
JMLR: Workshop and Conference Proceedings 18:249–261, 2012 Proceedings of KDD-Cup 2011 competition

The Love-Hate Square Counting Method for Recommender
Systems

Joseph S. Kong joseph.kong@ngc.com

Kyle Teague kyteague@gmail.com

Justin Kessler
Northrop Grumman, 7575 Colshire Dr, McLean, VA 22102

Editor: G. Dror, Y. Koren and M. Weimer

Abstract

Recommender systems provide personalized suggestions to users and are critical to the
success of many e-commerce sites, such as Netflix and Amazon. Outside of e-commerce,
recommender systems can be deployed in fields such as intelligence analysis, for recom-
mending high-quality information source to analysts for further examination. In this work,
we present the square counting method for rating predictions in recommender systems. Our
method is based on analyzing the bipartite rating network with score-labeled edges repre-
senting user nodes’ ratings to item nodes. Edges are denoted as an I-love-it or I-hate-it
edge based on whether the rating score on the edge is above or below a threshold. For a
target user-item pair, we count the number for each configuration of love-hate squares that
involve the target pair, where the sequence of I-love-it or I-hate-it edges determine the
particular configuration. The counts are used as features in a supervised machine learning
framework for training and rating prediction. The method is implemented and empiri-
cally evaluated on a large-scale Yahoo! music user-item rating dataset. Results show that
the square counting method is fast, simple to parallelize, scalable to massive datasets and
makes highly accurate predictions. Finally, we report an interesting empirical finding that
configurations with consecutive I-hate-it edges seem to provide the most powerful signal in
predicting a user’s love for an item. 1

Keywords: collaborative filtering, recommender systems, square counting method, com-
plex network, rating network

1. Introduction

Recommender systems aim to provide a user with high-quality personalized recommenda-
tions by analyzing data on all users’ preference for items. Recommender systems have
greatly gained popularity over the years and are now deployed across the e-commerce do-
mains, in websites such as Netflix, Amazon and Youtube. Besides suggesting items to
purchase or movies/videos to view in e-commerce type of applications, recommender sys-
tems have the potential to be productive in other fields, such as in recommending informa-
tion sources for further examination (e.g. documents, images, etc) in intelligence analysis
(Bartee and Gertner, 2006).

1. Approved for public release by Northrop Grumman Information Systems, ISHQ-2011-0042. The work
was entirely performed when Kyle Teague was at Northrop Grumman.

c© 2012 J.S. Kong, K. Teague & J. Kessler.

Kong Teague Kessler

+

+

+?

Donald

You
+

+

+

+
-

+

-?

Brock

You
-

-

-

-

Song 1 Song 2

Figure 1: Hanging out with Brock and Donald (‘+’ denotes an I-love-it edge, ‘-’ denotes
an I-hate-it edge). You and Brock hate the same 3 songs, while you and Donald
love the same 3 songs. Are you more likely to prefer Song 1 or Song 2?

Existing popular methods for recommender systems are based on collaborative filtering,
and have the interesting and attractive property of being domain-independent: no expert
knowledge is required for building a recommender system based on collaborative filtering.
For example, a method that works well for recommending movies to watch is expected to
work reasonably well in suggesting books to buy.

Imagine for a moment that you are hanging out with two friends called Brock and
Donald at a coffee shop (see Fig. 1 for an illustration): after chatting with Brock for a
few minutes, you discover that there are three songs that both you and Brock hate; after
a few more exchanges with Donald, you find that there are three songs that both you and
Donald love listening to. Now, Brock likes Song 1 and Donald likes Song 2. With the given
information, is it more likely that you will love Song 1 or Song 2? Intuition may suggest
that you are more likely to love Song 2, since you and Donald seem to have very similar
tastes in what music to enjoy, but one is far from being sure. In fact, empirical data may
suggest otherwise.

In this work, we hypothesize that such rating network neighborhood information is very
useful in determining a person’s preference, and we will empirically investigate whether
this hypothesis is true. To this end, we have developed the square counting method for
recommender systems: first, we construct a bipartite rating network with two types of
nodes (i.e. the users and the items); the edges carrying scores represent the users’ ratings
to items; all edges are categorized as an I-love-it or an I-hate-it edge based on whether the
rating score for the edge is above or below a threshold; for a target user-item u − i pair,
all squares involving the given user-item pair (i.e. paths that start from user u and end
at the item i) are identified; the counts for each particular love-hate square configuration
are tabulated; the counts for each love-hate configuration are then used as features in a
machine learning framework for training and prediction. Intuitively, the presence of a large
number of certain love-hate square configuration on the rating network may indicate the
target user-item pair as being an I-love-it or I-hate-it edge.

Many interesting questions arise here: for example, which love-hate square configuration
is most powerful in predicting a user’s like or dislike for an item? We have implemented
the square counting method and applied it on the Yahoo! music user-item rating dataset
as part of participating in the data mining competition KDD Cup 2011. Very encouraging
results have been obtained.

250

The Love-Hate Square Counting Method for Recommender Systems

2. Related Works

A popular approach to building recommender systems is to employ neighborhood models
as in (Herlocker et al., 1999; Linden et al., 2003). Such an approach predicts the rating
of a given item by using the ratings of similar users or alternatively, by using the ratings
of similar items. The Pearson correlation coefficient is commonly used to measure the
similarity between items or between users, although other distance measurements can be
used as well. For example, borrowing from the notation in (Koren, 2008), to predict the
rating r̂ui of item i for user u we let Sk(u; i) be the set of the k most similar items to item
i rated by user u. A predicted rating could then be calculated in the following way:

r̂ui =

∑
j∈Sk(u;i) sijruj∑
j∈Sk(u;i) sij

where sij is the similarity between item i and item j.
Neighborhood models of this type enjoy widespread popularity because they are intu-

itive and relatively easy to implement. However, as show in (Koren, 2008) they perform
poorly in terms of reducing the RMSE (root-mean-squared-error) compared to more com-
plex methods. Neighborhood models with learned parameters perform considerably better
(Bell and Koren, 2007; Koren, 2008).

Another collaborative filtering approach, which was popularized by the Netflix compe-
tition in 2006, is the latent factors model. The basic form described by Koren attempts
to parameterize each item i by a vector of factors qi ∈ Rf and each user u by a vector
pu ∈ Rf representing the user’s affinity for those factors. The additional parameters bu and
bi are used to represent the bias for each user and item, respectively. A predicted rating
is then given by r̂ui = µ + bu + bi + pTu qi. Parameter estimation can be done by solving
the regularized least squares problem with stochastic gradient descent or alternating least
squares:

min
p∗,q∗,b∗

∑
(u,i)∈κ

(rui − µ− bu − bi − pTu qi)2 + λ(||pu||2 + ||qi||2 + b2u + b2i)

Newer techniques such as Factorization Machines (Rendle, 2010) attempt to provide
a more general factorization algorithm, applicable to a wider range of problems. Other
techniques that have produced relatively low RMSE scores include Restricted Boltzmann
Machines (Salakhutdinov et al., 2007) and Kernel Ridge Regression (KRR) (Paterek, 2007).
Further gain in accuracy can be achieved by combining multiple models using an ensemble
method known as stacking, also commonly referred to as blending. Using this technique the
predictions of several models on a held-out test set are provided as training examples to a
final regression algorithm. Algorithms used for stacking have included Additive Regression
with Stochastic Gradient Boosting, Neural Networks, KRR, and Binned Linear Regression
(Jahrer et al., 2010).

Researchers have developed network-based techniques for collaborative filtering in rec-
ommender systems. A method based on resource allocation dynamics over networks has
been proposed (Zhou et al., 2007). A method based on a heat spreading algorithm for re-
solving the diversity-accuracy dilemma of recommender systems has been developed (Zhou
et al., 2010). A related line of research involves the study of signed social networks, which

251

Kong Teague Kessler

?

A

1

B

2 43 80

5020 90100
?

A

1

B

2 43 +

-- ++

Figure 2: Lefthand figure: an example of a bipartite rating network extracted from ratings
data. Here, user A rates items 1, 2 and 4 with scores 20, 100 and 80, respectively,
while user B rates items 2 and 3 with scores 90 and 50. Righthand figure: an
edge with a rating score ≥ 80 is denoted as I-love-it (by the ‘+’ sign); an edge
with a rating score < 80 is denoted as I-hate-it (by the ‘-’ sign).

are found on websites such as Epinions and Slashdot. A method for predicting the sign of a
link in online social networks by applying machine learning on the signed degrees of nodes
and the triads in the immediate social network neighborhood has been proposed (Leskovec
et al., 2010).

3. The Square Counting Method for Recommender Systems

3.1. Bipartite Rating Network

Rating information collected by recommender systems can be fully modeled as a bipartite
rating network, where two types of nodes, users and items, are linked by edges with a rating
score. The lefthand figure in Fig. 2 shows an example bipartite rating network extracted
from ratings data: the rating scores given by users A and B to items 1, 2, 3 and 4 are
shown. A typical task in a recommender system may be to predict what score user B would
like to give to item 4 or to predict whether user B is likely to give a high rating to item 4.

3.2. The Love-Hate Squares

Formally, we set an arbitrary cutoff score rc for all edges in the rating network: an edge
with a rating score r ≥ rc is considered an I-love-it edge, while an edge with a score r < rc
is considered an I-hate-it edge (see the righthand figure in Fig. 2; ‘+’ denotes an I-love-it
edge, while ‘-’ denotes an I-hate-it edge).

For a target user-item utg − itg pair on the rating network to make prediction on, we
examine a path of 3 hops that start from utg and end at itg, thus completing a cycle and
forming a square with the target pair utg − itg. Fig. 3 enumerates all 8 possible love-hate
square configurations for a target user-item pair. In this work, we will use the terms target
user and target item to denote the user and item that make up the target pair in a square,
labeled utg and itg in Fig. 3, respectively. We will use the terms other user and other item
to denote the other two nodes in a square, labeled uot and iot in Fig. 3, respectively.

252

The Love-Hate Square Counting Method for Recommender Systems

Figure 3: All possible love-hate squares: for a target user-item pair (labeled utg and itg,
respectively) to be predicted, all 8 possible love-hate square configurations are
displayed. The configuration number for each square configuration is shown in
the middle: for example, configuration No. 5 describes the scenario where the
target user utg loves an item iot, for which another user uot hates; but, user uot
loves the target item itg.

3.3. Square Counting

Here we describe the algorithm for tabulating the different square configurations for a
target user-item pair: for the target item, we assume a hash table is available, where the
keys consist of the set of users that have rated the target item with the rating score as the
value. Given a target user, we set the target user as the root node, from which we perform
a breadth-first search on the rating network with a finite depth of 2 hops; For each of the
user nodes discovered after 2 hops, we perform a lookup on the hash table to check if the
user node is one of the users that has rated the target item; if yes, a 3-edge path has been
found, and we determine the configuration number based on the signs on the 3 edges (i.e.
either I-love-it or I-hate-it). We increment the count for the corresponding configuration
number (see Fig. 4 for an illustration).

For example, in Fig. 4, the path utg − i1 − u1 − itg, which has a sign sequence of
{−,+,−}, corresponds to configuration No. 2 (see Fig. 3); thus, the count for configuration
No. 2 is 1. Note that the sign sequence discussed here will follow the convention of tracing
the edges from the target user utg to the target item itg. Another example, the paths
utg − i1 − u2 − itg and utg − i2 − u4 − itg, which both have a sign sequence of {−,+,+},
correspond to configuration No. 3; thus, the count for configuration No. 3 is 2. The counts
for each instance of target user-item pair will be written as a row in an instance-feature
matrix.

For each target user-item pair, the time complexity for performing square counting is
simply the time complexity for a finite breadth-first search (BFS) with a depth of 2 hops from
the target user. Let j and k denote the user node degree (i.e. number of items a user has
rated) and item node degree (i.e. number of users that have rated an item), respectively.
The breadth-first search is performed on a bipartite rating network with heterogeneous
degree distributions P (j) and Q(k), which denote the degree distributions of user and item

253

Kong Teague Kessler

Figure 4: Counting squares: in this illustrated sample scenario, given a target user-item
pair utg-itg to make prediction on, all 3-hop paths that start from user utg and
end at the item itg are enumerated; for each 3-hop path, the corresponding square
configuration number can be determined based on the signs of the 3 edges (see
Fig. 3); we simply keep the count for each configuration number; note that the
counts for each configuration number will be later used as features in the machine
learning framework as described in Sec. 3.4.

nodes, respectively. Starting BFS from a user, the expected degree of a user node is 〈j〉.
Thus, 〈j〉 items are discovered after 1 hop of BFS on average. Now, the expected degree

of an item node reached via a hop from a user node is given by
∑

k kP (k)(k−1)
〈k〉 = 〈k(k−1)〉

〈k〉 .
The explanation is as follows: an item with degree k has k ways of getting discovered and
thus the probability an item node getting discovered is proportional to kP (k) (i.e. the

probability is given by kP (k)
〈k〉 where 〈k〉 is the normalizing constant); the discovered item

node has a remaining degree of (k − 1) not counting the edge on which the item node is
reached; thus, we arrive at our result by summing over all possible values of k. See (Newman
et al., 2001) for a detailed explanation and derivation. On average, the number of users

discovered after 2 hops of BFS is given by 〈j〉〈k(k−1)〉〈k〉 . Thus, the average time complexity

for 2-hop BFS is (1+〈j〉+ 〈j〉〈k(k−1)〉〈k〉), which is O(〈k2〉) since the second moment typically
dominates the first moment in degree distributions of real-world networks. Assuming only
a constant number of target items need to be trained with each target user, the average
time complexity is thus O(N〈k2〉) for generating the instance-feature matrix as the number
of system users N scales up. Since the degree distributions are not expected to change as
the system size scales up, 〈k2〉 becomes a constant, which results in a time complexity of
O(N). Furthermore, it is simple to parallelize the task of populating the instance-feature
matrix by performing square counts on multiple target user-item pairs in parallel.

254

The Love-Hate Square Counting Method for Recommender Systems

3.4. Machine Learning Framework

The counts for different configurations will be used as features in our machine learning
approach. We assume that rating data for training and a set of user-item pairs with known
rating scores for validation have been made available. The machine learning framework
consists of the following four steps:

1. First, we perform square counting, as described in Sec. 3.3, on the training network
for each user-item pair in the validation set. A validation instance-feature matrix is
generated, where each user-item pair in the validation set represents an instance, and
the counts for the different configurations are the features. The truth label for each
instance can either be a 0/1 binary value if the task is to make some binary prediction,
or can be the rating score if the task is to predict the score.

2. Second, depending on whether the task is to predict a binary value or a continuous
score, a classifier or a regression model is trained on the validation instance-feature
matrix.

3. Third, repeat square counting (see Sec. 3.3) on the (training + validation) network
for each user-item pair in the test set, and generate a test instance-feature matrix.

4. Fourth, apply the trained classifier or trained regression model from Step 2 to make
a prediction for each instance in the test instance-feature matrix.

3.5. Possible Enhancements

There exist numerous ways to perform square counting in order to improve the accuracy
in making predictions. Here we describe some possible methods for making enhancements,
which provide additional features for the instance-feature matrix in the machine learning
framework.

3.5.1. Normalizing Counts against the Random Network Model

Intuitively, for a target pair consisting of a prolific user and a popular item, the number
of all possible squares in the rating network that involve the target user-item edge may be
high simply because the user and the item are high-degree nodes in the rating network. In
fact, it is straightforward to show that in a bipartite random network with identical degree
sequence as the given bipartite rating network (Newman et al., 2001), the expected number
of squares that involve a target user-item edge with user degree ju and item degree ki,
respectively, is proportional to their degree product juki. Thus, we can normalize against
the random network model by dividing the counts for the different square configurations
by the degree product juki. Now, for example, a high normalized count represents a true
presence of high number square configurations that involve the target user-item pair, but
not an artifact from the degree of the user or the item.

3.5.2. Separate Counts Based on the Item Hierarchy

In recommender systems, an item hierarchy that describes the relationship among the items
may be provided. For example, two songs may belong to the same artist or two movies may

255

Kong Teague Kessler

belong to the same genre. Each square contains two items. When enumerating the all pos-
sible squares for a target user-item pair, we can separately tabulate the square configuration
counts based on whether the two items in the square belong to the same artist, for example.

3.5.3. Further Edge Categorization

In Sec. 3.3, each edge falls into one of two categories of I-love-it or I-hate-it based on
whether the rating score is above or below a cutoff score. A natural extension is to have
two cutoff scores such that each edge can fall into one of three categories, and so forth.
For an edge categorization scheme of separating each edge into c categories, the number of
possible square configurations (i.e. the number of features) grows as c3.

3.5.4. Removing Very Popular Items

Extremely popular items that are rated by a significant fraction of the users in a recom-
mender system may provide very little or no signal regarding a user’s preference. We can
preprocess the rating network by first removing the items with the highest number of rat-
ings. A side benefit from this technique is that the run time for square counting may be
significantly reduced.

3.5.5. Using Bias-Removed Scores

In recommender systems, it is well known that inherent user and item biases exist. Stochas-
tic gradient descent based techniques for estimating user and item biases are well established
and are straightforward to implement (see Eq. (3) in (Koren et al., 2009)). Thus, we can
estimate the bias for every rating in the dataset and simply subtract off the bias from each
rating to obtain the bias-removed scores. Now, in addition to using the raw rating scores
for edge categorization in Sec. 3.3 and 3.5.3, we can use the bias-removed scores.

4. Results on Yahoo! Music Dataset

4.1. Dataset Description and Some Statistics

The KDD Cup 2011 competition provides a large-scale user-music-item rating dataset from
Yahoo! music. See (Dror et al., 2012) for a detail description of the dataset. Although the
square counting method can be applied on both tracks of KDD Cup 2011, we focused on
track 2 of the competition, where the task is to distinguish a track that has been highly
rated (defined as a rating score greater than 80) by a user from a track that has been
sampled with a probability proportional to the number of high ratings for the track. The
rating network extracted from the track 2 dataset has 249,012 user nodes, 296,111 item
nodes, 61,944,406 edges for training, and 607,032 for test.

4.2. Generating the Validation Set

Since no validation set is provided for track 2, the first challenge is to generate a validation
set that mimics the test set. For each user that appears in the test set and has 6 or more high
ratings, first, we randomly select 3 tracks from all tracks in the dataset with a probability
proportional to the number of high ratings received by the track, and insert these 3 tracks

256

The Love-Hate Square Counting Method for Recommender Systems

Table 1: Summary of Results (Test1 Set)
Enhancement Methods Used ErrRate

simple and deg product normalized counts 6.9969

4-category edges 6.1215

popularity normalized counts 5.6284

use GBM for blending 5.4072

hi-deg-items-removed .1% 4.9484

hi-deg-items-removed .5%,bias-remov scores 4.6336

into the validation set with a label of “0”; second, we randomly select 3 highly rated tracks
from the list of highly rated tracks by the user, and insert them into the validation set with
a label of “1” (note that these 3 ratings are deleted from the training network). Note that
the validation instance-feature matrix used to train the machine learned classifier will be
balanced, since there is an equal number of “0” and “1” instances.

4.3. Results

4.3.1. Baseline

We perform square counting (see Sec. 3.3) on the rating network constructed from the
track 2 dataset, where the cutoff score rc is set to rc = 80 (see Sec. 3.2). We have applied
the enhancement method detailed in Sec. 3.5.1, which normalizes square counts by the
degree product of the target user-item edge. We have also separated counts into categories
based on the item hierarchy as described in Sec. 3.5.2: we tabulate separate counts for
shared-album, shared-artist, shared-genre, and shared-nothing categories for the cases where
the target track and the other item in the square belong to the same album, same artist,
same genre and share nothing, respectively. Since each track can have multiple genres, the
category shared-genre-Jaccard is introduced, where the count for each square configuration
is weighted by the Jaccard Coefficient of the target item’s genre set and the other item’s
genre set.

A validation and a test instance-feature matrix are generated after tabulating the square
counts (features) for the target user-item pairs (i.e. instances) in the validation set and
test set. In applying the machine learning framework, a logistic regression classifier is
trained on the validation instance-feature matrix, and the trained classifier is used to make
prediction on the test instance-feature matrix. The probability prediction made by the
logistic regression classifier for each instance is interpreted as the probability that the track
has been highly rated by the user. For each user in the test set, 6 probabilities are generated
by the classifier. For the purpose of submitting the prediction file to the KDD Cup website,
the 3 items with the highest probabilities are labeled as “1” with the rest labeled as “0” .
The error rate on the Test1 Set is 6.9969%.

Our C++/OpenMP implementation of the square counting method as described in Sec.
3.3 takes about 5 hours to run on a Desktop with 8 computing cores. Training the logistic
regression classifier on the validation instance-feature matrix and using the classifier to
make prediction on the test instance-feature matrix take minutes to complete with the
GLM package in the statistical package R.

257

Kong Teague Kessler

Table 2: GBM Parameters
GBM Parameter Value Used

distribution bernoulli

n.trees 2000

shrinkage 0.01

interaction.depth 1

bag.fraction 0.5

train.fraction 1.0

n.minobsinnode 1

cv.folds 0

method OOB

4.3.2. Various Enhancements

In this section, when we incorporate an additional enhancement method, we always blend
the existing results that have been obtained so far with the new predictions via ensemble
learning (Jahrer et al., 2010). Results for the various enhancement methods are summarized
in Table 1.

First, we try categorizing each edge into 4 labels as discussed in Sec. 3.5.3, where the
3 cutoff scores used are 30, 50, and 90, respectively. We repeat the procedure described
above on the 4-label edges and lowered the error rate further to 6.1215%.

Here we describe an enhancement method that may be specific for track 2 of the KDD
Cup 2011 competition. For track 2, recall that a track is randomly selected with a proba-
bility proportional to the number of high ratings it has received. Similarly, we can define
the popularity of an album (or an artist) by summing the number of high ratings that the
tracks within the album (or by the artist) have received. An album with high popularity is
proportionally more likely to be randomly selected; hence, if a square count falls under the
shared-album or shared-artist category, we normalize each square count by the inverse of
the popularity of the album or artist, respectively. This enhancement method has further
pushed our error rate down to 5.6284%.

At this point, we experiment with boosting methods by applying the GBM package in
the statistical package R (see Table 2 for parameters used) for the classification task and for
blending existing results via ensemble learning. The error rate is further reduced slightly
to 5.4072% as a result.

Next, we remove the top 0.1% of items with the highest degree (i.e. highest number
of ratings received) from the rating network (as described in Sec. 3.5.4), which further
pushes the error rate down to 4.9484%. Finally, we experiment with removing the top 0.5%
of items with the highest degree from the rating network and also try using bias-removed
scores (see Sec. 3.5.5). The final error rate obtained is 4.6336%.

4.4. Hate is a Powerful Signal in Predicting Love

A very interesting question arises: which love-hate configuration provides the most powerful
signal in predicting a user’s preference for an item? For an empirical answer to this question,
we turn to the results from training the logistic regression classifier as discussed in Sec. 4.3.

258

The Love-Hate Square Counting Method for Recommender Systems

The coefficients of the logistic regression classifier quantify how much each feature (i.e.
counts of each square configuration) contributes to or against the prediction that the target
user has highly rated the target item. The logistic regression coefficients corresponding to
the simple counts of each square configuration in the shared-album category are displayed
in Fig. 5.

Figure 5: Logistic regression coefficients (in 10−3) for each love-hate square configuration
in predicting a user’s highly rated items.

From examining Fig. 5, we discover a very surprising result: the most powerful signal
in predicting love (i.e. user’s high rating of an item) comes from the I-hate-it edges. Let’s
interpret the configuration with the highest logistic regression coefficient (i.e. configuration
No. 1, refer to Fig. 3): both users hate a common item and the other user loves the target
item; for the configurations with the second highest coefficient, configuration No. 4, both
items are hated by a common user and the target user loves the other item. Such common
hatred toward the same item by two users or hatred by the same user to two items seems to
provide a very strong signal in predicting target user’s love toward the target item, provided
that preference has been expressed either by the other user toward the target item or by
the target user toward the other item.

The finding that configuration No. 1 provides a strong signal in predicting a high rating
may have interesting ramifications: for example, a real-world recommender system based
on square counting may find itself explaining to a user that item X is recommended because
the user hates items Y and Z! Also, next time you meet up with friends, besides talking
about which of the latest songs and movies you and your friends like, perhaps a discussion
on which songs or movies you and your friends hate may lead to you to your next favorite
song or movie!

Another interesting observation is that the configuration with the most negative logistic
regression coefficient is configuration No. 5, which corresponds to the situation where the
two users disagree on the other item and the other user loves the target item. Such situation
is the most likely to predict that the target user will NOT like the target item.

5. Future Work

For future work, we want to evaluate the performance of the square counting method for the
task of predicting user-item rating scores, which is the goal of track 1 of the KDD Cup 2011

259

Kong Teague Kessler

competition. We plan to benchmark the square counting method in terms of accuracy and
computational complexity against other popular methods from literature (e.g. k-Nearest-
Neighbor, Matrix Factorization based methods, etc). In addition, we intend to evaluate the
overall performance when blending the results of the square counting method with results
from popular methods from the literature. We want to benchmark the accuracy of the
square counting methods against other large-scale rating datasets, such as the Netflix prize
dataset. Finally, we want to explore other enhancement techniques to further improve the
square counting method.

6. Acknowledgments

This paper is dedicated to our friend and colleague, Justin Kessler, who dedicated the very
last minutes of his life to the advancement of data mining research. His passion for life and
mathematics has inspired us all.

References

Thomas Q. Bartee and Abigail Gertner. A multi-source recommender system for intelligence
analysis. In MITRE’s Annual Technology Symposium. MITRE Corporation, 2006.

Robert M. Bell and Yehuda Koren. Improved neighborhood-based collaborative filtering.
In KDD-Cup and Workshop, San Jose, California, 2007.

Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The yahoo! music
dataset and kdd-cup’11. Journal Of Machine Learning Research W& CP, 18:1–12, 2012.

Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. An algorithmic
framework for performing collaborative filtering. In Proc. 22nd SIGIR, pages 230–237,
1999.

Michael Jahrer, Andreas Töscher, and Robert Legenstein. Combining predictions for accu-
rate recommender systems. In Proc. KDD, pages 693–702, 2010.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In Proc. KDD, pages 426–434, 2008.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42:30–37, 2009.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative
links in online social networks. In Proc. WWW, pages 641–650, 2010.

Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing, 7:76–80, 2003.

M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary degree
distributions and their applications. Phys. Rev. E, 64(2):026118, Jul 2001. doi: 10.1103/
PhysRevE.64.026118.

260

The Love-Hate Square Counting Method for Recommender Systems

Arkadiusz Paterek. Improving regularized singular value decomposition for collaborative
filtering. Proceedings of KDD Cup and Workshop, 2007.

Steffen Rendle. Factorization machines. In Proc. 10th ICDM. IEEE Computer Society,
2010.

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann machines
for collaborative filtering. In Proc. 24th ICML, pages 791–798, 2007.

Tao Zhou, Jie Ren, Matú š Medo, and Yi-Cheng Zhang. Bipartite network projection and
personal recommendation. Phys. Rev. E, 76(4):046115, 2007.

Tao Zhou, Zoltn Kuscsik, Jian-Guo Liu, Mat Medo, Joseph Rushton Wakeling, and Yi-
Cheng Zhang. Solving the apparent diversity-accuracy dilemma of recommender systems.
Proceedings of the National Academy of Sciences, 107(10):4511–4515, 2010.

261

	Introduction
	Related Works
	The Square Counting Method for Recommender Systems
	Bipartite Rating Network
	The Love-Hate Squares
	Square Counting
	Machine Learning Framework
	Possible Enhancements
	Normalizing Counts against the Random Network Model
	Separate Counts Based on the Item Hierarchy
	Further Edge Categorization
	Removing Very Popular Items
	Using Bias-Removed Scores

	Results on Yahoo! Music Dataset
	Dataset Description and Some Statistics
	Generating the Validation Set
	Results
	Baseline
	Various Enhancements

	Hate is a Powerful Signal in Predicting Love

	Future Work
	Acknowledgments

