĩ(u)

2∑
l=1

w
(l)
ij v

(l)
i +

∑
i∈Î(u)

dij

 (17)

σ(x) =
1

1 + e−x
(18)

We initialize the biases of the visible units a
(l)
i to the logarithm of the probabilities of

the corresponding unit of being high. The biases of the hidden units bj are initialized to
zero. The features wij and dij are initialized to values drawn from a zero mean Gaussian
distribution with a small standard deviation of 0.001. With 300 hidden units we achieve an
error rate=10.11% on the validation set.

For every training case we “activate” only a small set of visible units, the set of rated
I(u) and the sampled set of unrated items Ĩ(u). Every visible unit belonging to an item not
included in the set Î(u) = Ĩ(u) ∪ I(u) must not be reconstructed for the training of user u.
Both sets have the same size |̃I(u)| = |I(u)| and every item is represented via 2 visible units.
Hence there is the need to reconstruct 2 · |̂I(u)| visible units, which is less than the total
number of items |I|. It is also possible to use a single visible unit for every item being 1 for
rated and 0 for unrated. The problem is that this setup would require a reconstruction of
every visible unit, which equals |I| reconstructed visible units for every training user u. On
the given dataset, where every user only rated a small fraction of all items, this increases
the computational costs. By using two visible units per item it is not needed to reconstruct
all items, only the rated items and a subset of unrated items have to be reconstructed.
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3. Blending

For track 2 there was no predefined hold out set. In Section 1.5 we describe how we choose
our fixed hold out set. This hold out set is designed to resemble the disclosed test set and
was fixed for all trained models.

In order to produce one predictor, the hold out set is removed from the data. The
algorithm trains the model on the remaining data. Then predictions for the hold out set
are produced. Afterwards we insert the hold out set in the training set, which results in
the original training set. Now the model is trained again on the original training set and

produces predictions for the test set. Hence every predictor pn = [p
(1)
n p

(2)
n ] consists of

predictions on the hold out set p
(1)
n and of predictions for the test set p

(2)
n . For the hold

out set the true ranking is known. This leads to a supervised learning problem.
We use a single layer neural network with sigmoid units on the hidden layer and a linear

readout. The network structure can be seen in Figure 2. The network is trained using
pairwise rankings, the idea for this methodology originates in Burges et al. (2005).

The neural network used is visualized in Figure 2. The output is given by:

hki = tanh

(∑
n

w
(1)
kn pni

)
(19)

oi =
∑
k

w
(2)
k hki =

∑
k

w
(2)
k tanh

(∑
n

w
(1)
kn pni

)
(20)

The difference between two outputs oi and oj is denoted as

oij = ζ(oi − oj) (21)

where ζ is a meta parameter for scaling. In order to train the weights we consider pairwise
rankings. We choose two indices i and j, where index i is ranked higher than j. The cost
function

Cij = −oij + log (1 + eoij ) (22)

is described in Burges et al. (2005). It is low, if the outputs of the network predict the
correct order, meaning that oi is higher than oj .

The derivatives of the pairwise error between the training sample i and j, where i should
be ranked higher than j is given by:

∂Cij

∂w
(2)
k

= ζ(hki − hkj)
(

eoij

1 + eoij
− 1

)
(23)

∂Cij

∂w
(1)
kn

= ζw
(2)
k

(
(1− h2ki)pni − (1− h2kj)pnj

)( eoij

1 + eoij
− 1

)
(24)

The training is done using stochastic gradient descent and 32 fold cross validation.
The weights are initialized to random values drawn uniformly between −0.4 and 0.4. The
parameter ζ is set in the range from 1 to 2, for the final blends we used ζ = 1.69. The
number of hidden units was set to 30. Table 2 contains all predictors used in the final blend,
which produced an error of 2.4887% on the leaderboard.
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Figure 2: The structure of the neural network used for blending. The N inputs pni are
normalized to mean zero and standard deviation 1. The last input is constantly
1. The hidden layer consists of K sigmoid units, while the readout is purely
linear.

4. General thoughts

Sampling is a key idea when optimizing a rank error measure within a collaborative filtering
algorithm. Compared to pure stochastic gradient descent it works much better. We found
out that regularization is not that important, hence we skip it for most of the models.

During the competition, our goal was to try many different models, which can explain
the variability of the data. The accuracy of matrix factorization models can be easily
improved by adding more features. We have a much higher relative improvement in the
error rate compared to RMSE when doubling the number of features. Hence, some of our
best models act with over 1000 features.

We did experiments with sampling items of the same type, e.g. if processing a track
then also a track is sampled. However the results only got worse.

In general, taxonomy information helps in getting an accurate collaborative filtering
model. Our opinion is that the rating date would also help in further improving the model.
Our approach on Track1 shows the effectiveness of integrating the rating date in the models.
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Appendix A. Single predictor performance

no model error rate Test1 meta-parameters

1 AFM 5.60% F=3000 epochs=30 η=0.00005 α=-50

2 AFM 6.38% F=1000 epochs=30 η=0.00002 α=-50

3 AFM flipped 6.98% F=50 epochs=50 η=0.00005 α=-50

4 ASVD flipped 5.05% F=200 epochs=30 η=0.00005 α=-50

5 ASVD flipped taxo 4.02% F=3000 epochs=40 η=0.000025 α=-50

6 ASVD flipped rated taxo 4.40% F=200 epochs=50 η=0.000025 α=-50

7 ASVD flipped rated taxo 4.11% F=1000 epochs=45 η=0.000025 α=-50

8 ASVD flipped rated taxo 4.15% F=3000 epochs=45 η=0.000025 α=-63

9 ASVD flipped rated taxo 4.06% F=1000 epochs=45 η=0.000025 α=-63

10 ASVD flipped rated taxo 5.08% F=100 epochs=40 η=0.000025 α=-63

11 ASVD flipped rated taxo 6.88% F=30 epochs=20 η=0.000025 α=-63

12 ASVD flipped rated taxo 6.98% F=50 epochs=30 η=0.000025 α=-50, same type in sampling

13 ASVD 5.70% F=1000 epochs=15 η=0.00005 α=0

14 ASVD 5.63% F=1000 epochs=35 η=0.00002 α=0

15 Basic Taxonomy (1-14) 18% - 47% details in Section 2.1

16 RBM discrete 27.7% nHid=10 η=0.0001 λ=0.02

17 RBM discrete 27.9% nHid=10 η=0.0001 λ=0.002

18 RBM discrete 12.5% nHid=100 η=0.0003 λ=0.002

19 RBM discrete 9.77% nHid=300 η=0.0015 λ=0.0002

20 Item-Item KNN Pearson 15.7% σ=10.5 γ=-8.2 K=29

21 Item-Item KNN Pearson 13.3% σ=19.2 γ=-13.2 K=289

22 Item-Item KNN SVD feat 6.72% σ=0.62 γ=-2.16 K=27 (SVD: F=100 η=0.0001 epochs=30)

23 Item-Item KNN SVD feat 4.92% σ=1.15 γ=-1.66 K=67 (SVD: F=100 η=0.00003 epochs=50)

24 User-User KNN Pearson 17.8% σ=23.3 γ=-4.1 K=506

25 SVD (regression) 15.2% F=100 epochs=120 η=0.0004 λ=1.5

26 SVD (regression) 14.7% F=500 epochs=120 η=0.0006 λ=1.5

27 SVD 6.74% F=100 epochs=30 η=0.0002

28 SVD 5.71% F=1000 epochs=25 η=0.0002

Table 2: Predictors in the final blend. The Neural-Network blender achieves an error rate
of 2.617% on the validation set and an error rate of 2.4887% on the KDD Cup
2011 Track2 leaderbord. Test1 is a 50% subset of the leaderboad set, it contains
ratings from 101172 users. Each user has exactly 6 ratings in Test1. Our final
solution has an error rate of 2.492% on Test1 (and 2.444% on Test2).
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